Application of Percolation Theory in Predicting Shape
Distortion during Liquid-Phase Sintering

JANXIN LIU, ANISH UPADHYAYA, and RANDALL M. GERMAN

Thisarticle shows how percolation theory provides atheoretical model for the onset of shape distortion
in liquid-phase sintering. The model uses an equivalent bond number per grain, with bond strength
depending on the relative intergrain bond size. Based on this study, shape distortion is resisted by a
rigid compact, which depends on the solid grains forming an infinite chainlike structure that spreads
throughout the system. A sufficient condition requires contiguity above a critical value to form an
infinite chainlike structure. The critical valueis near 0.38. Thisisin good agreement with experimental
results obtained with the W-Ni-Fe system sintered both under microgravity and on Earth. The effect
of the gravitational force on the sufficient condition to avoid shape distortion is not significant. The
effect of gravitationa field on shape distortion becomes apparent only after the start of distortion,

determining the final profile of a distorted compact.

. INTRODUCTION

MODELS that predict the properties of disordered
media have emerged from percolation concepts first intro-
duced by Broadbent and Hammersley.[! Percolation theory
predicts when a system is macroscopically connected. This
mMacroscopic connectivity isimportant to many phenomena.
Recently, Germanl? introduced percolation concepts to
describe liquid-phase sintering processes and shape distor-
tion. It is postulated that if the solid phase is connected
macroscopically, then shape retention is possible, otherwise
the component distorts.

Liquid formation during sintering usually enhances densi-
fication. Traditional liquid-phase sintering begins by mixing
two or more powders of differing compositions.l® On heat-
ing, the powder with the lower melting point melts or reacts
to form aliquid between the particles that engulfs the more-
refractory phase. If the particle size is small, then the capil-
lary forces from the wetting liquid enhance densification.[

Microgravity liquid-phase sintering provided a means to
examine sintering distortion and microstructural changes
under the condition of minimized gravity. At low solid con-
tents, the compacts distort and spheroidize, since the surface
tension exceeds al other forces in microgravity liquid-
phase sintering.[®

In ground-based sintering, gravity provides a progressive
stress gradient on the powder compact that induces grain
contact, settling, and anisotropic deformation (evident as
shapedistortion).[®”8 An*“elephant-foot” shapeisfrequently
observed for distorted W-Ni-Fe powder compacts. In addi-
tion, the solid and the liquid seldom have the same density.
Hence, gravity induces microstructural separation gradients
that result in nonuniform microstructures and properties in
the sintered product.[”l The final microstructure consists of
gradients which reflect the large density difference between
the solid and liquid phases.®! Gravity produces a systematic
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change in solid content, contiguity, connectivity, and grain
size over relatively small distances.[*0-13]

Shape distortion will be associated with microstructural
parameter changes in this percolation mode. The dominant
feature is the connection or bonding between neighboring
grains. A sufficient level of bonding is necessary to form a
rigid skeleton and inhibit shape distortion during liquid-
phase sintering. This study addresses a critical condition via
calculations based on percolation theory, to judge if arigid
skeleton is formed to resist shape distortion. The model is
used to predict shape distortion under both microgravity and
ground-based liquid-phase sintering conditions.

[I. ELEMENTS OF PERCOLATION THEORY

The foundation of percolation theory iswell explained in
various references.*2 For the sake of clarity, some of
the basic concepts are reviewed here before describing the
application of percolation theory to liquid-phase sintering.

A. Concept of Percolation

Flory!*! and Stockmayer®) used percolation to describe
how small branching molecules reacted to form very large
macromolecules. This polymerization process may lead to
gelation, i.e., to the formation of a very large network of
molecules connected by chemical bonds, a key concept of
percolation theory. Broadbent and Hammersley!™ developed
it mathematically and first established the percolation theory.

Classical percolation theory centers around two prob-
lems.[*>2U |n the bond percolation problem, the bonds of
the network are either occupied, randomly and independently
of each other with a probability of p, or are vacant, with a
probability of (1 — p). For alarge network, this assignment
is equivalent to removing a fraction (1 — p) of al bonds at
random. Two sites are called connected if there is at least
one path between them consisting solely of occupied bonds.
A set of connected sites bound by vacant bonds is termed
a cluster. If the network is of very large extent and if p is
sufficiently small, the size of any connected cluster is small.
But if p is close to 1, the network should be entirely con-
nected, apart from occasional small holes. At some well-
defined value of p, thereisatransition in the random network
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Fig. 1—Percolation on atwo-dimensional square lattice. Dark circlesindi-
cate occupied sites, and white circles indicate empty sites. Two sites are
called connected if thereis at least one bond (between two occupied sites).
An infinite cluster is indicated by heavy lines.

structure from a macroscopically disconnected structure to
a connected one; this value is called the bond percolation
threshold (py). It isthe smallest fraction of randomly occu-
pied bonds below which there is no infinite cluster of occu-
pied bonds.

Similarly, in the site percolation problem shown in Figure
1, sites of the network are occupied (dark circles), with a
probability of p, or vacant (white circles), with a probability
of (1 — p). Two nearest-neighbor sites are considered to be
connected if they are both occupied, and connected clusters
on the network are again defined in the obvious way. There
is a site percolation threshold (P.s) above which an infinite
cluster of occupied sites spansthe network. Percolation prob-
lems generally depend on site and bond properties
simultaneoudly.

Consider bond percolation on the square lattice defined
by randomly occupying each edge (or bond) of the lattice
with a given probability of p. Figure 2(a), based on
Redner,? shows a two-dimensional 20 X 20 section of a
sgquare lattice whose edges are occupied with p = 0.35.

From a geometrical point of view, there are two points that
deserve emphasis. First, only small clusters up to a length
scale denoted by the correlation length (&) dominate the
lattice (the number of clusterswith size > & is exponentially
small). Second, the clusters are disconnected; it is not possi-
ble to find a continuous path that traverses the lattice.

In Figure 2(c), asample at p = 0.65 is shown. There now
exists a single very large connected cluster which traverses
thelattice. The correlation length, defined asthe characteris-
tic length scale of finite clusters, is, therefore, limited in
this situation.

Intermediate to the situations depicted in Figures 2(a) and
(c) isthe percolation threshold, p = p.. For the square lattice,
acritical condition occursat p. = 1/2 (Tablel). An example
of such a critica state is shown in Figure 2(b), on which a
percolating path is indicated. In particular, notice that there
exist clusters of all length scales, and &, approaches infinity.
This singular behavior of &, turns out to be crucial in under-
standing the physical properties of random media.

The derivation of the exact valuesfor the bond percolation
threshold and site percolation threshold has been possible
for certain lattices. The percolation thresholds of three-
dimensional networks have been calculated numerically by
Monte Carlo simulations and other techniques. Table | com-
piles the current estimates of py, and p for common two-
and three-dimensional lattices. This table shows that the
product of B, = Z - pg, the mean number of bonds to a
given site, is essentialy an invariant for percolation net-
works, where Z is the number of neighbors per grain. Note
that Z differs from the coordination number N, (the number
of bonds per grain). Figure 3 shows the difference between
Z and N, in two dimensions, however, both quantities are
used here to refer to three dimensions. The former is the
number of nearest grains an arbitrary grain has, which may
not be in contact with the reference grain; Z = 6. The latter
isthe number of grains exactly in contact with the reference
grain; N = 2. Later, we will seethat N, = Z - p, where p
is the probability that a grain has bonds with neighboring
grains. Thisimplies that the mean number of bonds depends
only on the dimensionality of the lattice and not on the
specific lattice type.

Fig. 2—(a) through (c) An intuitional bond percolation on a 20 X 20 section of the square lattice.l??
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Currently Accepted Values of the Percolation Thresholds?!

Lattice Dimension Z Peo B. = Z-pe Pes &e = fi'Pes
Honeycomb 2 3 1to 2 sin (#/18) ~ 0.6527 1.96 0.6962 —
Square 2 4 05 2 0.5927 —
Triangular 2 6 2 sin (7#/18) ~ 0.3473 2.084 0.5 —
Diamond 3 4 0.3886 155 0.4299 0.146
Simple cubic 3 6 0.2488 1.49 0.3116 0.162
Bcc 3 8 0.1795 1.44 0.2464 0.168
Fcc 3 12 0.119 1.43 0.198 0.147

B. Percolation Quantities

In addition to the percolation thresholds, the topological
properties of percolation networks are characterized by sev-
eral other quantities. Percolation probability P(p), correla-
tion length, and the backbone fraction (XB(p)) are most
important in our study.

(1) Percolation probability isthe probability that arandomly
chosen bond or site belongs to the infinite cluster when
the fraction of occupied bonds or sites is p.

P(p)+§sns=p [1]

where s is the length of an infinite cluster and ng is the
number of infinite clusters with a cluster length of s.
The sum runs over al finite clusters and excludes the
infinite cluster. This probability is zero for p values
below the percolation threshold.

(2) Correlation length is the characteristic length scale
used to describe finite clusters. When p < pg, thisis
the typical size of the connected clusters. When p >
pe, it is defined as the characteristic length of finite
clusters only, excluding the infinite clusters. This cor-
relation length is crucial for many of our later
discussions.

(3) Backbone fraction is the fraction of occupied bonds or

CE@D@

Fig. 3—A schematic showing the difference between definitions of coordi-
nation number in percolation theory and liquid-phase sintering. The refer-
encegraininthe center hassix nearest grains, Z = 6, but only two contacting
grains, N, = 2.
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sites in the infinite cluster which actually carry flow or
current, since some of the bonds or sites in the cluster
are dead-end and are not contributors to flow. The back-
bone of a percolating system plays a fundamental role
in its transport properties, because the tortuosity of the
transport paths is controlled by the structure of the
backbone.

To understand the backbone structure, it is helpful to
begin with atwo-dimensional rectangular | attice of squares
with randomly removed sites, as sketched in Figure 4(a).
The occupied dark squares are. conductive and occupied
with a probability of p, and an empty squareisan insulator,
with aprobability of (1 — p), where p istermed the concen-
tration of occupied sites. When voltage is applied to the
top and bottom rows, an electric current can only flow
between squares which have one side in common, not
between corners. For alarge lattice, we have zero conduc-
tivity if no infinite network of neighbors is present, that
is, for p < p.. The parameter p. isacritical value, termed
the percolation threshold. When p < p., thereisno infinite
cluster formed by occupied squares, while, when p > p.,
at least one infinite cluster exists. When p is appreciably
larger than p., nearly all occupied sgquares are connected
to form one infinite network. The conductivity (C(p)), as
well as the fraction (P(p)) of sitesin the infinite network,
increase roughly linearly with concentration of p. At p =
1 we have, of course, P(p) = 1, and C(p) reaches the bulk
conductivity. If we set thisbulk conductivity equal to unity,
then C(p = 1) = P(p = 1) = 1. Because of the close
relationship between the conductivity and percolation
strength of an infinite cluster, it could be assumed that
conductivity and percolation strength were proportional
over the whole range of p. Last and Thouless'*® measured
the electric current through a sheet of graphite paper with
randomly punched holes. The result, shown schematically
in Figure4(b), indicatesthat C(p) and P(p) are not propor-
tional. The conductivity vs concentration curve seems to
end at thethreshold with zero slope, whileapl ot of percola-
tion strength vs concentration hasinfinite slope. Thereason
is that, even in the infinite cluster, many bonds carry no
current, because they lead nowhere. These are called “dan-
gling” or “dead-end” bonds. When we erase all the dan-
gling bonds, we are left with the “backbone.” Every
internal bond on the backbone has at | east two independent
routes that lead from it to the edges of the cluster. Figure
5 shows a schematic of a liquid-phase sintering system.
From the top to the bottom, some solid grains form a
chain-like structure that is the same as an infinite cluster.
The rest of the grains are probably agglomerated, but are
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Fig. 4—(a) Percolation on a two-dimensional square lattice. The dark squares indicate sites occupied by a conductor. The white squares indicate empty
sites. An electric current can only flow through the connected squares in the infinite cluster that is called a backbone; (b) a schematic that indicates that
the conductivity C(p) and the fraction of sites in the infinite network P(p) increase with concentration p, but they are not proportional.

(a) LPS

Liquid () Solid ® Pore

(b) Backbone

Fig. 5—(a) A schematic of a liquid-phase-sintered microstructure. From the top to the bottom, the solid grains form a chainlike structure that is the same
as an infinite cluster. Some of the grains, which do not belong to the backbone chain, are dangling. (b) An image showing the backbone chain when these

dead ends are removed.

not connected to thisinfinite grain chain. When the dead-
ends and agglomerated grains are removed from Figure
5(a), we have the backbone chain, as shown in Figure 5(b).

Percolation quantities, such as percolation strength, corre-
lation length, and backbone fraction, at a concentration of
p, depend on the microscopic details of the system, such as
its coordination number (nearest neighbors per site). But
near the bond or site percolation threshold, most percolation
quantities obey scaling laws that are largely insensitive to

2212—VOLUME 30A, AUGUST 1999

the network structure and its microscopic details. The quanti-
tative statement of thisinsensitivity isthat, near p., we have
the following scaling laws:

P(p) ~ (p — p)e (2]
&(p) ~ |p— pd P (3]
XB(p) ~ (p — po)™® (4]

Figure 6 shows the transition of percolation quantities at the

METALLURGICAL AND MATERIALS TRANSACTIONS A
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Fig. 6—Percolation quantities transition at the percolation threshold.

percolation threshold. The exponents 8,, u,, and Bz are
completely universal, i.e., they areindependent of the micro-
scopic details of the system and depend only on the dimen-
sionality of the system. For three-dimensional networks,
Be = 1.05, B, = 041, and », = 0.88.21

C. Percolation in Random Networks

Percolation in a topologicaly random network, in which
the coordination number varies from site to site, is of great
interest in our study liquid-phase sintering. There are at least
three ways of realizing percolating continua.l?#?>28 |f the
system has a random distribution of spheres, similar to a
liquid-phase sintering system, percolation is defined as the
formation of an infinite cluster of touching or overlapping
spheres. One of the most important discoveriesfor percolat-
ing continua is a critical occupied volume fraction (¢.),
defined by Scher and Zallenl®” as

de = Poshi [5]

where f; is the filling factor of a lattice, equa to volume-
fractional density when each of its sites is occupied by a
sphere, such as f; = 0.74 for fcc, 0.68 for bec, 0.52 for
simple cubic, and 0.34 for diamond structures. Note that in
bond percolation, the mean number of bonds to a given site
(B,) isessentially aninvariant for percolation networks (B, =
Z - pg)- In site percolation, ¢. is a similar parameter to B,
where ¢, corresponds to B, and f; corresponds to Z. The
parameter ¢, appears to be an invariant of the system, with
a value about 0.45 for d = 2 and 0.15 to 0.17 for d = 3,
as listed in Table |. However, site percolation is difficult to
apply in shape distortion. Shante and Kirkpatrik!?® general-
ized Scher and Zalen's idea to permeable spheres and
showed that the average number of bonds per sites (B, at
Pe) IS related to ¢, by

4=1-e0(-%) 6

then the site percolation can be translated into a bond perco-
lation system by Eq. [6]. Jerauld et al .[>! showed that, aslong
astheaverage coordination number of arandom network and
the coordination number of a regular network are about the
same, many transport properties of the two systems are
nearly identical.

METALLURGICAL AND MATERIALS TRANSACTIONS A

D. Homogeneity of Random Systems

Thetotal number of bonds or sites belonging to an infinite
cluster (M(L)) depends on the volume of a system, L being
the length scal e of the volume (for acubical-shaped network,
the volume is L3). The quantity M(L) practically grows lin-
early with the volume L. We can define the average density
of sites belonging to the infinite cluster as P(p) = M(L)/L3,
where P(p) isindependent of L and monotonically decreases
as p decreases. However, the situation is very different for
the probability of occupied bonds or sites very close to the
percolation threshold, since P(p) is not uniform. In this
regime, the total number of bonds or sites belonging to an
infinite cluster is given by

LPe L<§g
M(L, fp) -~ {f;?c(l—/fp)d L > é:z [7]

where d is the dimension of a system (for our case, d = 3).
Generally, for any length scalewhere L >> &,, apercolating
system is macroscopicaly homogeneous. But, for L <<
&, the system is not homogeneous and the macroscopic
properties of the system depend on L. Let D, be the fractal
dimension of the cluster. However, it is not a totally new
guantity, since it is given by

D, =d- B (]
Y

For L > &, wehave P(p) = M/LY ~ P79 ~ (p — pp)Pr
(sameasEq. [2]). For L < &, M(L, &) grows as L, which
implies that P(p) is not constant, but rather decays as
L=, When L — o, then P(p) — O.

The correlation length decreases with a decrease of p
when p < p.. When p > p, theinfinite cluster has astronger
propensity to absorb finite clusters. A large cluster has a
greater possibility of being absorbed by an infinite cluster
than a small one. So, the correlation length decreases as p
increases over the percolation threshold.

The effect of finite system size manifests itself near the
percolation threshold, where &, is very large. However, we
can treat afinite system asinfinite aslong asits length scale
is L >> &, because the system is macroscopically
homogeneous.

[11. A PERCOLATION MODEL FOR LIQUID-
PHASE SINTERING

Assume that a grain has Z nearest neighbors, but that not
al of the neighboring grains necessarily form solid-solid
contacts. To understand the connection with percolation, let
us assume that the grains occupy the sites on a periodic
lattice. The nearest grains (sites) form solid-solid contacts
with a probability of p; if p is small, only smal chains
connecting a few grains are formed. As p increases, larger
and larger chainlike structures are formed with abroad chain-
size distribution. For p > pg,, wWhere py, is a characteristic
value that depends on Z, an “infinite,” continuous chain is
formed. Thus, py, Signals a connectivity transition: for p >
P, @N infinite chain structure exists and the system isrigid
(with possibly a few finite chains). The fraction of solid-
solid contacts existing at a critical condition is the analogue
of the bond percolation threshold.
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Suppose the shape distortion depends on the presence
or absence of an infinite continuous-grain network. The
percolation threshold for shape distortion of a liquid-phase
sintering system is, therefore,

B,
P = [9]

where B, = 1.5.1721 Besides the number of solid-solid
contacts between an arbitrary grain and its nearest neighbors,
we aso need to know the bond strength to determine if a
system remains rigid during liquid-phase sintering. So far,
we have assumed that the percolation network consists of
only two types of bonds: perfect bonds (occupied bond),
which have the bond strength of unity, and unoccupied
bonds, which have the bond strength of zero. In a liquid-
phase sintering system, it is often the case that the occupied
bonds are not perfect and have a bond strength less than
unity. A higher coordination is needed if contacts between
solid grains are weakly bonded. In such cases, arigid infinite
network for resisting shape distortion may depend on acom-
bination of bond probability and bond strength.

If a bond is derived from the atomic bonding forces
between contacting grains and the strength in unit area is
oo, the bond strength is characterized by the bond area of
asolid-solid contact, 7/4o, X?, where X isthe neck diameter.
A perfect bond is assumed to be equal to the force breaking
agrain (X — G), so the perfect bond strength is 7/40,G?,
where G isthe grain diameter. The normalized bond strength
(o) is given by
X2
G?

According to percolation theory, the average number of
bonds per grain (sites) at py, is aout 1.5 and is related to
acritical volume fraction of 0.15 to 0.17, as expected from
Eqg. [6]. That was the result obtained by a random mixture
of different spheres, for example, conducting spheres mixed
with insulating ceramic spheres, which showed an onset of
metallic conductivity at a critical volume-fractional density
of the conducting spheres.[*

Because the normalized perfect bond strength is unity, we
replace B. with a equivalent bond number (B,) that has a
normalized bond strength of o, B, being related to B by

B, = Beor [11]

Similar to Eqg. [9], we have an equation for equivalent
percolation threshold (pg,) and equivalent bond number.

Bc
ZPer = Be = P [12]

g =

[10]

Now we have N* = B,, where the superscript asterisk
indicates that the parameter is in the critical condition, for
example, N¥ isthe critical coordination number defined for
liquid-phase sintering. The parameter pg, represents a rigid
infinite network formed by weak bonds and relates to the
equivalent network with pg, of perfect bonds in a system.
Supposing that p is the probability in bond percolation, then
Ne (N. = Zp) indicates the number of solid-solid contacts
for a grain in three dimensions.

Contiguity (Cy) isanother parameter used to describe the
mean solid-solid contact area of an individua grain as a
fraction of total interfacial area. Obviously, the contiguity
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Fig. 7—Contiguity and coordination number (bond number) at the critical
point of shape distortion, calculated based on the current model, showing
a critical contiguity near 0.38 for no distortion.

is dependent on bond number and bond strength (the area
of a bond).

-t
S+ S

where S is the solid-solid surface area per grain and & is
the solid-liquid (matrix) surface area per grain. Considering
asphere of diameter G with N, truncated contact flats, where
the truncated flats are solid-solid contacts and the remaining
area consists of solid-liquid surface, then Sg and Sy can be
obtained by Eq. [14]:

So= 20N, (14

— 2 _ Y2
1€ ( ,Z/G )\

Css [13]

On substituting Eqg. [14] into Eq. [13],

2
77‘)1( N,
Cs = [15]
— 2 _ Y2 2
"GP — 7G(G \Z/G X)Nc+ 77")1( N,

At the critical point of shape distortion, p = pg and
Cs = C&

ct— 0.375 [16]

1375 — 075 L= V1= 9) f —9)

Figure 7 shows the critical contiguity (C§) and critical
coordination number (N¥) plotted with the normalized bond
strength, as calculated from EqQ. [16] and [12], respectively.
From Eq. [11] and N* = Z, we have o = 1.5/N* = 1.5/Z.
For aclose packing of Z = 12, it givesalimit of o > 0.125
and C% > 0.38. In practice, at least a coordination number
of 4 is needed to hold the liquid-phase system rigidity for
a random packing of spherical grains;®% this corresponds
to a contiguity of 0.39. Note that Eqg. [16] and [12] are
applied in the range of normalized bond strength between
0.125 and 0.375. Any extrapolation is inappropriate or gives
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Fig. 8—A schematic of the force componentsinduced by gravity on aneck.

incorrect conclusions. For example, an infinite critical coor-
dination number will be obtained when the normalized bond
strength approaches zero (Eqg. [16]).

Contiguity is measured by quantitative microscopy on
two-dimensional cross sections. The critical coordination
number could not be measured directly. Furthermore, the
critical contiguity is relatively invariant. This property high-
lights that the critical contiguity provides an efficient crite-
rion for assessment of shape distortion other than the critical
coordination number.

Based on the assumption of an equivalent bond number
with weak bonding strength, the actual bond number islarger
than 1.5 (B, = 1.5). Also, the volume percentage of solid
grains belonging to the infinite cluster at pgy, is larger than
that expected at the percolation threshold.

IV. GRAVITY EFFECT ON SHAPE DISTORTION

During ground-based sintering of a cylindrical compact,
the mean pressure induced by gravity (P) is proportional to
the height of the compact,

P = pgy = (Veos + Vip)ay [17]

where p is the density; V is the volume fraction; subscripts
| and s designate the liquid and solid, respectively; g is the
gravitational acceleration; and y is the position from the top
of the compact. The mean pressure is calculated based on
the total cross-sectional area of the compact. In granular
media, mechanical loading is primarily transmitted through
intergrain contact. Hence, the pressure exerted on necks
exceeds the mean pressure. Assuming that the force induced
by gravity exerted on aneck j between two contacting grains
inthebackbone structure of theinfinitegrain chainispropor-
tional to the product of the projected area (1/47X?) of the
neck section resolved into the direction of gravity and the
pressure distribution parameter (q), we get

2
F = mlx cos 6§ [18]
where ¢ is the angle between the gravity direction and
normal direction for the neck section j. Figure 8 shows the
force components on a neck schematically. The total force
exerted on the necks located on the lower half of the refer-
ence grain is

METALLURGICAL AND MATERIALS TRANSACTIONS A

2 2X8(p)2

EFJ-:ml ; cos 6

_ mgX?ZX%(p)
16

The factor ZXg(p)/2 implies that only half of the grain con-
tacts are taken into account. The parameter ¢ is a spatial
angle and cos 6 = 1/2. Consider a hypothetical plane of
area A and thickness G (G being the diameter of grains)
inside the compact, vertical to gravity. Thetotal force exerted
on A is a summation of forces exerted on al individual
grains located inside the volume A - G. This force is equal
to the pressure induced by gravity exerted on solid.

F o TXEZXE(P) \ o Vs _ 3ZXE(P)gXEAV;

* 16 ACTenGE ~ 8G2
SF [20]
N (Vps + Vip)gy
Since o = (X/G)?,
_ 8(Vsps + Vip)ay
3ZXE(P)oVs (=]
Substituting Eq. [21] in Eq. [18],
F = 8(Veps + Vip)ay - T %2 cos 4 [22]

3ZXB(p)oVs 4

As shown in Figure 8, F; is divided into a shear force (Fg)
and a normal force (Fy;). They can be expressed as

2mX3(Veps + Vip)gy

Fg=Fsing = 32XB(p)oV. sin ¢ cos ¢ -
_ _ 2mX*H(Veps + Vip)gy
Fn = Fjcos 4 = XDV cos” 6

The gravitational -force distribution indicates that the nor-
mal compressive force under gravity is greater in the necks
with thenormal direction parallel totheaxial direction (grav-
itational direction) than in those parallel to the radial direc-
tion (nongravitational direction). The highest normal force
occursfor necks oriented perpendicular to the axial direction
and reducesto zero in the radia direction. The highest shear
force islocated at the necks with 6 = 45 deg, and the shear
force is equal to zero in both the axial and radial directions.
Shear force leads to the possibility of diding between grains
and combined rearrangement, depending on the bond
strength of the contacts. The gravitational-force differences
also exist aong the axial direction because of the gravita-
tional gradient and the gradient of solid volume fraction.

A normal force on the bonds creates a compressive stress
gradient, such that thereis enhanced material transport away
from necks with the normal direction aligned parallél to the
axial direction.®-34 The consequence is more shrinkage in
the axial direction than in the radial direction. However, the
model presented in this article does not consider anisotropic
shrinkage, but focuses on the critical microstructural condi-
tion for distortion. Therefore, normal compressive force is
not considered because it does not break contacts between
grains. Shear forceleadsto the possibility of diding between
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grains. The maximum shear force induced by gravity occurs

ay=nhand(sin 6-cos ), = 1/2, where h is the height
of a compact.

F. — mXVeps + Vip)gh

T 3X(p)oVs

Under the gravitational field, the bond strength must be

higher than that under microgravity to avoid shape distortion.

Let a hypothetical bond strength (o), which is the bond

strength 714 o,X? taken off the maximum shear force
induced by gravity, instead of the bond strength /4 o, X?.

[24]

o = 7ZT 0oX2 = Fomax [25]
Thus, the percolation model in Section 111 is applicable for
determining the onset of distortion under gravity. At the
critical point of shape distortion, the critical coordination
number and the critical contiguity are expressed as

T

= 0,G?
N* = 15 4 = 4v1'5+ Vo ah [26]
T o2 o — Vs + Vip)gh
4°7° Simex 3ZXB(p)Vyo,
and
Cr = 0.375 (271
' ' T 3ZXB(p)Vso,o

The backbone fraction is determined by Eq. [4]. For sim-
plicity, we assume that the backbone fraction is a linear
function of the probability p,

Z- X¥p) ~ (N& — B [28]
Since XB(1) = 1when N} = Z (p = 1and B, = 1.5),
Ng — 15
B — C
X¥p) = > ¢ [29]
Equations [26] and [27] are simplified as
NE = 15 [30]

. MVep, + Vip)gh(Z — 15)
3Z(N* — 1.5)0yVs

and
Ct=
0.375

- — 15031
3Z(N% — 1.5)Vso,0

When h = 0, the critical coordination number approaches
1.5/0-and the critical contiguity approaches that of Eq. [16].
When h # 0, the effect of gravity depends on the height of
the compact, density, shear strength of the solid phase at the
sintering temperature, solid volume fraction, and dihedral
angle(sin ¢/2 = X/IG ~ /o, where ¢pisthedihedral angle).
When a compact is high, heavy, sintering at a high tempera-
ture (the bulk strength of the solid phase could be low at
the temperature closeto the melting point of the solid phase),
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a low solid volume fraction, and a low dihedral angle, the
value of 4(Vys + Vip)gh(Z — L5)/[[3Z(N* — 1.5)Vs0,0]
may be not negligible.

For the W-Ni-Fe system sintering at 1500 °C, the density
of solid tungsten is 19254 kg/m?®, the density of the liquid
is estimated to be about 9000 kg/m®, g is 9.8 m/<?, and the
height of the compact is 0.01 m. The solid strength is 25 X
10°% N/m?, estimated to be one-half of theyield strength at the
sintering temperature.®™ The packing of nearest neighborsis
assumed to be in the range from 9 to 12. For the 78 pct W-
15.4 pct Ni-6.6 pct Fe aloy sintered at 1500 °C, the solid
volume fraction is about 0.55, 4(Ves + Vip)gh(Z — 1.5)/
[30,V4 =~ 0.0014, and Eq. [30] and [31] become

NE ~ 075 + 272
g
[32]
+ L 2550 = o2 + 000560
20
and
0.375
Cs= [33]
1375~ 075 L= V1= ) 00014
o (Nt — 15)0

For the 93 pct W-4.9 pct Ni-2.1 pct Fe aloy sintered at the
same temperature, the solid volume fraction is about 0.8 and
4(Veos + Vim)gh(Z — 1.5)/[30,V{ ~ 0.0011, given that

NE ~ 075 + 272
g

L [34]
+ = J2.25(1 — 0)? + 0.00440
20
and
0.375
= [35]
1375 - 075 L= Y1= ) 0001
o (N* — 1.5)0

Figure 9 shows the critical contiguity, based on Eq. [33]
and [35], and the critical coordination number, based on Eq.
[32] and [34], for the 78 pct W-15.4 pct Ni-6.6 pct Fe and
93 pct W-4.9 pct Ni-2.1 pct Fe aloys, respectively. They
are plotted with relative bond strength under the critical
condition of liquid-phase sintering. Both critical values have
very little differences between alloys and between micro-
gravity sintering and ground-based sintering (compare to
Figure 7).

The previous cal culation showsthat the critical contiguity
for shape retention predicted from Eqg. [31] is the same as
that predicted from Eq. [16]. Gravity has no effect on the
critical point of shape distortion. A possible explanation is
that there is a dramatic decrease in the compact rigidity at
the critical point. Above the critical contiguity, there is a
percolation structure of solid contacts, while below that no
percolation structure formed.

V. EXPERIMENTAL PROCEDURE

Commercial tungsten powder provided by Osram
(Towanda, PA), nickel powder from Novamet (Wyckoff,
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Fig. 9—Thecritical contiguity and coordination number for alloy 78W and
alloy 93W ground-based sintered at 1500 °C. Results show that gravity
has little effect on the critical point of shape distortion (compare with
Figure 7).

NJ), and iron powder from International Specialty Products
(Wayne, NJ) were used in microgravity liquid-phase sin-
tering experiments. The powders were mixed to form alloys
with 78, 83, 88, 93, and 98 pct tungsten (in wt pct) and the
balance was nickel and ironin a7:3 weight ratio. The mixed
powders were cold-isostaticaly pressed at 210 MPa and
solid-state sintered at 1400 °C for 3 hoursin a dry hydrogen
atmosphere. After presintering, the samples were machined
into right-circular cylinders with a 10 mm height and
diameter.

Microgravity sintering was performed in the large isother-
mal furnace aboard the space shuttle Columbia, as part of
flight STS-65 in July 1994. The equivalent sintering was
performed in a ground-based version of thisfurnace. In both
cases, the samples were heated from ambient temperature,
at an average rate of 18 °C/min, to 1500 °C. At 1500 °C,
the temperature was held for 1, 15, or 120 minutes and then
cooled at 3°C/minto 1420 °C, below the solidustemperature.
Sintering was carried out in vacuum. Subsequently, the fur-
nace was shut off and allowed to cool to room temperature.

Measurements included dimensions, density, and micro-
structural analysis. Dimensional measurements were taken
using a vernier caliper for the presintered samples and a
coordinate measuring machine for the sintered samples. Pre-
sintered dimensions and weights were used to calculate pre-
sintered densities, and sintered densities were determined
by the Archimedes' method. The microstructure parameters,
solid volume fraction, and contiguity were measured to a
95 pct confidence level.

VI. EXPERIMENTAL RESULTS AND
DISCUSSION

A. Description of Shape Distortion

In microgravity, the high-liquid-content compacts tended
to spheroidize during liquid-phase sintering, as shown in
Figure 10. It is necessary to determine shape distortion by
comparing the sintered dimensionsto the presintered dimen-
sions. However, no comprehensive distortion parameter has
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been used to quantify shape distortion until now. The param-
eter used was proposed by Upadhyaya:[8]

§=[1-a- 1079 100 [36]

In Eq. [36], a incorporates the aspect-ratio contribution and
c consists of theradial and axial standard deviations normal-
ized with the mean values.

_ hyd
hd,
_gn(h_d
9d | On
c=2+ 7

where h, and d, are the compact height and diameter, respec-
tively, before sintering. The terms h and d are the average
compact height and diameter, respectively, after sintering.
The terms oy and oy, are the measured standard deviation
of the diameter and height, respectively. This distortion
parameter (8) varies in the range from 0 to 100. The larger
the deviation from the sintered compact size, which is ex-
pected from isotropic shrinking, the larger is the distortion.
For no distortion the shape change is isotropic and &
approaches 0. Table Il lists the quantified shape-distortion
parameter.

B. Microstructural Changes

Table |l aso lists the contiguity and solid volume fraction
vs sintering time for the five aloys. Contiguity largely
depends on the volume fraction of solid. In the 83 pct W
alloy, the solid loading is higher than in the 78 pct W aloy,
but, because of separation, the volume fraction of solid tung-
sten grainsis almost the same asin the 78 pct W aloy. Both
alloys have the same levels of contiguity.

Contiguity initially varies with sintering time. This is
attributed to a change in the solid-liquid surface energy as
the liquid composition changes during dissolution, spread-
ing, and penetration of grain boundaries.[*1 After prolonged
sintering, the contiguity approaches a constant value, except
for the 88 pct W aloy.

Because all the sampleswere sintered at the sametempera-
ture and had the same composition of liquid phase, the
dihedral angle was constant. An average dihedral angle of
55 deg was measured from the samples of microgravity
sintering, which is higher than that measured from the sam-
ples of ground-based sintering, the latter ranging from 25
to 52 deg.[39

C. Distortion Criterion

For the 88 W alloy sintered at 1500 °C, sample distortion
increases with the sintering time; Figure 10 showsthe distor-
tion for microgravity sintering. The distortion parameter
ranges from 6.38 at the beginning to 38.32 after 120 minutes
of sintering. Microstructural measurements give the highest
contiguity of 0.36 after 15 minutes of sintering. The 93W
aloy sintered at 1500 °C for 120 minutes shows no distortion.
The contiguity is 0.41 for microgravity sintering and 0.418
at the top and 0.392 at the bottom for the ground-based
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Fig. 10—Postflight shapes after microgravity sintering following 1, 15, or 120 min at 1500 °C.

sintering sample, respectively. Other liquid-phase sintering
aloy systems are listed in Table 111, based on the results of
Upadhyaya.*® The samples with contiguity below the criti-
cal value slumped, while the samples with the contiguity
over the critical value resisted distortion.

This evidence shows that there is a sufficient condition
for no shape distortion in liquid-phase sintering: when the
contiguity is larger than the critical value, no distortion
occurs. The theoretical value is near 0.38.

D. Microstructural Description via Percolation Theory

Contiguity increases with the increasing volume fraction
of solid and dihedral angle. An empirical relation can approx-
imate this behavior:[3

Cs = V(043 sin ¢ + 0.35 sin? ¢) [38]

Based on Eq. [38], we can predict shape distortion simply
from the solid volume fraction when the dihedral angle
is known.

Percolation theory also gives us amicrostructural descrip-
tion of a disordered system. In the case of perfect bonding
between grains, when the average number of contacts per
grain exceeds B. (B, = 1.5 for three dimensions), a continu-
ous chainlike structure is expected. Furthermore, the proba-
bility of grains belonging to the infinite network calculated
by Eq. [6] depends on the system size. At the percolation
threshold, the correlation length isinfinite, while the percola-
tion strength decays as L=#¥*», as shown by Eq. [7]. Here,
L isthe system sizeand 8,/V, = 0.466. When L isequivalent
to 100 grains, P,(p) ~ 0.12, while, if L is equivaent to
1000 grains, then Py(p) ~ 0.04. In a very large system,
the percolation strength will approach zero. However, for a
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liguid-phase sintering system, the bond strength is lower
than perfect((X/G)? < 1). For example, in the 88 pct W alloy
microgravity sintered at 1500 °C for 15 minutes, the average
bond number per grainis 5.7, estimated from the connectiv-
ity in two-dimensional metallographic cross section. The
correlation length is

7 0.88
&(P) ~ [Pep — Pl P = (Be — Bc)

) u 0= s
57 - 15 '

The system is homogeneous and independent of the sys-
tem size, because the sample is much larger than the grain
diameter. The percolation probability P(p) is calculated to
be 2.88704% = 0.61 via Eq. [7]. As mentioned in Section
[1-B, the percolation probability is the probability that a
randomly chosen bond or site belongs to the infinite cluster.
Using Shante and Kirkpatrik’s equation!?® (Eq. [6]), we have
acritical solid volume fraction of 51 vol pct. Since the actual
solid volume fraction is 75 vol pct for the 88 pct W alloy
at 1500 °C, the equivalent site probability or site percolation
threshold ( pes) is0.68 (based on Eq [6]). The site percolation
probability is given by

0.41
~ _ Dy — ¢e _ ¢c
Ps (P) ~ (Pes — Pco)” (—VS )

_ (o8 — 017\ _ o
0.75 '

[39]

[40]

where subscript s represents the site percolation. The cal-
culation shows that about 85 pct of the solid belongs to
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Tablell. Measured Distortion Parameters and Microstructural Parameters on W-Ni-Fe Powder Compacts Sintered at 1500
°C under Microgravity and Gravity*

o Solid Volume Fraction, Pct Contiguity, Pct
S|_Ir_1lt ;r(l;g Distortion Parameter, Pct Ground Based Ground Based

Alloy Min Microgravity Ground Based Microgravity Top Bottom Microgravity Top Bottom
78W 1 43.99 slumped** 55.47 55.52 66.77 21.26 15.57 25.06
(1.88) (1.97) (0.70) (5.70) (6.29) (3.74)

15 45.21 54.30 56.49 67.95 23.03 14.73 22.26

(1.41) (1.40) (2.19) (4.20) (9.49) (3.49)

120 48.30 54.69 61.85 73.72 20.92 14.47 22.07

(1.65) (0.97) 1.17) (4.88) (7.54) (2.56)

83w 1 51.45 slumped** 56.67 53.53 65.49 17.89 15.33 24.44
(1.32) (1.63) (1.98) (4.84) (5.66) (3.64)

15 45.06 53.42 56.73 62.82 18.14 19.66 26.10

(2.30) (1.43) (1.59) (4.84) (5.57) (4.44)

120 42.73 54.67 64.96 70.41 17.22 24.68 28.18

(2.37) (0.45) (1.05) (4.51) (3.73) (3.09)

88W 1 6.38 slumped** 70.50 76.92 76.60 25.40 35.28 32.05
(1.05) (1.59) (1.02) (3.16) (2.38) (1.79

15 10.68 74.75 72.54 72.22 36.12 24.59 26.48

(0.93) (2.00) (1.04) (2.39) (3.10) (3.77)

120 38.32 76.08 71.58 74.47 17.77 23.40 26.68

(0.97) (1.65) (0.92) (4.88) (4.77) (3.90)

93w 1 no distortion 86.07 84.42 83.23 51.45 49.88 44.60
(1.24) (0.57) (0.62) (1.66) (1.80) (1.26)

15 86.25 80.45 80.88 44.08 47.25 43.79

(0.83) (1.57) (0.60) (1.49) (2.65) (1.52)

120 85.42 83.48 83.76 40.59 41.76 39.16

1.17) (1.15) (0.91) (3.28) (2.91) (3.14)

98w 1 no distortion 95.33 94.23 95.51 72.73 72.14 73.56
(0.62) (0.86) (0.49) (2.02) (1.03) (12.13)

15 97.00 95.94 94.23 79.03 75.57 71.50

(0.58) (0.49) (0.54) (1.18) (0.99) (1.48)

120 93.93 94.76 94.02 69.23 65.73 69.38

(0.34) (0.84) (0.45) (2.26) (1.19) (1.12)

*Data inside parentheses are coefficients of variation.
**Did not measure.

Tablelll. Liquid-Phase-Sintered Alloy Systems Show No Slumping Occurred When the Contiguity Values Were Larger
Than the Critical Value, While Slumping Was Observed in Samples Where the Contiguity Was Less Than the
Critical Valuel®

Alloy W-7Ni W-25.6Ni-6.4Cu W-15Cu Mo-20Ni Mo-25Cu Mo-24Cu
Sintering condition 1540 °C, 30 min 1400 °C, 30 min 1400 °C, 30 min 1500 °C, 30 min 1500 °C, 30 min 1400 °C, 30 min
Solid content, pct 70 + 3.2 50 = 25 70 = 5.1 62 65 50 = 1.7
Grain size, um 35+ 56 10 + 4.2 5=+ 30 41 4 10 + 35
Connectivity, Cq 0.2 £ 025 21+021 4.2 + 0.28 12 55 32+ 018
Dihedral angle, ¢ 27 deg = 6.5deg 40 deg = 5.1 deg 92 deg + 8.1 deg 12 deg 95 deg 100 deg * 5.6 deg
Coordination num- 1.26 9.03 8.59 16.88 10.97 6.14

ber, N¢
Contiguity, Cs 0.15 £ 0.1 0.22 = 0.03 0.61 = 0.20 0.13 0.62 0.47 = 0.05
1
Sintered density, 98 91 9% 84 75 88
pct theoretical
Description of slumps slumps no slumping slumps no slumping no slumping
sample

the infinite chain and that only about 15 pct is not con-
nected. The solid volume fraction of the 88 pct W alloy
at 1500 °Cis 75 vol pct at the sintering temperature, where
64 vol pct belongs to the infinite grain chain; therefore,
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only 11 vol pct of grains are not connected to the infinite
chain. This 11 vol pct is constrained in the network of the
infinite chain. It can be seen that the volume percentage
of solid belonging to the infinite chain is much larger
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than expected at the theoretical percolation threshold with
perfect bond strength.

Vil. SUMMARY

Percolation theory provides a theoretical base to predict
shape distortion in liquid-phase sintering via the modified
equivaent percolation threshold. Distortion is resisted if
grains form arigid infinite chainlike structure that spreads
throughout the structure. The rigid infinite chainlike struc-
ture depends on the formation of solid-solid contact between
grains and the bond strength (which depends on the rela-
tive intergrain bond size). The approach gives a distortion-
resistant condition decided by contiguity only. When the
contiguity of a liquid-phase sintering system is larger than
the critical value (near 0.38), no distortion occurs.

The effect of the gravitational force is not significant,
based on the current calculations. At the critical point where
distortion might occur, grainsremain in contact and the shear
yield strength of tungsten is high enough to resist the effect
of gravity. For smaller compacts, the effect will be significant
only when the compact weakens to a point where shape
distortion can occur.
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