A Reinvestigation of Phase Equilibria in the System Al_2O_3 -SiO₂-ZnO

ROBERT HANSSON, BAOJUN ZHAO, PETER C. HAYES, and EVGUENI JAK

The phase equilibria and liquidus temperatures in the binary SiO₂-ZnO system and in the ternary Al₂O₃-SiO₂-ZnO system at low Al₂O₃ concentrations have been experimentally determined using the equilibration and quenching technique followed by electron probe X-ray microanalysis. In the SiO₂-ZnO system, two binary eutectics involving the congruently melting willemite (Zn₂SiO₄) were found at 1448 \pm 5 °C and 0.52 \pm 0.01 mole fraction ZnO and at 1502 \pm 5 °C and 0.71 \pm 0.01 mole fraction ZnO, respectively. The two ternary eutectics involving willemite previously reported in the Al₂O₃-SiO₂-ZnO system were found to be at 1315 \pm 5 °C and 1425 \pm 25 °C, respectively. The compositions of the eutectics are 0.07, 0.52, and 0.41 and 0.05, 0.28, and 0.67 mole fraction Al₂O₃, SiO₂, and ZnO, respectively. The results of the present investigation are significantly different from the results of previous studies.

I. INTRODUCTION

SILICA-CONTAINING slags are formed during the pyrometallurgical processing of zinc and lead. The chemistry of both the complex sinters and slags formed in the different processes used can only be fully explained by high-order systems including several different elements. The development of thermodynamic computer models enables these complex predictions of phase equilibria in both lower- and higher-order systems to be carried out but requires precise information, especially on the lower-order systems. One of the several ternary systems relevant to the zinc/lead smelting using the Imperial smelting process (ISP) includes the Al₂O₃-SiO₂-ZnO system. Both the ZnO and SiO₂ are main components of the ISP sinters and slag, while Al₂O₃ is also present, but at lower concentrations (the main sources of Al₂O₃ are coke ash and, in some cases, fluxing). The previously available phase-equilibria data on the ternary Al₂O₃-SiO₂-ZnO system have been evaluated during optimization of a thermodynamic model using the FactSage^[1] computer package. Possible discrepancies in previous data have been suggested, since no reasonable thermodynamic parameters could be found to describe previous experimental information. These discrepancies prompted the present experimental study.

The phase equilibria in the Al_2O_3 -SiO₂ system have been extensively studied.^[2–7] The only binary compound (mullite $(Al_6Si_2O_{13})$) formed in the system has been suggested to melt both incongruently^[2–5] and congruently.^[6,7] An assessment performed by Eriksson and Pelton^[8] of the Al_2O_3 -SiO₂ system concludes that mullite melts congruently at 1890 °C, resulting in eutectics between both mullite and corundum (Al_2O_3) and mullite and cristobalite (SiO₂). Bunting^[9] used a quenching technique and optical metallography to investigate phase equilibria in the binary SiO₂-ZnO system. A complete phase diagram including the liquidus temperatures was reported. Willemite (Zn₂SiO₄) was found to melt congruently at 1512 \pm 3 °C, and the melting point of ZnO was found to be 1975 \pm 25 °C.^[9] Eutectics were reported between both tridymite (SiO₂) and willemite and between willemite and zincite (ZnO). A liquid miscibility gap forming above 1695 °C in the silica-rich part of the binary system^[9] was also reported.

Solidus temperatures in the Al₂O₃-ZnO system were measured by Bunting.^[10] The solidus data in the Al₂O₃-ZnO system were used to suggest that gahnite (ZnAl₂O₄) melts congruently, at temperatures close to 1950 °C. Hansson et al.[11] studied phase equilibria in the Al₂O₃-ZnO system at subsolidus conditions using a quenching technique followed by electron probe X-ray microanalysis. The solubility of Al₂O₃ in the spinel (gahnite) below 1500 °C was found to be low and increased dramatically at higher temperatures, approaching that of pure Al₂O₃. Hansson *et al.* used a combination of Bunting's solidus temperatures and the experimentally determined subsolidus data to construct a binary diagram suggesting that gahnite melts incongruently at temperatures close to 1950 °C. Bunting performed the only study on phase equilibria in the ternary Al₂O₃-SiO₂-ZnO system using a quenching technique and metallographic examination. The liquidus temperatures were investigated mainly at low Al₂O₃ concentrations. Mixtures of known compositions were prepared and equilibrated at given temperatures, quenched in water, and investigated microscopically for identification of phases. No ternary compounds were found, two ternary eutectics were located, and a phase diagram was reported.[10]

Attempts to thermodynamically model these systems indicated the need to confirm the results^[10] of the aforementioned studies. The development of new analytical and experimental techniques enables accurate information on phase equilibria to be obtained. The reinvestigation of phase equilibria in the Al₂O₃-SiO₂-ZnO system at low Al₂O₃ concentrations using these new techniques is described in the present article.

II. EXPERIMENTAL

The experimental procedure used in this study for the sample preparation, equilibration, quenching, and examination

ROBERT HANSSON, formerly Research Scholar, PYROSEARCH, Pyrometallurgy Research Centre, The University of Queensland, is Laboratory Manager, ALcontrol AB, 581 10 Linkoping, Sweden. BAOJUN ZHAO, Research Fellow, PETER C. HAYES, Professor and Director, and EVGUENI JAK, Associate Professor and Research Director, are with PYROSEARCH, Pyrometallurgy Research Centre, School of Engineering, The University of Queensland, St Lucia, Queensland, 4072, Australia. Contact e-mail: e.jak@ minmet.uq.edu.au

Manuscript submitted March 3, 2004.

of the samples is similar to that described by Jak et al.^[12] Powders of the oxides Al_2O_3 and ZnO (99.5+ wt pct purity and $<5 \,\mu$ m, produced by Aldrich Chemical Company, Inc.) and fused SiO_2 (99.5+ wt pct purity, produced by Aldrich Chemical Company, Inc.) were used as starting materials. The fused SiO₂ granules were ground to powder in an agate mortar prior to use. Pure powders were weighed and mixed thoroughly in an agate mortar. The mixture compositions selected were those that would result in the formation of one or two condensed phases at equilibrium with liquid. The mixtures were pelletized prior to equilibration, and the 0.2 g samples were placed in platinum crucibles at predetermined temperatures in air. The temperature was controlled to within ±1 °C. A working thermocouple calibrated against a standard thermocouple was positioned next to the sample in the furnace. The overall temperature accuracy was estimated to be ± 5 °C. Following equilibration in air, the samples were directly quenched in water. The sample weight was recorded before and after the experiments using an analytical balance with an accuracy of ± 0.1 mg. The samples were mounted and polished following the final quenching. The microstructures were examined in detail using optical and scanning electron microscopy coupled with energy-dispersive spectroscopy analysis. Phase compositions were determined using a JEOL*

*JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

8800L electron probe X-ray microanalyzer (EPMA) with wavelength-dispersive detectors. The instrument was operated at a 15 kV accelerating voltage with a probe current of 15 nA. Powders of Al₂O₃, SiO₂ (Charles M. Taylor Co., Stanford, CA) and ZnO (prepared "in-house" by sintering 99.9+ purity ZnO powder and verified against a willemite (Zn₂SiO₄) standard supplied by Micro-Analysis Consultants Ltd., Cambridge, United Kingdom) were used as standards for the EPMA measurements of aluminium, silicon, and zinc, respectively. The Duncumb-Philibert ZAF correction procedure supplied with the JEOL-8800L apparatus was applied. From analysis of the willemite standard, it was found that the concentration of SiO₂ was systematically overestimated by the standard ZAF correction procedure in the presence of ZnO. A secondary correction procedure was, therefore, applied. A symmetric parabolic function was chosen for the correction, with the maximum at a 1:1 mole ratio of SiO₂ and ZnO, respectively, and at zero at pure SiO₂ and ZnO. The magnitude of the correction was 0.02 mole fraction at its maximum. In the presence of Al₂O₃, the correction was applied only to the $SiO_2 + ZnO$ fraction. The average accuracy of the EPMA measurements after the secondary correction is estimated to be within ± 1 wt pct.

III. RESULTS AND DISCUSSION

A. The Binary SiO₂-ZnO Phase Diagram

The compositions of the phases obtained as a result of experiments in the binary SiO_2 -ZnO system are given in Table I. The constructed binary-phase diagram is shown in Figure 1. Silica exists in two different polymorphs at the conditions studied. Tridymite is transformed to cristobalite at 1465 °C at 1 atm pressure.^[1] Both forms of SiO₂ dissolve about 0.01 mole fraction of ZnO at all temperatures inves-

tigated. No significant solid solubility was observed in the willemite or the zincite phases.

The eutectic reaction between tridymite, willemite, and liquid was found to occur at 1448 ± 5 °C and at 0.52 ± 0.01 mole fraction ZnO. The intersection between the extrapolated SiO₂ and willemite liquidus was used for the estimation of the eutectic temperature and composition. No liquid was observed in a sample (experiment 26) equilibrated at 1442 °C with a bulk composition between the tridymite and the willemite. Samples with bulk compositions both in the tridymite (experiment 1) and the willemite (experiment 9) primary-phase fields equilibrated at 1450 °C were found to contain liquid. These experiments confirm both the temperature and the composition of the invariant point.

The eutectic temperature between willemite and zincite was found to be at 1502 ± 5 °C, and the composition at the invariant point was found to be 0.71 ± 0.01 mole fraction ZnO. A sample of a bulk composition in-between that of willemite and zincite (experiment 27) equilibrated at 1500 °C was found to be completely solid. A sample with a bulk composition in the zincite primary-phase field equilibrated at 1503 °C contained both zincite and liquid (experiment 17).

The melting temperature of the congruently melting willemite was previously reported to be $1512 \pm 3 \,^{\circ}C.^{[9]}$ One sample on the SiO₂-rich side of willemite (experiment 28) and another on the ZnO-rich side of willemite (experiment 29) were equilibrated at 1509 °C and 1512 °C, respectively. After equilibration, they were found to be fully glassy following quenching. A sample in the willemite primary-phase field (experiment 16) equilibrated at 1510 °C contained both willemite and liquid. These experimental results support the previously reported melting temperature of willemite.^[9]

The experimental results from the present study are compared to the binary SiO₂-ZnO phase diagram reported by Bunting^[9] in Figure 1. The reported compositions of both eutectic reactions are significantly different in the present and previous study. Bunting reported the tridymite and willemite eutectic to be at 1432 °C and 0.491 mole fraction ZnO. This is 16 °C and 0.03 mole fraction ZnO lower than the values found in the present investigation. The willemite and zincite eutectic was previously reported to occur at 1507 °C and 0.775 mole fraction ZnO.^[9] The temperature of this eutectic reaction agrees, within experimental errors, with the findings of the present study. The previously reported eutectic composition is 0.06 mole fraction richer in ZnO, a significantly higher ZnO concentration in comparison to the present findings. Bunting did not perform any postanalysis of the composition of samples following equilibration. Significant evaporation of ZnO was found to occur at elevated temperatures. All samples were weighed before and after equilibration in the present study. As much as approximately 20 wt pct losses from the total sample weight were recorded in samples in the ZnO primary-phase field at temperatures around 1550 °C. The weight loss increased with increasing ZnO concentration at each given temperature. Evaporation of ZnO did not affect the accuracy of the final results of the present study, since the compositions of phases were measured after the experiments. Evaporation of ZnO could account for uncertainties of the data reported by Bunting for the ZnOrich part of the system. The difference in liquidus temperatures in the SiO₂ (tridymite and cristobalite) primary-phase fields between the previous^[9] and the present study may be

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					EPMA		
SiO ₂ primary-phase field I 1450 300 L0 1550 0.478 0.522 1 1500 240 SiO ₂ 1550 0.493 0.507 2 1500 240 SiO ₂ 1550 0.493 0.501 3 1500 95 SiO ₂ - 0.499 0.501 4 1550 240 SiO ₂ - 0.989 0.011 5 1550 240 SiO ₂ - 0.987 0.013 5 1550 110 L - 0.512 0.488 6 1600 180 L - 0.989 0.011 7 1600 75 SiO ₂ - 0.989 0.011 8 1658 60 SiO ₂ - 0.989 0.011 168 169 L - 0.455 0.545 17 1600 75 L - 0.455	Experiment	Temperature (°C)	Equilibrium Time (Min)	Phase(s)	Pretreatment (°C)	SiO ₂ (Mole Fraction)	ZnO (Mole Fraction)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SiO ₂ primary-phase field						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	1450	300	L	1550	0.478	0.522
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1450	300	SiO_2	1550	0.987	0.013
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2	1500	240	Ĺ	1550	0.493	0.507
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1500	240	SiO_2	1550	0.987	0.013
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3	1500	95	L	—	0.499	0.501
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1500	95	SiO_2	—	0.989	0.011
1550 240 SiO2 0.987 0.013 5 1550 110 SiO2 0.986 0.014 6 1600 180 SiO2 0.986 0.012 7 1600 75 SiO2 0.989 0.011 8 1658 60 L 0.575 0.425 Willemite primary-phase field 0.575 0.425 0.433 0.654 9 1450 30 L 1520 0.435 0.545 10 1455 150 L 0.436 0.664 11 1461 95 V 0.437 0.664 12 1468 960 V 0.438 0.561 12 1468 960 V 0.336 0.664 14 1480 180 L -4000 0.338 0.561 144 <t< td=""><td>4</td><td>1550</td><td>240</td><td>L</td><td>—</td><td>0.512</td><td>0.488</td></t<>	4	1550	240	L	—	0.512	0.488
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1550	240	SiO_2	_	0.987	0.013
150 110 SiO2 — 0.986 0.014 1600 180 SiO2 — 0.529 0.71 7 1600 75 SiO2 — 0.988 0.012 8 1658 60 L — 0.539 0.425 9 1450 30 L 1520 0.455 0.545 10 1455 150 L — 0.433 0.667 11 1461 95 L — 0.436 0.664 12 1468 960 W — 0.336 0.664 13 1477 60 W — 0.331 0.669 13 1477 60 W — 0.331 0.6661 1480 180 W 1400 0.334 0.6661 150 300 W — 0.331 0.669 1510 240 W — 0.331 0	5	1550	110	L	_	0.514	0.486
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1550	110	SiO_2		0.986	0.014
1600 180 SiO2 - 0.988 0.012 7 1600 75 SiO3 - 0.989 0.011 8 1658 60 SiO2 - 0.989 0.012 Willemite primary-phase field - 0.575 0.425 0.006 0.006 9 1450 30 L 1520 0.455 0.545 10 1455 150 I - 0.475 0.525 11 1461 95 L - 0.484 0.552 1468 960 L - 0.448 0.552 1468 960 L - 0.448 0.552 13 1477 60 W - 0.331 0.669 14 1480 180 L 1400 0.438 0.562 14 1480 180 L - 0.331 0.660 150 1500 300 L	6	1600	180	L	—	0.529	0.471
7 1600 75 L - 0.541 0.459 8 1658 60 L - 0.575 0.425 9 1658 60 SiO ₂ - 0.999 0.006 Willemite primary-phase field - 0.575 0.425 0.565 9 1450 30 W 1520 0.333 0.667 10 1455 150 L - 0.4475 0.525 11 1461 95 W - 0.336 0.664 12 1468 960 L - 0.448 0.552 13 1477 60 L - 0.439 0.561 14 1468 960 L - 0.331 0.666 14 1477 60 L - 0.331 0.666 14 1480 180 W 1400 0.335 0.664 15 1500 300 L - 0.331 0.669 15 1500 300 <td></td> <td>1600</td> <td>180</td> <td>SiO_2</td> <td>—</td> <td>0.988</td> <td>0.012</td>		1600	180	SiO_2	—	0.988	0.012
l600 75 SiO2 - 0.989 0.011 8 1658 60 SiO2 - 0.994 0.006 Willemite primary-phase field - - 0.975 0.425 0.006 9 1450 30 L 1520 0.4355 0.545 10 1455 150 L - 0.475 0.525 11 1461 95 L - 0.448 0.552 12 1468 960 L - 0.433 0.666 12 1468 960 L - 0.438 0.552 13 1477 60 W - 0.334 0.666 14 1480 180 W 1400 0.335 0.664 15 1500 300 L - 0.331 0.669 14 1480 180 W 1400 0.335 0.665 20 1510	7	1600	75	L	—	0.541	0.459
8 1658 60 L 0.575 0.425 9 1450 30 L 1520 0.333 0.667 10 1455 150 L 0.4475 0.525 10 1455 150 L 0.336 0.664 11 1461 95 W 0.335 0.6664 12 1468 960 L 0.431 0.6664 12 1468 960 W 0.334 0.6664 13 1477 60 L 0.433 0.561 14 1480 180 L 1400 0.333 0.664 150 240 W 0.331 0.666 1500 300 L 0.331 0.666 163 150 240 W 0.331 0.665 1500 300 L		1600	75	SiO_2	—	0.989	0.011
Icss 60 Sto_ - 0.994 0.006 9 1450 30 L 1520 0.455 0.545 10 1455 150 L - 0.475 0.525 11 1461 95 L - 0.481 0.519 12 1468 960 W - 0.336 0.664 1461 95 W - 0.331 0.667 1468 960 W - 0.334 0.661 1468 960 W - 0.334 0.661 14 1480 180 L 1400 0.438 0.562 15 1500 300 L - 0.331 0.663 15 1500 300 W - 0.331 0.663 16 1510 240 W - 0.335 0.664 1500 300 Z - 0.001 0.	8	1658	60	L	_	0.575	0.425
Willemite primary-phase field 9 1450 30 L 1520 0.455 0.545 10 1455 150 L - 0.475 0.525 11 1455 150 W - 0.336 0.664 11 1461 95 W - 0.336 0.664 12 1468 960 U - 0.336 0.664 12 1468 960 W - 0.331 0.669 13 1477 60 L - 0.439 0.561 14 1480 180 W 1400 0.438 0.562 14 1480 180 W 1400 0.336 0.664 15 1500 300 L - 0.390 0.610 16 1510 240 L - 0.337 0.665 16 1510 240 L - 0.284		1658	60	SiO ₂	—	0.994	0.006
9 1450 30 L 1520 0.455 0.545 10 1455 150 L 0.475 0.525 11 1455 150 L 0.436 0.664 11 1461 95 L 0.481 0.519 12 1468 960 L 0.448 0.552 13 1477 60 L 0.439 0.561 14 1480 180 L 1400 0.438 0.652 14 1480 180 W 1400 0.336 0.664 15 1500 300 L 0.390 0.610 16 1510 240 W 0.337 0.665 Zincite primary-phase field 0.337 0.665 240 0.337 0.665 210 1505 1140 C - 0.291 0.709 </td <td>Willemite primary-phase field</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Willemite primary-phase field						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9	1450	30	L	1520	0.455	0.545
10 1455 150 L 0.475 0.525 11 1461 95 L 0.481 0.519 12 1468 960 L 0.448 0.552 13 1477 60 L 0.448 0.552 14 1486 960 L 0.439 0.561 14 1480 180 L 1400 0.438 0.562 14 1480 180 K 1400 0.336 0.664 15 1500 300 L 0.331 0.669 16 1510 240 W 0.331 0.669 16 1510 240 W 0.337 0.613 20 1515 140 Z 0.001 0.999 18 1505 1140 Z 0.001 0.999 19 1506 60 Z 0.281 0.719 18 1515<		1450	30	W	1520	0.333	0.667
1455 150 W 0.336 0.664 11 1461 95 L 0.481 0.519 12 1468 960 L 0.436 0.552 13 1477 60 L 0.439 0.561 1477 60 W 0.334 0.666 14 1480 180 W 1400 0.336 0.664 14 1480 180 W 1400 0.336 0.669 15 1500 300 U 0.390 0.610 16 1510 240 U 0.387 0.665 Zincite primary-phase field L 0.291 0.709 0.709 17 1503 330 L 0.281 0.716 1510 240 L 0.281 0.716 1505 1140 L -	10	1455	150	L	—	0.475	0.525
11 1461 95 L - 0.481 0.519 12 1468 960 L - 0.448 0.552 13 1477 60 L - 0.439 0.561 14 1477 60 W - 0.334 0.669 14 1477 60 W - 0.334 0.561 14 1480 180 W 1400 0.335 0.664 15 1500 300 U - 0.336 0.664 15 1500 300 W - 0.337 0.613 16 1510 240 W - 0.335 0.665 Žincite primary-phase field - - 0.291 0.709 16 1503 330 L - 0.291 0.709 18 1505 1140 L - 0.284 0.716 19 1506 60 L - 0.281 0.719 1515 1005 L		1455	150	W	—	0.336	0.664
1461 95 W - 0.336 0.664 12 1468 960 W - 0.438 0.552 13 1477 60 L - 0.439 0.561 14 1480 180 L 1400 0.438 0.666 14 1480 180 L 1400 0.336 0.664 15 1500 300 L - 0.390 0.610 16 1510 240 L - 0.387 0.613 Zincite primary-phase field - - 0.391 0.709 16 1510 240 L - 0.001 0.999 16 1510 240 L - 0.291 0.709 17 1503 330 Z - 0.001 0.999 18 1505 1140 Z - 0.001 0.999 18 1505 1005 L - 0.281 0.719 20 1515 1005 L	11	1461	95	L	—	0.481	0.519
12 1468 960 L - 0.448 0.552 13 1477 60 L - 0.439 0.561 14 1480 180 L 1400 0.334 0.666 14 1480 180 W 1400 0.335 0.561 15 1500 300 V - 0.331 0.669 15 1500 300 W - 0.337 0.613 16 1510 240 L - 0.387 0.613 1511 240 W - 0.387 0.613 1502 1510 240 W - 0.387 0.613 1511 240 W - 0.387 0.613 1505 1140 L - 0.291 0.709 18 1505 1140 Z - 0.001 0.999 19 1506 60 Z - 0.001 0.999 20 1515 1005 Z -		1461	95	W	—	0.336	0.664
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	1468	960	L	_	0.448	0.552
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1468	960	W	_	0.331	0.669
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	1477	60	L	_	0.439	0.561
14 1480 180 L 1400 0.438 0.562 15 1500 300 L 0.390 0.661 15 1500 300 W 0.337 0.669 16 1510 240 L 0.387 0.613 2minter primary-phase field 0.337 0.665 0.665 Zincite primary-phase field 0.291 0.709 17 1503 330 L 0.291 0.709 18 1505 1140 L 0.284 0.716 19 1506 60 Z 0.001 0.999 19 1506 60 Z 0.001 0.999 20 1515 1005 L 0.282 0.718 1519 1045 L 0.284 0.716 21 1519 1045 L 0.279 0.721 23 1550 120 L <td></td> <td>1477</td> <td>60</td> <td>W</td> <td>—</td> <td>0.334</td> <td>0.666</td>		1477	60	W	—	0.334	0.666
1480 180 W 1400 0.336 0.6610 15 1500 300 W - 0.331 0.669 16 1510 240 L - 0.337 0.613 1510 240 U - - 0.337 0.613 Zincite primary-phase field - - 0.335 0.665 Zincite primary-phase field - - 0.291 0.709 17 1503 330 Z - 0.001 0.999 18 1505 1140 L - 0.284 0.716 1505 1140 Z - 0.001 0.999 19 1506 60 Z - 0.000 1.000 20 1515 1005 L - 0.282 0.718 1515 1005 Z - 0.001 0.999 21 1519 1045 Z - 0.010	14	1480	180	L	1400	0.438	0.562
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1480	180	W	1400	0.336	0.664
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	1500	300	L	—	0.390	0.610
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1500	300	W	—	0.331	0.669
IS10 240 W - 0.335 0.665 Zincite primary-phase field 17 1503 330 L - 0.291 0.709 17 1503 330 Z - 0.001 0.999 18 1505 1140 L - 0.284 0.716 19 1506 60 L - 0.281 0.719 19 1506 60 Z - 0.000 1.009 20 1515 1005 Z - 0.001 0.999 21 1519 1045 L - 0.284 0.718 1519 1045 Z - 0.001 0.999 22 1527 125 L - 0.279 0.721 1550 120 Z - 0.001 0.999 23 1550 120 Z - 0.001 0.999 24 1557 90	16	1510	240	L	_	0.387	0.613
Zincite primary-phase field 17 1503 330 L - 0.291 0.709 18 1505 1140 L - 0.001 0.999 18 1505 1140 L - 0.284 0.716 1505 1140 Z - 0.001 0.999 19 1506 60 L - 0.281 0.719 20 1515 1005 L - 0.282 0.718 21 1519 1045 L - 0.282 0.718 22 1527 125 L - 0.001 0.999 23 1550 120 L - 0.279 0.721 1537 90 L 1650 0.275 0.725 1557 90 Z 1650 0.001 0.999 24 1557 90 Z 1650 0.000 1.000 25		1510	240	W	_	0.335	0.665
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Zincite primary-phase field						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	1503	330	L		0.291	0.709
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1503	330	Z	_	0.001	0.999
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	1505	1140	L	—	0.284	0.716
19 1506 60 L 0.281 0.719 20 1515 1005 L 0.282 0.718 1515 1005 Z 0.001 0.999 21 1519 1045 L 0.284 0.716 1519 1045 Z 0.001 0.999 22 1527 125 L 0.279 0.721 1527 125 Z 0.001 0.999 23 1550 120 L 0.279 0.721 1557 90 Z 1650 0.275 0.725 1557 90 Z 1650 0.275 0.725 1557 90 Z 1650 0.256 0.744 1613 60 Z 1650 0.001 0.999 Subsolidus 0.343 0.657 0.744 1613 60 Z 0.343 0.657 27 1500 <td< td=""><td></td><td>1505</td><td>1140</td><td>Z</td><td>—</td><td>0.001</td><td>0.999</td></td<>		1505	1140	Z	—	0.001	0.999
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19	1506	60	L	—	0.281	0.719
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1506	60	Z	—	0.000	1.000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	1515	1005	L	—	0.282	0.718
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1515	1005	Z		0.001	0.999
1519 1045 Z 0.001 0.999 22 1527 125 L 0.279 0.721 1527 125 Z 0.001 0.999 23 1550 120 L 0.279 0.721 1550 120 Z 0.001 0.999 24 1557 90 L 1650 0.275 0.725 1557 90 Z 1650 0.000 1.000 25 1613 60 L 1650 0.256 0.744 1613 60 Z 1650 0.001 0.999 Subsolidus Z 1650 0.256 0.744 26 1442 105 SiO ₂ - 0.983 0.017 1442 105 W - 0.335 0.665 1500 120 Z - 0.001 0.999 Liquid Z 75 L - 0.312 0.688 29 151	21	1519	1045	L	—	0.284	0.716
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1519	1045	Z	—	0.001	0.999
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	1527	125	L	—	0.279	0.721
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1527	125	Z	—	0.001	0.999
24 1550 120 Z 0.001 0.999 24 1557 90 L 1650 0.275 0.725 1557 90 Z 1650 0.000 1.000 25 1613 60 L 1650 0.256 0.744 1613 60 Z 1650 0.001 0.999 Subsolidus Z 1650 0.001 0.999 Subsolidus Z 1650 0.001 0.999 Subsolidus Z 105 SiO ₂ - 0.983 0.017 27 1442 105 W - 0.343 0.657 27 1500 120 W - 0.335 0.665 1500 120 Z - 0.001 0.999 Liquid Z 1509 70 L - 0.438 0.562 29 1512 75 L - 0.312 0.688	23	1550	120	L	—	0.279	0.721
24 1557 90 L 1650 0.275 0.725 25 1557 90 Z 1650 0.000 1.000 25 1613 60 L 1650 0.256 0.744 1613 60 Z 1650 0.001 0.999 Subsolidus 26 1442 105 SiO ₂ - 0.983 0.017 1442 105 W - 0.343 0.657 27 1500 120 W - 0.001 0.999 Liquid 28 1509 70 L - 0.438 0.562 29 1512 75 L - 0.312 0.688 Liquid W = Willemite, and Z = Zincite		1550	120	Z		0.001	0.999
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	1557	90	L	1650	0.275	0.725
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1557	90	Z	1650	0.000	1.000
I613 60 Z I650 0.001 0.999 Subsolidus 26 1442 105 SiO ₂ - 0.983 0.017 26 1442 105 W - 0.343 0.657 27 1500 120 W - 0.335 0.665 1500 120 Z - 0.001 0.999 Liquid 28 1509 70 L - 0.438 0.562 29 1512 75 L - 0.312 0.688	25	1613	60	L	1650	0.256	0.744
Subsolidus 26 1442 105 SiO ₂ - 0.983 0.017 1442 105 W - 0.343 0.657 27 1500 120 W - 0.335 0.665 1500 120 Z - 0.001 0.999 Liquid 28 1509 70 L - 0.438 0.562 29 1512 75 L - 0.312 0.688 Lequid W = Willemite, and Z = Zincite		1613	60	Z	1650	0.001	0.999
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Subsolidus						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26	1442	105	SiO ₂		0.983	0.017
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1442	105	w -	_	0.343	0.657
1500 120 Z 0.001 0.999 Liquid 28 1509 70 L 0.438 0.562 29 1512 75 L 0.312 0.688 L = Liquid W = Willemite and Z = Zincite	27	1500	120	W	_	0.335	0.665
Liquid 28 1509 70 L 0.438 0.562 29 1512 75 L 0.312 0.688 L = Liquid W = Willemite and Z = Zincite 0.312 0.688		1500	120	Z	—	0.001	0.999
28 1509 70 L 0.438 0.562 29 1512 75 L 0.312 0.688 L = Liquid W = Willemite and Z = Zincite	Liquid						
$\frac{29}{L = \text{Liquid W} = \text{Willemite and Z} = \text{Zincite}}$	28	1509	70	L		0.438	0.562
L = Liquid W = Willemite and Z = Zincite	29	1512	75	L	_	0.312	0.688
	L = Liquid W = Willemite and	d Z = Zincite					

 Table I.
 Compositions of Phases Present in the Binary SiO₂-ZnO System

Fig. 1—The binary SiO₂-ZnO phase diagram; L = liquid, W = willemite, and Z = zincite.

a result of metastability. Precipitation of tridymite or cristobalite from the high-SiO₂ slag was found to be a very slow process. In the present study, experiments were deliberately performed starting from a high SiO₂ concentration in the bulk (0.80 mole fraction) to retain seeding SiO₂ crystals. This is not possible in the experimental technique used by Bunting. The compositions of phases in samples (following equilibration and quenching) were analyzed by EPMA in the present investigation. The EPMA enables the compositions of the liquid (glass) at various distances from the solid phase(s) to be measured, ensuring that liquid is homogeneous in composition. These measurements of the glass compositional profile confirmed the achievement of equilibria and the absence of crystallization during quenching. The advantages given by the present experimental technique are believed to make the present approach more reliable than the technique used previously.

IV. THE TERNARY SYSTEM Al₂O₃-SiO₂-ZnO

The compositions of the phases obtained as a result of experiments in the ternary Al_2O_3 -SiO₂-ZnO system are given in Table II. The experimental data were used to construct the liquidus surface in the ternary-phase diagram shown in Figure 2. Solid lines in the diagram were drawn using experimental data obtained in the present investigation. Dashed lines were drawn using information from the binary Al_2O_3 -SiO₂^[8] and the Al_2O_3 -ZnO^[10,11] systems. The binary SiO₂-ZnO data were obtained in the present investigation. Some typical microstructures observed in the samples in the Al_2O_3 -SiO₂-ZnO system are presented in Figure 3.

The binary compounds gahnite $(ZnAl_2O_4)$, mullite $(Al_6Si_2O_{13})$, and willemite (Zn_2SiO_4) are formed in the ternary Al_2O_3 -SiO_2-ZnO system. No ternary compounds have been observed. Two ternary eutectics in the composition triangles SiO_2 -Zn_2SiO_4-ZnAl_2O_4 and ZnO-Zn_2SiO_4-ZnAl_2O_4, marked A and B, respectively, in Figure 2, were found in the present study.

The temperature and composition of the ternary eutectic A at 1315 ± 5 °C with a composition of 0.07, 0.52, and 0.41 mole fraction Al₂O₃, SiO₂, and ZnO, respectively, were determined from the intersection of the primary-phase boundaries between tridymite and gahnite and willemite and gah

nite, shown in Figures 2 and 4, respectively. A sample prepared with a composition similar to the eutectic composition and equilibrated at 1310 °C for 6 hours did not contain any noticeable amounts of liquid after quenching. Another sample of the same composition equilibrated at 1320 °C for 3 hours contained liquid following quenching. This confirms the eutectic temperature.

A sample with a bulk composition in the zincite primaryphase field equilibrated at 1400 °C for 6 hours contained the crystalline phases gahnite, willemite, and zincite in equilibrium. Samples with bulk compositions in the zincite and the gahnite primary-phase fields equilibrated at 1450 °C were found to contain liquid after quenching. The temperature of the ternary eutectic B was, therefore, estimated to be 1425 \pm 25 °C at the compositions of 0.05, 0.28, and 0.67 mole fraction Al₂O₃, SiO₂, and ZnO, respectively, determined by extrapolation of the gahnite and zincite boundary to 1425 °C.

A small solubility of ZnO was observed in both the tridymite and cristobalite SiO₂ polymorphs. Gahnite was found to become nonstoichiometric, containing additional Al₂O₃ with increasing temperature, as reported previously.^[11] Both zincite (ZnO) and willemite have insignificant solubilities of Al₂O₃ and SiO₂.

Details of the liquids surrounding the eutectics A and B in Figure 2 are shown in Figures 5 and 6, respectively. Experimentally determined liquidus compositions are given in Figures 5 and 6 using squares and circles for bivariant and univariant conditions, respectively. The figures illustrate that many of the univariant liquidus determinations have been performed in several replicates starting from different bulk compositions and equilibrated for different times at each temperature. Equilibrium is achieved since the compositions of the replicates are the same within experimental errors. Determined isotherms and primary-phase boundaries are given using solid lines, and the previously reported data by Bunting^[10] are given using the dotted lines in Figures 5 and 6.

The position of the ternary eutectic A found in the present study confirms the previous findings by Bunting^[10] within experimental errors (Figure 5). However, the presently estimated temperature for the invariant reaction is 10 °C higher than that reported by Bunting. The position of the boundary between the gahnite and tridymite primary-phase fields shows a reasonable agreement. The positions of the boundaries between the willemite and tridymite primaryphase fields and between the gahnite and willemite primaryphase fields are significantly different. The present and previously reported compositions of the liquids along the 1400 °C liquidus isotherm in the willemite primary-phase field agree within experimental error. Both the location and direction of the liquidus isotherms in the tridymite and cristobalite primary-phase fields and the gahnite primary-phase field are significantly different between the present study and previous one by Bunting. The diagram proposed by Bunting results in a much wider composition range of the liquid above the eutectic A at given temperatures than is the case in the present study.

The eutectic B was previously reported^[10] to exist at 1440 \pm 5 °C with a composition of 0.103, 0.185, and 0.713 mole fraction Al₂O₃, SiO₂, and ZnO, respectively (Figure 6). Whilst the eutectic temperature of 1425 °C obtained in the present study is close to the 1440 °C temperature determined

Experiment	Temperature (°C)	Equilibrium Time		Premelting	Liquidus Compositions by EPMA		
		(Min)	Phases	(°C)	Al ₂ O ₃	Mole Fraction SiO ₂	ZnO
Bivariant equi	libria						
SiO ₂ (Cristoba	alite and Tridymite	e) primary-phase field					
30	1500	45	$L + SiO_2$		0.084	0.354	0.562
31	1400	120	$L + SiO_2$		0.093	0.578	0.329
32	1400	300	$L + SiO_2$		0.062	0.526	0.412
33	1450	120	$L + SiO_2$		0.061	0.515	0.423
34	1450	120	$L + SiO_2$		0.066	0.564	0.370
35	1450	65	$L + SiO_2$		0.088	0.603	0.310
36	1500	240	$L + SiO_2$	_	0.053	0.582	0.365
37	1500	240	$L + SiO_2$	_	0.085	0.668	0.247
38	1550	60	$L + SiO_2$		0.033	0.589	0.378
39	1550	65	$L + SiO_2$		0.053	0.659	0.288
Spinel primar	y-phase field						
40	1500	240	L + S		0.132	0.572	0.296
41	1400	300	L + S		0.094	0.508	0.397
42	1500	240	L + S		0.104	0.477	0.419
43	1500	180	$\overline{L} + \overline{S}$		0.089	0.411	0.500
44	1500	120	L + S		0.140	0.714	0.146
45	1550	120	$\overline{L} + \overline{S}$		0.197	0.599	0.204
Willemite prin	nary-phase field						
46	1400	185	L + W		0.055	0.446	0.499
47	1450	120	L + W		0.033	0.404	0.562
Univariant equ	uilibria						
48	1320	355	$L + SiO_2 + W$		0.061	0.516	0.423
49	1350	200	$L + SiO_2 + W$	_	0.061	0.515	0.423
50	1325	120	$L + S + SiO_2$	_	0.077	0.524	0.399
51	1350	115	$L + S + SiO_2$	_	0.086	0.541	0.373
52	1400	60	$L + S + SiO_2$	_	0.103	0.602	0.295
53	1400	300	$L + S + SiO_2$	_	0.096	0.604	0.300
54	1325	90	L + S + W		0.076	0.474	0.449
55	1375	70	L + S + W	_	0.075	0.442	0.483
56	1350	120	L + S + W	_	0.078	0.474	0.449
57	1350	120	L + S + W	_	0.077	0.470	0.453
58	1375	65	L + S + W		0.076	0.437	0.487
59	1375	60	L + S + W	_	0.076	0.432	0.491
60	1400	55	L + S + W	_	0.073	0.396	0.531
61	1415	60	L + S + W	_	0.070	0.379	0.551
62	1450	60	L + S + Z	1650	0.053	0.263	0.684
63	1450	60	L + S + Z	1650	0.054	0.262	0.684
64	1500	50	L + S + Z	1650	0.062	0.236	0.702
65	1500	60	L + S + Z	1650	0.062	0.235	0.703
66	1500	45	L + S + Z	1650	0.065	0.243	0.693
67	1550	60	L + S + Z	1650	0.077	0.207	0.717
68	1450	360	L + W + Z		0.026	0.265	0.708
L = Liquid,	$S = Spinel, SiO_2 =$	Cristobalite or Tridymite	W = Willemite, and Z	Z = Zincite.			

Table II. Liquidus Compositions in the Ternary System Al₂O₃-SiO₂-ZnO

by Bunting,^[10] the composition is significantly different from previous findings. A comparison of both measured and estimated liquidus isotherms from the present investigation with the previous diagram in the gahnite and zincite primaryphase fields shows that the composition ranges of the liquid above eutectic B at each temperature are significantly smaller in the present study. The gahnite, willemite, and zincite liquidus surfaces are all very steep close to the composition of the eutectic B, making the liquidus in the Al₂O₃-SiO₂-ZnO system strongly dependent on composition in this region. The largest differences between the present and the previous^[10] investigation on phase equilibria in the Al₂O₃-SiO₂-ZnO system were found at compositions close to the eutectic B, as shown in Figures 2 and 6. Since the eutectic B is located in the ZnO-rich region of the composition range, these differences most likely result from the ZnO evaporation. The evaporation of ZnO was not accounted for in the previous investigation,^[10] but did not affect the accuracy of the present data, as discussed in the previous section. The smaller deviations encountered at compositions surrounding the eutectic A, as shown in Figures 2 and 5, could not be explained.

Fig. 2-The ternary Al₂O₃-SiO₂-ZnO phase diagram.

Fig. 3—Typical scanning electron microscopy microstructures observed in the Al₂O₃-SiO₂-ZnO system.

Fig. 4—The temperature dependence of univariant liquid compositions in the system Al_2O_3 -SiO_2-ZnO.

Fig. 5—An enlarged area of the liquidus in the ternary Al_2O_3 -SiO_2-ZnO phase diagram (temperatures are in degrees Celsius).

Fig. 6—An enlarged area of the liquidus in the ternary Al_2O_3 -SiO₂-ZnO phase diagram (temperatures are in degrees Celsius).

V. CONCLUSIONS

The phase equilibria and liquidus of the binary SiO₂-ZnO system have been investigated, and significant differences from previously reported data were observed. The temperatures and compositions of the two eutectics between tridymite and willemite and between willemite and zincite with liquid were estimated to be 1448 \pm 5 °C and 0.52 \pm 0.01 mole fraction ZnO and 1502 \pm 5 °C and 0.71 \pm 0.01 mole fraction ZnO, respectively.

Two ternary eutectics, A and B, were found in the ternary system Al₂O₃-SiO₂-ZnO at 1315 \pm 5 °C and 1425 \pm 25 °C, respectively. The compositions of the eutectics A and B, respectively, are 0.07, 0.52, and 0.41 and 0.05, 0.28, and 0.67 mole fractions of Al₂O₃, SiO₂, and ZnO, respectively. The eutectic temperature A and the composition of eutectic B are significantly different from previously reported data.

ACKNOWLEDGMENTS

Mr. Stephen Bonner is gratefully acknowledged for his help with the experimental work as part of his undergraduate thesis. The authors thank the Australian Research Council for ongoing support for this research. We also thank ISP Smelting, Britannia Zinc Ltd., Portovesme SRC, MIM Huttenwerke Duisburg GmbH, Hachinohe Smelting Company Ltd., and Pasminco Smelter Technical Support for financial support of this project.

REFERENCES

- C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R.B. Mahfoud, J. Melançon, A.D. Pelton, and S. Petersen: *CALPHAD*, 2002, vol. 26 (2), pp. 189-228.
- 2. N.L. Bowen and J.W. Greig: J. Am. Ceram. Soc., 1924, vol. 7, pp. 238-54.
- E.C. Shears and W.A. Archibald: *Iron and Steel, London*, 1954, vol. 27, pp. 26-30 and 61-66.
- F.J. Klug, S. Prochazka, and R.H. Doremus: J. Am. Ceram. Soc., 1987, vol. 70 (10), pp. 750-59.
- 5. J.W. Welch: *Nature*, 1960, vol. 186, pp. 546-47.
- 6. S. Aramaki and R. Roy: J. Am. Ceram Soc., 1962, vol. 45, pp. 229-42.
- N.A. Toropov and F.Y. Galakhov: Dokl. Akad. Nauk SSSR, 1951, vol. 78, pp. 299-302.
- 8. G. Eriksson and A.D. Pelton: *Metall. Trans. B*, 1993, vol. 24B, pp. 807-16.
- 9. E.N. Bunting: Bur. Stand. J. Res., 1930, vol. 4, pp. 131-36.
- 10. E.N. Bunting: Bur. Stand. J. Res., 1932, vol. 8 (2), pp. 279-87.
- 11. R. Hansson, P.C. Hayes, and E. Jak: *Metall. Mater. Trans. B*, 2004, vol. 35B, pp. 633-42.
- 12. E. Jak, P.C. Hayes, and H.G. Lee: Kor. IMM J., 1995, vol. 1 (1), pp. 1-8.