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A standard approach for the numerical modeling of macro-
scopic phase change processes in the convection-diffusion
problem is the so-called “fixed-grid enthalpy-based”
method.™ In this method, the enthal py isrelated to the liquid
volume fraction of fluid in a control volume, which, in turn,
determines a porous-medium-like resistance toward fluid
flow in the phase changing domain.[? For accurate prediction
of the same, the latent heat content of each computational
cell needs to be updated according to the temperature and/
or species concentration val ues predicted by the macroscopic
conservation equations, during each iteration within atime-
step. In a physical sense, such an updating attempts to neu-
tralizethe differencein the nodal temperature predicted from
the energy equation and that dictated by the phase-change
considerations. Thus, the enthalpy updating scheme plays a
pivotal role in successful implementation of most of the
enthal py-based solution methods.

A reliable method for updating of latent heat of each
computational cell has been developed by Brent et al.[@ This
method avoids oscillations in the iterative procedure that
could result in an instability to achieve aconverged solution.
Voller and Prakash'® applied this formulation for modeling
mushy zone phase-change problems, where alinear variation
of temperature within the mushy zone was assumed. How-
ever, theauthorsclearly indicated that the latent heat function
would actually depend on the nature of solute redistribution
and the associated phase diagram, a detailed assessment of
which was beyond the scope of their work. It may be noted
herethat in the subsequent literature of phase-change model-
ing, the development of a systematic procedure for formula-
tion of latent heat functions consistent with the microscopic
considerations is not found. On the other hand, advanced
numerical models have recently been established that are
capable of addressing various microscopic issues regarding
nonequilibrium phase-change situations.*> It is, therefore,
desirableto develop asystematic procedurefor mathematical
formulation of appropriate latent heat functions, consistent
with the phase-change morphology. Accordingly, we outline
a procedure to formulate the latent heat function for any
metallurgical phase change situation. The aim is to prepare
a guideline so that metallurgically inconsistent results from
a macroscopic model can be avoided. For this purpose, we
subsequently outline an algorithm illustrated by suitable
examples addressing a wide variety of phase-changing
situations.
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As described in Brent et al.!? a general form of the
enthalpy updating expression can be written as

[AHeln 1 = [AHeln + 2 AT{he}
o [1]
- CFil{AHP}n]

where AHp is the latent heat content of the computational
cell surrounding the grid point P, h is the sensible enthal py,
cisthe specific heat, A isarelaxation factor, nistheiteration
level, ap and o are the coefficients of finite volume discreti-
zation equation,l and F 1 is the inverse of the latent heat
function. The physical interpretation of the termsin Eq. [1]
is described in detail in Brent et al.l?

As a staring point, we consider the metallurgical phase
diagram in a general functiona form of T = T(T,, T, Co/
C), where T_, T,,, Co, and C; are the liquidus temperature,
melting temperature (of a pure component), nominal alloy
concentration, and liquid composition, respectively. As a
specific example, this function may take the form

S R B 2
o a1 2
for the case of alinearized phase diagram, which is a com-
mon assumption in many of the macroscopic models quoted
in the literature.) The next step is to substitute the proper
metallurgical relation for Cy/C, as a function of liquid frac-
tion (depending upon the metallurgical model under consid-
eration), appropriately representing the microscopic solute
balance. For the case of anonequilibrium solidification situa-
tion, the preceding may be described by Scheil's
model® as

(G — Codfs = (1 — f9dC, (3]

where f; is the mass fraction of the solid and C; is the solid
phase composition. On integrating Eq. [3], we obtain

q dC
o= ep {_ Joza- kp)} 4

where f_ is the mass fraction of the liquid and ke is the
partition coefficient. Equation [4], in principle, can be inte-
grated when the variation of ko with C; is known. For the
specific case of aconstant partition coefficient (or, apartition
coefficient independent of composition), integration of EQ.
[4] gives

C =Cofp? [5]

It can be noted that k- in Eqg. [5] can be corrected on
account of solutal undercooling, in which case it can be
expressed as a function of solutal diffusion boundary layer
thickness, interface speed, and species diffusion coefficient
in the liquid.!® Thus, more general cases of nonequilibrium
solidification may effectively be addressed. Now, substitut-
ing Eq. [5] in Eq. [2], and using f, = AH/L, we obtain

h—cl (A7
h—cTm L

(6]
From Eq. [6], we get

(7]

(kp—1)
FHAH) = To — (T - m(ATH)
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Fig. 1—Variation of inverse of latent heat function with liquid fraction,
corresponding to various models (for numerical calculation, the constant
ap is taken as 0.1 in the Brody—Flemings model).
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Fig. 2—Variation of inverse of latent heat function with liquid fraction and
mixture composition corresponding to lever rule model.

Equation [7] is an expression for the inverse of the latent
heat function corresponding to the case of nonequilibrium
solidification described by Scheil’s model. It hasto be noted
that T_ in the preceding equations is not a constant, but a
natural variable occurring during the phase-change process,
which can be determined from the current value (during
iteration) of the nominal alloy composition using the phase-
diagram information.

As a second illustration, we consider the equilibrium
model governed by the “lever rule,”t® where C, is given by

Co= (1 - f)keC + .G (8]
Substituting Eq. [8] in Eq. [2], we obtain

h—cT. _AH\
m—(l L)(l Ko) (9]

Solving the preceding, we obtain
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Fig. 3—Variation of inverse of latent heat function with liquid fraction and
mixture composition corresponding to Scheils model.
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Asathird illustration, we consider amodel using Brody—
Flemings equation,’® in which some solid diffusion is also
assumed along with the other assumptions in Scheil’s equa-
tion, and hence, it represents nonequilibrium solidification
situations in amore general sense than Scheil’s model does.
The corresponding metallurgical governing equation is
given byl

FY{(AH) = [10]

G Ll

o) = [1 —ff1 - 2apkp)]12app [11]
where ap = Dd; /X2 = D/(fs X)?, with X being the solidifi-
cation length and t being the time under consideration. Equa-
tion [11] can be substituted into Eq. [2] and solved to obtain
the inverse latent heat function as

FYAH) = T, [12]

k-1
— (To— TL)(ATH(l — 2ak) + 2apkp>m

From the preceding illustrations, we can outline the sum-
mary of the basic steps to obtain metallurgically consistent
latent heat functionsfor numerical simulation of any solidifi-
cation process. It can be noted that an essential prerequisite
is first to identify the governing metallurgical relation for
solidification, physically consistent with the model under
consideration (namely, lever rule, Scheil’s equation, Brody—
Flemings equation, etc.). Then, for each iteration, the fol-
lowing steps are to be sequentially followed.

Step 1: Obtain the temperature-concentration coupling
from the phase diagram in a functional form.

Step 2: Calculate T, and Ts corresponding to the current
iteration value of the nominal aloy composition, using
step 1.

Step 3: Substitute the metallurgical governing relation
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Tablel. Table of Inverse of Latent Heat Functions

Mode! Description F1
Pure metal phase change T
T-T T +T
Constant Ts and T, %(ZAH — L) + Tp, Where E = — 5 S Tpe = — 5 S

Lever rule

Schell’s model

Brody—Flemings' model

-t ek

Tm - (Tm - TL)(

Tm - (Tm - T|_)<ATH(1 - Zapkp) —+ Zapkp)l—Zapkp

AH
1—(1—T)(1— k)
AHV !
)
kpfl

for concentration in terms of liquid fraction (for example,
Scheil’s equation), in the functional form of step 1.

Step 4: Write f, as AH/L and T as h/c in the algebraic
form obtained from step 1.

Step 5: Solve from step 4, to find an expression for
F 1 explicitly.

Step 6: Congtrain the F~! thus formed in meaningful
limits, i.e,

fFI>T,F1=TifF1<T,F1=Ts

It can be noted that the preceding outline is perfectly
general and can be applied to any metallurgical model gov-
erning the phase-change behavior. In fact, the case of pure
metal melting solidification can be obtained as a specid
case of the generalized model if we substitute T, = T, into
Eqg. [7]. In that case, F ! becomes T,,. Similarly, the case
of an alloy with constant T, and Tgand the linear variation of
latent heat content between T, and Tg can also be effectively
obtained under the same framework.

For aready reference, a number of useful forms of F 1
(appropriate to several metalurgical phase-change situa-
tions) is tabulated in Table I, assuming alinearized form of
the phase diagram. Figure 1 compares the variation of F !
as a function of liquid fraction, corresponding to several
cases of modeling assumptions. It is seen from Figure 1 that
the behavior of the F~! function differs significantly from
one model to another in its variation with liquid fraction
in the mushy region, corresponding to aloy solidification
occurring between two temperature limits. However, since
the liquidus and solidus temperatures are themselves func-
tions of the nominal composition of the aloy, the situation
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is actually more complex than revealed by the preceding
figure. Taking that into account, a combined variation of f,-
Cy-F 7 can be plotted, which can be visualized as a three-
dimensional surface, as shown in Figures 2 and 3, for the
cases of two most popular microscopic models, namely,
the lever rule model and Scheil’s model, respectively. The
preceding figures are plotted corresponding to the thermo-
physical properties of a solidifying NH,CI-H,O system
with an initial composition of 0.2 mass fraction of water.

The agorithm developed previously, in general, can be
applied for latent heat updating in enthalpy-based methods
for more accurate macroscopic phase-change models to fol-
low in future studies.
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