Numerical Simulation of the Molten-Pool Formation during
the Laser Surface-Melting Process

KUNIMASA TAKESHITA and AKIRA MATSUNAWA

The boundary-fixing method, by which the moving-boundary problem is reduced into the fixed-
boundary problem, has been applied to the numerical simulation of the molten-pool formation during
the laser surface-melting process. A mathematical formulation and corresponding calculation scheme
are developed for amodel based on transient three-dimensional heat conduction with a moving solid-
liquid interface. By the use of the boundary-fixing method, the heat balance at the solid-liquid interface
isrigorously treated in the present numerical simulation. When the steady stateisreached, the resulting
molten pool is obtained without undulation in shape. The calculated results, based on an Al-32.7 wt
pct Cu eutectic alloy, are discussed and compared with experimental data.

[. INTRODUCTION

LASER surface melting is of great interest in severa
technical applications because of its ability to improve
mechanical or chemical properties of very localized surface
regions and its possibilities for control and automation.™
During laser surface melting of alloys, their surface regions
remelt and rapidly solidify, resulting in the extension of
solid-solubility limits, refinement of the scale of a micro-
structure, and the appearance of nonequilibrium phases.[234
In the case of this rapid solidification process, the rate of
solidification mainly governs the possible appearance of
nonequilibrium phases, their composition, and the scale of
the microstructure.*® Furthermore, the rate of solidification
in this process can be determined quantitatively from the
shape of the molten pool formed on the surface region of a
substrate by irradiation of a moving high-power, high-den-
sity laser beam.!? Therefore, in order to control the composi-
tion, the scale of the microstructure, and the extent of the
laser-treated surface region, it is crucial to control the shape
of the molten pool. Hence, numerical simulation based on
a mathematical model of this process is of considerable
importance to control the shape of the molten pool.

The shape of the molten pool isdetermined by the position
of the solid-liquid interface within a substrate. Therefore,
the problem of obtaining the shape of the molten pool is
equivalent to that of finding the solid-liquid interface. This
problem is mathematically categorized as the multidimen-
sional moving-boundary problem, which is characterized by
having a moving interface dividing the relevant field into
two regions. The principal difficulty in the analysis of the
multidimensional moving-boundary problems derives from
the fact that the position of the moving boundary is not
known a priori and that its shape is multidimensional.

In order to overcome this difficulty, the enthalpy method
has been devel oped.[5-1% |n this method, the enthalpy is used
as a dependent variable along with the temperature in order
that the latent heat due to phase change can be regarded as
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the heat capacity; thus, the moving interface is eliminated
from consideration in the calculations. Because of its afore-
mentioned advantage, the enthal py method has been applied
to several numerical simulations of the laser surface-melting
process.[*112131 However, spatial oscillation of the numerical
solution occurred, and, accordingly, the undulatory shape of
the molten pool was simulated in the case of a substrate
with a discrete phase-change temperature.*?

Another technique used for solving the multidimensional
moving-boundary problems is the boundary-fixing meth-
0d.**1% This method includes an immobilization transfor-
mation and a numerical scheme for the solution of the
transformed equations. Thereby, the moving-boundary prob-
lem is reduced into the fixed-boundary problem. Although
the boundary-fixing method has its advantage for rigorously
determining the position of the moving boundary, it has not
yet been applied to the numerical simulation of the laser
surface-melting process.

In this article, we apply the boundary-fixing method to
the numerical simulation of the laser surface-melting process
and demonstrate that the undulatory shape of the molten
pool can be attained. The calculated results are compared
with the experimenta results performed using an Al-32.7
wt pct Cu eutectic alloy.[d

II. MATHEMATICAL FORMULATION
A. Modéd

Figure 1 is a schematic drawing of the laser surface melt-
ing, showing aregion of interest. A laser beam with agiven
beam radius (a) moves at a constant velocity (U). The axis
of the laser beam is perpendicular to the upper surface of a
semi-infinite substrate. The substrate surface is irradiated
with the laser beam, and a molten pool surrounded by a
heat-affected region is formed due to the energy transfer
between the laser beam and the substrate surface. The molten
pool moves with the laser beam, resulting in the formation
of a solidified trace behind it. A Cartesian and a spherical
coordinate system move with the laser beam at the same
velocity. The origins of these coordinate systems, denoted
by the letter O in Figure 1, coincide with each other. In
order to rapidly obtain converged solutions of the present
problem, the origin is set apart behind the center of the laser
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Fig. 1—Schematic drawing of laser surface melting showing a region of interest.

beam, denoted by C in Figure 1, by a distance of D. The
procedure to determine the value of D isexplainedin Section
I11.A. In the Cartesian coordinate system, the x-direction is
paralel to the movement of the laser beam, the z-direction
isinto the substrate, and the y-direction is the third orthogo-
nal axis, as shown in Figure 1. The boundary between the
molten pool and the heat-affected region is the solid-liquid
interface, represented by the function F(6, ¢, t) in the spheri-
cal coordinate system (r, 6, ¢). The outer boundary of the
heat-affected region is the isothermal surface within the
substrate, the temperature over which is set at an arbitrary
temperature (Tg) close to the initial temperature of the sub-
strate (T;), and its function is represented by B(6, ¢) in the
spherical coordinate system.

If it is assumed that a quasi—steady state is established,
there exists a steady molten pool which does not change
with time. The problem then is to find the profile of this
molten pool and the distributions of temperature in the mol-
ten pool and the adjacent heat-affected region. Informulating
the model, some further assumptions and simplifications are
introduced to the problem. They are as follows

(1) Convective heat transfer in the molten pool is ignored.

(2) Radiation heat loss from the upper surface of the sub-
strate is considered.

(3) Convective heat loss from the upper surface of the sub-
strate due to shielding gas flow is considered.

(4) The temperature on the upper surface of the molten
pool does not exceed the vaporization temperature of
the substrate.

(5) Thesubstrate melts and solidifiesat asingletemperature
with a planar solid-liquid interface.

(6) The substrate thermal conductivity, specific heat, ther-
mal diffusivity, and surface absorptivity are tempera-
ture independent.

(7) The power distribution in the laser beam is Gaussian.

B. Governing Equations

Assumptions 1 and 5 allow this problem to be treated as
athree-dimensional heat-conduction problem with amoving
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planar solid-liquid interface. Referring to Figure 1 and the
terms defined in the Nomenclature, the governing eguations
for the molten pool (liquid region) and the heat-affected
region (solid region) will be described in the moving spheri-
cal coordinate as follows.

The basic heat-flow equation within the liquid region is

aTL . T sing 9T  coshcospdT.
— —Ulsn¢cos¢Q——————+—F—
ot ( ¢ ar rsing aé r ¢
9*T. 20T, 1 9°T.  cot ¢pdTL
sl T T e 2 54 (4
ar roor r<og¢ r< ad¢
1 0T,
r2sin? ¢ 962
with the boundary conditions
T =T on r=F( ¢t [2]
KL oT,

r ﬁ = Ba(r) — h(Ty — Ty — eLo(TE — T3 3]

on ¢g=m2 and 0<r <F(O 72,1
and

.
T AGO T 0T TY

a xvy,z=0 (i.e,r=0)

The boundary condition [3] cannot be adopted at r = 0O,
because its left-hand-side term becomes infinite when r
approaches zero. Therefore, the singularity at r = 0 necessi-
tates another boundary condition, Eq. [4], expressed in the
moving Cartesian coordinate. For the convenience of formu-
lation, the left-hand-side term of Eq. [4] can be rewritten in
the moving spherical coordinate as

—K_

9T
Ky lim =5 = a0 — (T = T) — eo(TE = T)

(5]
The basic heat-flow equation within the solid region is
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with the boundary conditions
Ts=T; on r=F(6,41) [7]
Ks dTs 3 B 4 4
r a¢ = BA) — h(Ts — Ta) — eso(Ts — Ta) (8]
on ¢=72 and F(6, 72, 1) <r < B(6, 7/2)
and

TS = TB on

r = B(6, ¢) [9]

The value q(r) in Egs. [3], [5], and [8] is that given by a
Gaussian power distribution as

r2+ D?2— 2rD cos 6
[eosem

P
q(r) = 2 &P

In EQ. [10], r isthe distance from the origin O to an arbitrary
point on the substrate surface, denoted by A in Figure 1,
and #isthe angle between the x-axis and the line OA. Thus,
the value of (r2 + D2 — 2rD cos 6) in Eq. [10] gives the
square of the distance from the center of the laser beam to
the point A.

The heat balance at the solid-liquid interface provides the
following boundary conditions, given by

oF . sinfd oF cos ¢ cos 6 IF
—+ + — - —
at U(S‘”‘MOSH Fsingaf F a¢)
1 aT, 0Ts 1 JoF
L( Koo T Koo F25in2¢8_6
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F200 90 a0 F2a¢\ “og ad
+ Boq(r) — h(Ty = Ty) — go0(T7 — T§)> [12]

on r=F(6 #2,1)

C. Boundary-Fixing Formulation

The following two independent variables are introduced
for the present problem:
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for the liquid region,

r

F(6, 6. 13}

n=

and for the solid region,

r— B(H, ¢)
F(01 ¢! t) - 8(01 ¢)

The correspondence between the physical body and the
transformed body is schematically represented in Figure 2.
The liquid and solid regions are both transformed into
semispheres with a unit radius. The spherical surfaces of
the semispheres, i.e,, » = 1 and ¢ = 1, correspond to the
solid-liquid interface.

The resultant governing equation for the liquid region is
described as
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The transformed governing equation for the solid region
is also described as
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Fig. 2—Correspondence between physical and transformed bodies.
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In Egs. [15] and [19], the derivatives dan/ot, Inldd,
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The heat-balance equations at the solid-liquid interface
are transformed into
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D. Numerical Method of Solution

The solution of the present problem was obtained as a
steady-state ultimate solution of an artificia transient prob-
lem. The governing Egs. [15] and [19], the boundary condi-
tions [16] through [18] and [20] through [22], and the heat-
balance Eqgs. [33] and [34] were nondimensioned using the
following variables:

T —Tg T B
T*_Ta Tf _aot
a Tf_TB, az,
e R TR
(o] (o] [35]
K K
T e Y e B it S
Qg (273} [273) KO KO
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The explicit finite-difference method was employed
because of the simplicity of the calculation. Dueto symmetry
with respect to the center plane (i.e., the # = 0 and 7 plane)
of the semispherical liquid and solid regions shown in Figure
2, the temperature fields were calculated on only one side
of the center plane. The numbers of nodal points within the
regions considered were 10 in the 7 direction, 40 in the ¢
direction, 8 in the ¢ direction, and 13 in the # direction,
respectively. Forward-difference approximation wasused for
time derivatives in Egs. [15], [19], [33], and [34]. For the
spatial derivatives aT /an, 0T /a6, and 9T, /d¢ in Eq. [15],
dTslo¢, 0Tsla6, and dTs/dg in EQ. [19], and dF /960 and oF/
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d¢inEgs. [33] and [34], upstream-difference approximation
was used because of its advantage in stability of calculation.
Central- or backward-difference approximation was used for
the other spatial derivatives in Egs. [15], [19], [33], and
[34]. The procedures for the calculation are as follows.

(1) Theinitial position of the solid-liquid interface F(8, ¢,
0), the outer boundary position B(6, ¢), and the initial
temperature distributions T,(7, 6, ¢, 0) and TH¢, 6, &,
0) in both the liquid and solid regions are set using
the analytical solution of the Rosenthal moving-point
source model.[16!

(2) The new position of the solid-liquid interface F(6, ¢, t)
and the new temperature distributions T (%, 6, ¢, t) and
T4 6, ¢, t) in both the regions are calculated from the
explicit approximation of Egs. [15], [19], [33], and [34]
using the Euler method*” with respect to time.

(3) The new temperature distributions T, (%, 6, /2, t) and
T4, 6, 72, t) on the upper surfaces of the liquid and
solid regions are calculated from the backward-differ-
ence approximation of Egs. [17], [18], and [21] using
F(6, ¢, 1), Ti(m, 6, &, 1), and T4, 6, ¢, 1) at anew time
level. If the obtained temperature T (n, 6, #/2, t) a a
noda point on the upper surface of the liquid region
exceeds the vaporization temperature of the substrate
(Ty), then the temperature at the nodal point is set equal
to the vaporization temperature of the substrate, in accor-
dance with assumption 4.

(4) The maximum value of 9F*/at* (equal to (a/a,)dF/at)
at anew time level is obtained using Egs. [33] and [34]
and then is checked if it is within the given value of
107° to judge whether the steady state is reached.

(5) If the steady state is not reached, the same procedures
2 and 3 are repeated.

To avoid a numerical instability, the stability condition
given by the inequality (Eq. [36]) was considered on
determining a time step for calculation (At) with respect to
the chosen spatial increments Az, A¢, A6, and A¢:

At = min (At Atg, Atg) [36]

In Eq. [36], At, can be derived from Eq. [15], Ats from Eq.
[19], and Ate from Egs. [33] and [34] ag'®

At = min 1 anz + = Mz
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Tablel. Thermophysical Data for Al-32. 7 Wt Pct Cu
Eutectic Alloy

Eutectic temperature

821 K Ref. 19

Vaporization temperature 2750 K* Ref. 20
Latent heat 1.23 X 10° ym? Ref. 21
Thermal conductivity in solid 118 W/m/IK** Ref. 22
Thermal conductivity in liquid 58.1 W/im/K Ref. 22

Therma diffusivity in solid
Thermal diffusivity in liquid
Surface absorptivity on solid
Surface absorptivity on liquid

448 X 107> m?¥s T
2.03 X 1075 m?s s
0.035** Ref. 23
0.085 Ref. 23

*Vaporization temperature of pure aluminum as a substitute.

** Averaged from 293 K to eutectic temperature.

tCalculated using thermal conductivity in solid and specific heat
of solid averaged from 293 K to eutectic temperature.[*?!

FCalculated using thermal conductivity in liquid and specific

heat of liquid.[*3
Tablell. Laser Processing Conditions
Laser power 1250 W*
Beam radius 120 um
Beam travel velocity 0.2t0 2.0 m/s

Initial temperature of the substrate 293 K

Ambient temperature 293 K
Surface heat transfer coefficient 100 W/m?/K
Protective gas He

*Measured value quoted form Refs. 13 and 23 is used, because
the value described in Ref. 2, 1500 W,, is nominal.

N Usin 6 +|UCOS¢|COSHk|. 1 >_1
FsSnd - (A6) | Fi | (Ag)

for 1=k=N, and 1=I=N,

where the minimums are with respect to every corresponding
nodal point.

[Il. CALCULATED RESULTS AND DISCUSSION

Calculations were performed using the thermophysical
properties of an Al-32.7 wt pct Cu eutectic aloy and proc-
essing conditions, as listed in Tables | and II. This binary
eutectic alloy was chosen as a model system by virtue of
the following reasons:

(1) the thermophysical data are well defined;

(2) the absorptivity, which controls the energy input in the
substrate, has been measured; %!

(3) the scale of the eutectic microstructure has been studied
extensively in connection with the growth rate;? and

(4) the high thermal conductivity of aluminum alloys
reduces the effects of fluid flow within the molten pool,
which are not considered in the present simulation.

The processing conditionslisted in Table Il were set iden-
tical to those of the experiments performed by Zimmermann
et al., @ which were compared with the calculated results.
The temperature at the outer boundary of the heat-affected
region was set to 303 K, because a further reduction in the
temperature did not affect the cal culated results significantly.
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Fig. 3—Variations of maximum value of oF*/at*, (9F*/9t* ) e, and mini-
mum value between Atf, Atg, and Atg, min {Atf, AtS, Atg}, with dimen-
sionless calculation time t* for a beam travel velocity of 0.6 m/s: (a) N,
=10, Ny = 40, N, = 13, and Ny, = 8; and (b) N,, = 10, N, = 40, N, =
19, and N, = 12.

A. Seady-Sate Molten Pool

In order for the steady-state molten pool to be obtained
by the numerical simulation, atime step for cal culation must
satisfy Eq. [36]. Figure 3 is an example of the calculated
resultsfor U = 0.6 m/s, showing the variations of the maxi-
mum value of aF*/ot*, (OF*/9t*) max, @d the minimum value
between Atf', Atg, and AtE, min (At], AtE, Atf), with the
lapse of the dimensionless calculation time (t*). Figure 3(a)
shows a case where the numbers of nodal points are chosen
as N, = 10, N, = 40, N, = 13, and N, = 8. When the
dimensionless time step for calculation (At*) is set to 3 -
1076, the value of min (Atf, Atf, At}) converges to
3.253276 - 108, accompanying a sharp decrease in the max-
imum value of 9F*/at* asthe dimensionless calculationtime
becomes sufficiently long. When the dimensionless time
step for calculation is, however, set to 3.5 - 1078, the value
of min (Atf, At%, Atf) becomes less than 3.5 - 107° after
the dimensionless calculation time of 0.7745, with afailure
of Eq. [36]. Therefore, the calculation becomes impossible
after the dimensionless calculation time of 1.0206, due to a
numerical instability. Similar findings are obtained for
another case, where the numbers of nodal points are chosen
asN, = 10, N, = 40, N, = 19, and N, = 12, as shown in
Figure 3(b). These results demonstrate the validity of the
stability condition given by Eq. [36] for determining atime
step for cal culation with respect to chosen spatial increments.

Figure 4 is an example of the calculated results for U =
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Fig. 4—Evolution of the molten pool with the lapse of calculation time
for a beam travel velocity of 0.6 m/s.

0.6 m/s, showing how the steady-state molten pool without
undulation in shape is obtained with the lapse of the dimen-
sionless calculation time from t* = 0to 8.0. In this calcula
tion, the dimensionless time step was set to 1075, Thus, t* =
8.0 corresponds to 8,000,000 time steps of calculation, at
which the steady state is reached. Figure 4(a) shows the top
views (z = 0 plane) of the molten pools at the various
dimensionless times. Figure 4(b) shows the side views of
the central longitudinal section (y = 0 plane) of the molten
pooals. In Figures 4(a) and (b), the discrete points with the
same symbols represent the calculated solid-liquid interface
positions at the corresponding times. The solid curves con-
necting the discrete points with the same symbols were
drawn by interpolation using B-spline curves.

The molten pool at t* = 0 is derived from the analytical
solution of the Rosenthal moving-point source model, in
which the latent heat due to melting and solidification is not
considered. Thissolution wasadditionally used for determin-
ing the distance between the origin and the center of the
laser beam. The origin was set so that the middle point of
P, and Py, denoted in Figure 4(a), coincided with the origin.
Thereby, the distance between the origin and the center of
the laser beam was straightforwardly determined as 94 um
for this case.

The effect of the latent heat on the shape of the molten
pool becomes evident on comparing the molten pools at
t* = 0, without consideration of the latent heat, and at 8.0,
with consideration of the latent heat. The latent heat is
absorbed at the front of the molten pool due to melting,
while the latent heat is liberated at the tail of the molten
pool due to solidification. This characteristic of the latent
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Fig. 5—Effect of beam travel velocity on the shape and size of the steady-
state molten pool: (a) top view, z = 0 plane, and (b) side view, y = 0
plane, of the central longitudinal section of the molten pool.

heat affects the shape of the molten pool through the heat
balance at the solid-liquid interface expressed in Egs. [33]
and [34]. Therefore, with the change in time from t* = 0
to 8.0, the front of the molten pool moves toward the center
of the laser beam and the tail of the molten pool moves
away from the center of the laser beam, as shown in Figure
4(b). The maximum width of the molten pool at t* = 8.0,
denoted by w in Figure 4(a), does not change considerably
from that of the molten pool at t* = 0, as shown in Figure
4(a). However, the maximum depth of the molten pool at
t* = 8.0, denoted by d in Figure 4(b), is 40 um smaller
than that of the molten pool at t* = 0O, as shown in Figure
4(b). Thisresult indicates that the consideration of the latent
heat isimportant for the analysis of the laser surface-melting
process to assess the molten-pool depth.

B. Effect of the Beam Travel Velocity

Asshown in Figure 5, the change in beam travel velocity
affects the steady-state shape and size of the molten pool,
becauseit influencestheirradiation time, defined by 2a/U 124
and advective heat transport in the negative x-direction. In
this figure, the origin is set a the center of the laser beam,
denoted by the letter C. The higher velocity of the laser
beam causes a smaller molten pool and greater extension at
the tail of the molten pool.

Figures 6 and 7 show the variations of calculated molten-
pool dimensions with beam travel velocity. For comparison
with the calculated results, experimental data obtained by
Zimmermann et al.l are also presented in these figures.
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Fig. 6—Variation of maximum width of molten pool with beam travel
velocity: (a) dimensional and (b) dimensionless.

Although the present calculation neglects the convective
heat transfer in the molten pool, the calculated results agree
approximately with the experimental data.

The relationships between the maximum width of the
molten pool (w(xm)) and the beam travel velocity (U(m/s))
are w = 242.4U 02401 (wx = 2763(U*)"%2L in dimen-
sionless terms) for the experimental data and w =
215.9U 703818 (wr = 2.727(U*)"%38 in dimensionless
terms) for the calculated results.

The relationships between the maximum depth of the
molten pool (d(um)) and the beam travel velocity (U(m/s))
are d = 68.12U ~042% (d* = 0.9943(U*)~942% in dimen-
sionless terms) for the experimenta data and d =
76.08U ~04148 (d* = 1.089(U*)"948 in dimensionless
terms) for the calculated results.

This fact suggests that the convective heat transfer in the
molten pooal is of minor importance to the molten-pool size,
within the range of processing conditions considered in the
present study.
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Fig. 7—Variation of maximum depth of molten pool with beam travel
velocity: (a) dimensional and (b) dimensionless.

C. Microstructure of the Laser Trace

In the laser surface-melting process, the local solidifica
tion rate can be determined quantitatively from the shape
of the molten pool.[@ Figure 8 is a schematic drawing of
the central longitudinal section of the molten pool and the
laser trace, showing the geometrical relationship between
the beam travel velocity and the loca solidification rate.
The orientation of the solidifying microstructure tends to be
perpendicular to the local solid-liquid interface. Thus, the
local solidification rate is geometrically described as

Vs = U cos ¢ [40]

By expressing the curved-line segment (P,P,) of the solidifi-
cation front as z = g(x), the angle  is given by
2 dx

A combination of Egs. [36] and [37] leads to the follow-
ing equation:

=2 — actan (d—g) [41]

_Us dg
Vs = Usin (arc tan (dx)) [42]

This eguation demonstrates that the local solidification rate
can be determined from the shape of the molten pool.

For the Al-32.7 wt pct Cu eutectic all oy, the microstructure
consists of parallel lamellae at solidification rates of below
0.2 m/s,? and the experimental values of the interlamellar
spacing () and solidification rate follow the relationshipt?
given by

A?Vg = 88 um?3/s [43]

Substitution of Eq. [39] for Vs in Eq. [38] provides the
equation describing the depth dependence of the interlamel -
lar spacing.

Figure 9 shows the predicted and experimental® interla-
mellar spacing within the central longitudinal section of the
laser trace, as a function of the height from the bottom of
the laser trace. In this figure, the predicted interlamellar
spacing is obtained through the aforementioned procedures

Laser beam
\ / U
é .
c X
Trace Molten pool
T H
?Pz

solidification <— | —— melting

Fig. 8—Schematic drawing of the central longitudinal section of the molten pool and resultant laser trace.
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Fig. 9—Comparison between the predicted and experimental interlamellar
spacing within the central longitudinal section of the laser trace for a beam
travel velocity of 0.2 m/s.

using the calculated result for U = 0.2 m/s. This figure
demonstrates that the predicted interlamellar spacing agrees
well with the experimental data. Furthermore, it is worth
noting that in this laser trace, most of the depth of the
substrate has a fine microstructure with an interlamellar
spacing of lessthan 30 nm. From these results, the numerical
simulation presented in this study appears to be effective
for a microscopic prediction as well as a macroscopic one.

[V. CONCLUSIONS

The formation of the steady-state molten pool during the
laser surface-melting process was numerically simulated by
applying the boundary-fixing method to a transient three-
dimensional heat-conduction problem with a moving planar
solid-liquid interface. Results obtained from the present cal-
culations are as follows.

1. When the steady state is reached, the resulting molten
pooal is obtained without undulation in shape.

2. For an Al-32.7 wt pct Cu eutectic aloy substrate, the
calculated molten-pool dimensions and the interlamellar
spacing predicted using the calculated results agree
approximately with experimental data.

NOMENCLATURE

a beam radius (defined as the radial distance
a which the power density falls to /e of
the central value) (m)

B(6, ¢) shape function of the outer boundary within
the hesat-affected region (m)

d maximum depth of the molten pool (m)

D distance between the origin of the spherical
coordinate system and the center of the
laser beam (m)

F(6, ¢, 1) shape function of the solid-liquid interface
(m)

a(x) shape function of the solidification front (m)

h surface heat-transfer coefficient (W/m?#/K)
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H height from the bottom of the laser trace (m)
K thermal conductivity (W/m/K)

L latent heat (Jm?3)

N number of nodal pointsin the 7 direction

N¢ number of nodal points in the & direction

Ny number of nodal pointsin the 6 direction

Ny number of nodal points in the ¢ direction

P total incident power in the laser beam (W)

q power-density distribution in the laser beam
(W/m?)

r radial coordinate (m)

t time (9)

T temperature (K)

Ta ambient temperature (K)

Ts temperature on the outer boundary of the

heat-affected region (K)
eutectic temperature (K)
temperature at the solid-liquid interface,
equa to Ty, (K)
initial temperature of the substrate (K)
vaporization temperature (K)
beam travel velocity (m/s)
local solidification rate (m/s)
maximum width of the molten pool (m)
spatial coordinates (m)

g

s<cAd

XY, and z

Greek Symbols

a thermal diffusivity (m?/s)

B surface absorptivity (—)

At time step for calculation ()

Ate time step defined by Eq. [39] (S)

Aty time step defined by Eq. [37] (9)

Atg time step defined by Eq. [38] (S)

An spatial increment in the » direction, equal to

UN, (—)
A& spatialnincraﬂent in the & direction, equal to
UN; (—)

A6 spatial increment in the @ direction, equal to
71(Ny — 1) (radians)

spatia increment in the ¢ direction, equal to
(2N, — 1) (radians)

surface emissivity, equal to 1 — B, (—)

independent variable (Eq. [13]) (—)

angle in spherical coordinate (radians)

reference angle, equal to 7 (radians)

interlamellar spacing (m)

independent variable (Eq. [14]) (—)

Stefan—Boltzmann constant, equal to 5.67 -
1078 (W/m?/K#)

angle in spherical coordinate (radians)

reference angle equal to #/2 (radians)

angle between the vectors Vs and U (radians)

>
<

IME>DP DI O

S5

Subscripts and Superscripts

liquid region

solid region

reference quantity, average of those of the
liquid and solid regions

dimensionless quantity

nodal-point indicesinthe n, & 6, and ¢ direc-
tions, respectively

ownr

*

i, j, k and |
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