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Correct Expressions of Enthalpy of
Mixing and Excess Entropy from
MIVM and Their Simplified Forms

DONG-PING TAO

In this work, the author pointed out that empirically to
compare the molecular interaction volume model
(MIVM) with thermodynamic definition of excess
Gibbs energy would result in the incorrect expressions
of enthalpy of mixing and excess entropy. The correct
expressions of molar and partial molar enthalpies of
mixing and excess entropies from the MIVM are con-
sistent thermodynamically and are suggested for
replacing their past incorrect ones. The simplification
of Zi = Z = 10 is verified to be feasible by the average
errors of fitting in the binary liquid alloys M-P
(M = Cr, Fe, and Mn) and of predicting in the ternary
liquid alloys Fe-Cr-P and Fe-Mn-P by using two
coordination numbers of phosphorus ZP = 3.04 and
ZP = 8.96. Further, their simplified forms are pro-
posed for predicting easily thermodynamic properties
of a multicomponent liquid system and are prelimi-
narily tested to be coordinated mutually in the binary
liquid alloys Au-Cu, Cd-Zn, Ca-Zn, and Ni-Pb.
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At present, thermodynamic models still are important
methods to solve problems relating to thermodynamic
properties of liquid alloys and silicate melts, such as
chemical interaction in Cu-Zr melts,[1] interfacial ener-
gies in the fcc Au-Ni, liquid Ga-Pb, and liquid Al-Bi,[2]

mixing functions in binary silicate and aluminate
melts,[3] element partitioning between plagioclase and
melt,[4] and so forth. Especially, the molecular interac-
tion volume model (MIVM)[5] has been successfully
applied to some practical systems.[6–10] But in the model
calculation it is often difficult to find out the

coordination numbers and molar volumes of some
components in liquid state, such as P, C, Ta, TiO2,
V2O5, Cu2S, FeS, NaCl, MgCl2, CaSiO3, and so on.
This would hinder application of the MIVM to many
practical systems. For this reason, the author tried to
simplify the MIVM reasonably. In its simplification
process, however, the incorrect expressions thermody-
namically were found in its molar enthalpy of mixing
and excess entropy.[11–14] So it is necessary to correct
them in public.
For a C-component system, the molar excess Gibbs

energy GE
m of the MIVM[5] can be expressed as
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where R(J/mol K) is the gas constant, T(K) is the
absolute temperature, C is the component number, xi,
Vmi(cm

3/mol), and Zi are the molar fraction, molar
volume, and coordination number of component i,
respectively, and Bji and Bij are the pair potential
parameters of the i�j binary system which are defined
as

Bji ¼ exp½�NAðeji � eiiÞ=RT� Bij ¼ exp½�NAðeij � ejjÞ=RT�;
½2�

where eii (J) is the i�i pair potential energy and NA

(1/mol) is the Avogadro constant. It can be seen that
the temperature dependence of the MIVM is deter-
mined by Eq. [2], that is, if both hji ¼ NAðeji � eiiÞ=R
and hij ¼ NAðeij � ejjÞ=R are constant, the binary
parameters Bji and Bij gradually approach unity as
temperature increases. It indicates that the non-ideality
of solutions will diminish at high temperatures. This
case of the MIVM is consistent with the tendency
described by the rule of Lupis and Elliott (LE rule)
which was reformulated and rationalized by Kaptay[15]

(LE rule: ‘‘Real solid, liquid and gaseous solutions
(and pure gases) gradually approach the state of an
ideal solution (perfect gas) as temperature increases at
any fixed pressure and composition.’’). At limited tem-
peratures, if real solutions want to approach the state
of an ideal solution, then the necessary conditions
from the MIVM are as follows: all of Bji are equal to
a same constant and all of Vmi are equal to a same
constant.
In Eq. [1], the first term involving molar volumes

represents a contribution of entropy to the non-ideality
and the second term involving coordination numbers
represents a contribution of enthalpy to the non-ideality.
Especially, when all of the pair potential energy are
equal to a same constant or Bji ¼ Bij ¼ 1, Eq. [1] would
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be reduced to the famous Flory–Huggins equation[16]:

GE
m ¼ RT

PC

i¼1

xi lnð/i=xiÞ
� �

; where /i ¼ xiVmi=Vm is the

volume fraction of component i and Vm ¼
PC

j¼1

xjVmj is

the molar volume of the system. It means that the
MIVM could be equivalent to the contribution of excess
entropy of the system or GE

m ¼ �TSE
m under this

condition. However, the incorrect expressions of molar
enthalpy of mixing DHM

m and the molar excess entropy
SE
m from the MIVM were originated from comparing the

GE
m of Eq. [1] with its thermodynamic definition:
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[11–14]
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Both of them cannot satisfy the thermodynamic
partial derivatives of GE

m:
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where the subscripts P and x represent the pressure
and composition of the system, respectively. So, substi-
tuting Eq. [1] into Eqs. [5] and [6], the correct expres-
sions of DHM

m and SE
m can be derived as follows: for

the i�j binary system, its GE
m can be written from

Eq. [1] as
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Here assume that the Zi and Zj in Eq. [7]
hji ¼ NAðeji � eiiÞ=R and hij ¼ NAðeij � ejjÞ=R in Eq. [2]
are independent of temperature, and one can obtain
the partial derivatives ð@Bji=@TÞP ¼ �ð1=TÞBji lnBji

and ð@Bij=@TÞP ¼ �ð1=TÞBij lnBij. Then, substituting

Eq. [7] into Eq. [5], the DHM
m of the 1–2 binary system

can be derived as

DHM
m

RT

¼ 1

2
Z1x1

x2B21 lnB21

x1 þ x2B21

� �2

�ð1þ lnB21Þx2B21 lnB21

x1 þ x2B21

" #(

þ Z2x2
x1B12 lnB12

x1B12 þ x2

� �2

�ð1þ lnB12Þx1B12 lnB12

x1B12 þ x2

" #)

� x1x2Vm2B21 lnB21

x1Vm1 þ x2Vm2B21
� x2x1Vm1B12 lnB12

x1Vm1B12 þ x2Vm2
:

½8�

Extending the binary 1–2 to the C-component system,
one can obtain its DHM

m :
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Similarly, the SE
m expressions of the 1–2 binary and

C-component systems can also be derived, respectively, as
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Then, based on the classical thermodynamic relations
between partial molar quantity and molar quantity
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where G
E

i and DHi are the partial molar excess Gibbs
energy and the partial molar enthalpy of mixing of
component i, respectively, the subscript symbol x½l;C�
represents that xl and xC are two variables of the par-

tial derivative and xC ¼ 1�
PC�1

l¼1

xl is a subordinate vari-

able which needs special attention in the deducing
processes of the partial derivatives in Eqs. [12] and [13].

Substituting Eq. [7] into Eq. [12], the expressions of
ln ci for the 1–2 binary system can be, respectively,
derived as
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Both Eqs. [14] and [15] are consistent with the Gibbs–
Duhem equation x1d ln c1 þ x2d ln c2 ¼ 0.
Extending the binary 1–2 to the C-component system,

one can obtain the ln ci of component i:
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And substituting Eq. [8] into Eq. [13], the expressions
of DHi=RT for the 1–2 binary system can be, respec-
tively, derived as
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Both Eqs. [17] and [18] are consistent with the Gibbs–
Duhem equation x1dDH1 þ x2dDH2 ¼ 0.

Similarly, extending the binary 1–2 to the C-compo-
nent system, one can obtain the DHi=RT of component i:
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Here, note that the partial derivative in Eq. [13] for the
binary 1–2 system is

Similarly, extending the binary 1–2 to the C-compo-
nent system, one can obtain the first partial derivative of
component i in Eq. [13] as follows:

And the second partial derivative
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subscript l correspondingly. It can be seen that Eqs. [17]
through [21] are complex, especially the last one, but they
are correct indeed for the MIVM thermodynamically.
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Similarly, the partial molar excess entropy of the
MIVM can be also derived from Eq. [22]:
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where G
E

i ¼ RT ln ci can be obtained from Eq. [16].
Next, the author tries to simplify the MIVM reason-

ably. In a recent work,[11] the author used two different
coordination numbers of phosphorus, ZP = 3.04 from
Eq. [24] in Reference 11 and ZP = 8.96 from Eq. [26] in
Reference 11, to examine how they affect the fitting
accuracy of component activities in the M-P (M = Cr,
Fe, and Mn) alloys[17–19] and the predicted accuracy of
component activities in the Fe-Cr-P[20] in the tempera-
ture range from 1471 K to 1817 K (1198 �C to 1544 �C)
and Fe-Mn-P[21] from 1302 K to 1678 K (1029 �C to
1405 �C). The results are listed in Tables I and II.

In Table I, it can be seen that the binary parameters
Bji and Bij have different values for ZP = 3.04 and
ZP = 8.96 in the same binary alloy, but the fitting errors
of two component activities are close each other in the
M-P (M = Cr, Fe and Mn) alloys, and the errors for
ZP = 8.96 are a little smaller than those for ZP = 3.04.

Here note that Si ¼ 100
n

Pn

i¼1

ai;exp�ai;pre
ai;exp








 is the average

relative error, where ai,exp and ai,pre are the experimental

data and the predicted values of activity of component i,
respectively, and n is the number of experimental data;
the binary parameters of the Ti-P at 1998 K (1725 �C)
and the V-P at 1973 K (1700 �C) are supplement to their
data listed in Table II in Reference 11.
In Table II, it can be seen that the average errors for

ZP = 3.04 and ZP = 8.96 are close to each other by
comparing the predicted values of the MIVM with the
experimental data of all component activities in the
ternary liquid alloys Fe-Cr-P and Fe-Mn-P, and the
errors for ZP = 8.96 are a little smaller than those for
ZP = 3.04 in general, which are similar to the binary
M-P (M = Cr, Fe, and Mn) alloys. Here, it should be
noticed that in the Fe-Mn-P, although the errors of 59
and 44 pct for P seem to be large, they are accept-
able by means of comparing them with the error of
48 pct for P calculated[11] from the unified interaction
parameter formalism (UIPF)[22,23] at current knowl-
edge level.
The above results indicate that the difference of

component coordination numbers, such as that (5.92) of
phosphorus coordination numbers 3.04 and 8.96 in
Tables I and II, would almost not affect on the
accuracies of fitting and predicting component activities.
It is inferred that the differences of coordination
numbers in the MIVM could be neglected.
In fact, the coordination numbers of molecules have

the same constant in the lattice theory of solutions and
may be a value between 6 and 12 depending on the type
of packing, i.e., the way in which the molecules are

Table I. Fitting Errors and Binary Parameters in Binary Liquid Alloys Containing Phosphorus for ZP = 3.04 and ZP = 8.96

i� j T [K (�C)] Bji Bij hji (K) hij (K) Si (Pct) Sj (Pct)

ZP = 3.04
Cr-P[17] 1800 (1527) 1.10 24.5 171.6 5758 1.4 5.1
Fe-P[18] 1809 (1536) 1.3 10 474.6 4165 8.4 46
Mn-P[19] 1600 (1327) 1.6 12.5 752.0 4041 3.5 18
Ti-P 1998 (1725) 1.74 4.988 1107 3211 — —
V-P 1973 (1700) 1.609 3.177 938.6 2281 — —

ZP = 8.96
Cr-P[17] 1800 (1527) 0.95 5.33 �92.33 3012 1.1 2.2
Fe-P[18] 1809 (1536) 1.2 3.4 329.8 2214 7.5 40
Mn-P[19] 1600 (1327) 1.43 3.95 572.3 2198 2.3 10
Ti-P 1998 (1725) 1.698 2.257 1058 1626 — —
V-P 1973 (1700) 1.383 2.474 639.8 1787 — —

Table II. Average Errors Between Predicted Values of MIVM and Experimental Data of Component Activities in Ternary Liquid
Alloys Fe-Cr-P[20] and Fe-Mn-P[21] for ZP = 3.04 and ZP = 8.96

Ternary Liquid Alloy Temperature [K (�C)] Component Data

Average Error (Pct)

ZP = 3.04 ZP = 8.96

Fe-Cr-P[20] 1471 to 1817 (1198 to 1544) Fe 28 5.6 5.1
Cr 28 14 9.0
P 28 20 18

Fe-Mn-P[21] 1302 to 1678 (1029 to 1405) Fe 22 18 18
Mn 22 17 19
P 22 59 44
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arranged in three-dimensional space; empirically, for
typical liquids in ordinary conditions, Z is close to 10.[16]

Therefore, one can suppose Zi = Zj = Z = 10 in the
MIVM for simplifying its calculation.
On the other hand, since the difference between liquid

and solid densities of a substance is often small, one can
suppose that the molar volume Vmi of component i in
liquid state can be replaced by its molar volume Vi in
solid state.
Consequently, the molar excess Gibbs energy of the

MIVM in Eq. [1] can be simplified as

GE
m

RT
¼
XC

i¼1

xi ln
Vi

PC

j¼1

xjVjBji

� Z

2

XC

i¼1

xi

PC

j¼1

xjBji lnBji

PC

j¼1

xjBji

0
BBB@

1
CCCA

½23a�

GE
m

RT
¼
XC

i¼1

xi ln
Vi

PC

j¼1

xjVjBji

� 5
XC

i¼1

xi

PC

j¼1

xjBji lnBji

PC

j¼1

xjBji

0

BBB@

1

CCCA:

½23b�

And the other expressions of the MIVM, such as
Eqs. [16] and [19], can be also simplified as the similar
forms in Eqs. [23a] and [23b]. It can be seen that
Eq. [23b] does not explicitly involve the coordination
number of pure component and so it is more conve-
nient for use than before.
Now, let us use the simplified form of the MIVM to

test the consistency of Eqs. [7], [8], [17], and [18]. Let
Zi = Zj = Z = 10, Vmi ¼ Vi; and Vmj ¼ Vj and
choose the 4 binary liquid alloys Au-Cu at 1400 K
(1127 �C), Cd-Zn at 700 K (427 �C), Ca-Zn at 1150 K
(877 �C), and Ni-Pb at 1900 K (1627 �C)[24], which
exhibit negative or positive deviation from ideality. As
shown in Figures 1 and 2 and Table III, it can be seen
that the fitting curves of molar quantities DGM

m and DHM
m

are in good agreement with the literature data[24] and the
former is better than the later. The average errors of the
partial molar enthalpies of mixing, 94 pct for DHi and
43 pct for DHj, are larger than those of the activities, 5.6

pct for ai and 5.9 pct for aj. But the fitting curves of DHi

and DHj may be still in reasonable agreement with the
literature data.[24]

The results preliminarily indicate that the correct
expressions of the MIVM are mutually coordinated with
the same binary parameters Bji and Bij in the four binary
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bFig. 1—In the Au-Cu at 1400 K (1127 �C) and Cd-Zn at 700 K
(427 �C), comparison of fitting curves (solid line) with literature data
(black or empty square and circle)[24] of (a) activity, (b) molar Gibbs
energy of mixing, (c) partial molar enthalpy of mixing, and (d) molar
enthalpy of mixing, standard states: pure liquid metals.
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alloys. Further systematic investigations are necessary
because the good fittings in the case do not always
appear. Inversely, some bad fittings are arising in the
Al-Be at 1600 K (1327 �C), B-Nd at 3000 K (2727 �C),
Ir-Rh at 2800 K (2527 �C), Co-In at 1800 K
(1527 �C),[24] and so forth.
With regard to the strength and weakness of the

MIVM, according to the experience of 15 years of
working on its predictions of thermodynamic properties
of liquid alloys and silicate melts, the author has
empirically realized that its main points are as follows:
(1) the smaller the fitting errors of the related binary
systems are, the higher the predicted accuracies of the
corresponding multicomponent systems are, but the
necessary condition is that the binary experimental data
are reliable indeed; (2) for the binary system exhibiting
both positive and negative deviations from ideality, it is
difficult to fit reasonably its two activity–composition
curves from the positive to the negative experimentally;
and (3) the MIVM itself does not show the effect of
chemical interaction on the molar and partial molar
excess Gibbs energies.
In conclusion, it would lead to those incorrect

expressions to compare empirically the GE
m of the

MIVM with its thermodynamic definition GE
m ¼

DHM
m � TSE

m, such as Eqs. [3] and [4]. Only based on
the thermodynamic partial derivatives in Eqs. [5] and [6],
the correct expressions of DHM

m and Sm
E as well as their

partial molar enthalpy of mixing and excess entropy can
be deduced from the MIVM in Eq. [1]. Their simplified
forms are consistent thermodynamically and would be
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bFig. 2—In the Ca-Zn at 1150 K (877 �C) and Ni-Pb at 1900 K
(1627 �C), comparison of fitting curves (solid line) with literature
data (black or empty square and circle)[24] of (a) activity, (b) molar
Gibbs energy of mixing, (c) partial molar enthalpy of mixing, and
(d) molar enthalpy of mixing, standard states: pure liquid metals.

Table III. Fitting Errors of Thermodynamic Properties and
Parameters in Binary Liquid Alloys Au-Cu at 1400 K

(1127 �C), Cd-Zn at 700 K (427 �C), Ca-Zn at 1150 K

(877 �C), and Ni-Pb at 1900 K (1627 �C)[24]

Binary i�j Bji Bij Zi Zj

Vi

(cm3/mol)
Vj

(cm3/mol)

Au-Cu 1.127 1.244 10 10 10.21 7.12
Cd-Zn 0.862 0.892 10 10 13.01 9.21
Ca-Zn 0.72 2.19 10 10 25.86 9.21
Ni-Pb 0.923 0.681 10 10 6.60 18.27

Fitting Property ai aj

DGM
m

(J/mol)
DHi

(J/mol)
DHj

(J/mol)
DHM

m
(J/mol)

Au-Cu fitting error (pct)11 12 3.4 79 14 4.5
Cd-Zn fitting error (pct) 1.2 1.2 1.3 13 2.7 5.4
Ca-Zn fitting error (pct) 7.6 7.9 2.0 80 24 8.6
Ni-Pb fitting error (pct) 2.7 2.5 2.8 204 130 11
Average error (pct) 5.6 5.9 2.4 94 43 7.4
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easily used to predict the thermodynamic properties of a
multicomponent liquid system.

This work was financially supported by the Na-
tional Natural Science Foundation of China under
Grant No. 51464022.
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