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Ultrasonic Backscattering in Duplex Microstructures: Theory
and Application to Titanium Alloys

Y.K. HAN and R.B. THOMPSON

A theory is presented for the ultrasonic backscattering in duplex microstructures. Assuming single
scattering described by the Born approximation, we consider a microstructure consisting of macro-
grains containing colonies with crystallographically related orientations. General results are presented
for the backscattering coefficient, assuming that all variants occur with equal probability. These are
then applied to the particular case of titanium alloys, in which the macrograins are taken to be prior
beta grains and the colonies are assumed to be alpha phase produced by a martensitic transformation.
Numerical results illustrate the effects of ultrasonic frequency, colony size and ellipticity, and ma-
crograin size and ellipticity on the backscattering.

I. INTRODUCTION

THE propagation of ultrasonic waves in polycrystals is
of broad interest. The immediate motivation for the present
work is found in nondestructive evaluation. When ultra-
sound is used to detect flaws, the individual crystallites will
scatter a portion of the incident energy, leading to an at-
tenuation of the beam and creating a backscattered signal[1]

that can mask the signals reflected from small flaws.[2] The
backscattered signals also have been used to advantage in
material characterization studies, in which they have been
analyzed to obtain information on such structural features
as grain size and porosity.[1,3] However, despite the obvious
technological importance of the backscattering, the rela-
tionship of this ultrasonic property to microstructure is not
well understood. For example, in commercial titanium al-
loys such as Ti-6Al-4V, large anisotropies in the backscat-
tering are often observed, with no corresponding
anisotropic features being observed in optical or scanning
electron microscopy (SEM) micrographs.[2] It has been
speculated that the anisotropic noise is related to local var-
iations in texture and/or the shapes of the features revealed
by macroetches. However, no careful theory has been pre-
sented to quantitatively describe these relationships. In this
article, a theory is presented and applied to an idealized
microstructure. The results are believed to provide impor-
tant insight into the relationship of backscattered noise and
microstructure.

For the case of single-phase materials, considerable work
already has been done with early efforts directed at atten-
uation. In this case, scattering is caused by acoustic impe-
dance fluctuations, which are directly related to orientations
of crystallites or grains. Lifshits and Parkhomovskii,[4,5]

Bhatia,[6,7] and Bhatia and Moore[8] investigated attenuation,
including results for arbitrarily shaped scatterers in the Ray-
leigh-scattering regime (l . . d). At higher frequencies,
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Rokhlin[9] studied cubical scatterers in both the stochastic
(d ; l) and the diffuse (d . . l) scattering regions. Other
important early results include the consideration of two-
phase systems by Truell et al.[10] and multiple scattering by
Watermann and Truell.[11] Papadakis provides a review of
much of the early work.[12] Important recent contributions,
including the work of Hirsekorn,[13–17] and Stanke and
Kino.[18] The latter works elaborate on the idea of charac-
terizing the material by two-point correlation of elastic con-
stants, an approach that will be utilized in this work. Also
of particular relevance to this article is the work of Bergner
et al.[19] and Bergner and Köhler,[20] who study the influence
of orientation relationships between parent and transformed
phases on the attenuation.

The work on backscattering is more recent and less well
developed. When single scattering is a valid approximation,
one can heuristically think of the backscattering process as
one in which the energy scattered by individual crystallites
is superimposed at the detector. By assuming that the
phases of these signals would be random, Margetan et al.
developed the independent scattering model, based on the
idea that the received power would be equal to the sums
of the power[21,22,23,24,25] backscattered from the individual
crystallites. This model led to the definition of a character-
istic material parameter, which they called figure of merit
(FOM), given by the expression FOM 5 n1/2 , where n isA
the number of crystallites per unit volume and is the rmsA
value of the backscattering amplitude of a crystallite in an
effective medium.

Despite its conceptual simplicity, this model suffered
from two deficiencies: there were no criteria to select the
properties of the effective medium and the generalization
to multiphased media was not obvious. These difficulties
were highlighted by the experimental work of Han et al,
which showed that measured backscattered noise is strongly
influenced by macrostructure as well as the properties of
individual crystallites.[26,27] A foundation to overcome these
difficulties was laid by Rose, who developed a formally
rigorous stochastic theory for backscattering, based on the
assumptions of single scattering and the Born approxima-
tion.[28,29,30] This model led Rose to an explicit expression
relating the backscattered signals to the microstructure. In
particular, he showed that the noise was controlled by the
two-point correlation of elastic constant perturbations,
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^dCijkl(r)dCpqrs (r')&. Here, r and r' are two points in the
polycrystal, dC is the local deviation of the elastic stiffness
tensor from its Voigt average (CVO) value and ^ & denotes
an ensemble average. In a single-phased medium, the two-
point correlation will be a measure of grain size. When
|r 2 r'| is small with respect to the grain size, there will be
a high probability that the two points will fall within the
same grain and the correlation will be large. When |r 2 r'|
is large with respect to the grain size, dC(r) and dC(r') will
be uncorrelated and the ensemble average of their product
will be small. Using this model, Rose was able to obtain
results for randomly oriented, equiaxed, single-phase poly-
crystals that were identical to those of Margetan et al.[2,21–

23,25] when the Voigt approximation[31] was used to define
the effective medium. He showed that the FOM which Mar-
getan et al. defined was identical to the square root of the
backscattering coefficient h used by other researchers, par-
ticularly in the related field of tissue characterization.

For the two-phase case, due to the complexity of the
problem, considerably less work has been done. One of the
reasons of the complexity is that the backscattering is
caused not only by the acoustic impedance fluctuation of
each phase (controlled by grain orientation) but also by the
contrast between phases. In the past, most examinations of
interphase scattering has been based on the assumption that
each phase is macroscopically isotropic, having crystallites
whose orientations are random and independent of one an-
other. An example in the weak scattering limit is the work
of Rose.[28]

This may be considered a good approach if signals back-
scattered from phase boundaries are dominant and no ori-
entation relationship is present between phases. However,
in advanced materials, often those assumptions are violated
depending on processing history, and the consequences
may have considerable technological importance. For in-
stance, hard-alpha inclusions in Ti alloys, which have the
potential to cause catastrophic aircraft engine failures, have
a similar value of acoustic impedance to that of the matrix
material. Therefore, backscattering signals from the inclu-
sion-matrix boundaries may be masked by those from
acoustic impedance fluctuation in each phase.[2] These back-
scattered noise signals may be strongly influenced by crys-
tallographic orientation relationships between phases and
even between crystallites of a particular phase, resulting in
a microstructure with two (or more) dimension scales,
which we will term a duplex microstructure. Such condi-
tions are expected to increase the flaw-masking effects of
backscattered noise, since any ordered structure generally
enhances the intensity of the scattering signals. As detect-
ability of small flaws such as hard-alpha inclusion in Ti
alloys becomes more important, these issues also become
more significant. Therefore, it is necessary to establish a
model that can relate the backscattered signals and these
effects.

We thus seek to extend the work of Rose by including
the effects of local correlations in the orientations of crys-
tallites. Such situations are found, for example, when the
final microstructure is influenced by solid-state transfor-
mations in which the final orientation of a particular phase
is crystallographically related to that of its parent phase,
e.g., microstructures resulting from martensitic or eutectoid
transformations. Materials of technological interest in

which this occurs include commercial titanium alloys, as
noted previously, and pearlitic steels. In this article, we will
present the generalization of Rose’s theory appropriate to
these cases. Our initial developments will be somewhat
general and applicable to any material where there is a du-
plex microstructure in which a parent grain (e.g., a prior
beta grain in titanium alloys) is subdivided by solid-state
transformation into colonies or crystallites whose orienta-
tions are crystallographically related to that of the parent.
We will then present a detailed set of numerical results for
the case of titanium alloys. These illustrate the angular and
frequency dependence of the noise on the ultrasonic wave-
length, the sizes of the colonies and parent grains, and the
elongation of each. Among the interesting conclusions
which can be drawn are the features of the microstructure
that control the noise in various frequency regimes.

In Section II, we will briefly review the theory of Rose.
This will be followed in Section III by its generalization to
the problem previously discussed and in Section IV by the
presentation of detailed analytical and numerical results for
the case of titanium. Concluding remarks are presented in
Section V.

II. GENERAL BACKSCATTERING MODEL

Sigelman and Reid[32] and Madsen et al.[33] define the
backscattering coefficient h(v) as the differential scattering
cross section per unit volume for a scattering angle of 180
deg, i.e., in the backscattered direction. Here, we will fol-
low that definition and a series of articles by Rose,[28,29,30]

elaborating in places on his arguments which only appeared
in an abbreviated form as published in a conference pro-
ceedings. The central idea is the relationship between the
differential scattering cross section and the scattering am-
plitude, which relates a spherically spreading wave scat-
tered by an inhomogeneity to an incident plane wave.
Gubernatis et al.[34] present expressions for these scattering
amplitudes and differential scattering cross sections for iso-
lated scatterers with constant properties. Consider an inci-
dent plane longitudinal wave of the form

0u 5 u e exp (ikezx) [1]

where e is an unit vector in the direction of propagation, k
5 v/Vl is the longitudinal wave propagation constant, and
a time dependence of the form exp (2ivt) is assumed.
Here, bold characters represent vectors. In the Born ap-
proximation and backscattered direction, the scattering am-
plitude is[28,34]

ei 2A 5 (dr vi 2(4prV )l

2 32 dC k e e e e )*d x exp (2ikezx) [2]jklm j k l m

where r is the density, Vl is the longitudinal wave speed,
and dr and dC are the changes in density and elastic stiff-
ness tensor within the scatterer. Because of the importance
of crystallographic orientation in this article, it is necessary
to distinguish between elastic constants defined in a coor-
dinate system fixed with a microstructural feature or the
sample. Lower-case symbols will be used for the former
and upper-case symbols for the latter. Thus, cijkl are single-
crystal elastic constants of a crystallite, are the VoigtVMcijkl
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average elastic constants of a macrograin (averaged over
colonies) in the coordinate system of the macrograin, PCijkl

are the elastic constants of a colony in the coordinate sys-
tem of the sample, are the elastic constants of a ma-MCijkl

crograin in the coordinate system of the sample, and Cijkl

are the elastic constants of the entire sample in its coordi-
nate system.

Within the Born approximation, Eq. [2] may be gener-
alized to a region containing multiple scatterers simply by
extending the region of integration to include those scat-
terers, with dr and dC being placed in the integrand and
interpreted as the differences between the density and elas-
tic stiffnesses of the individual scatterers and the average
medium.

Rose has coupled this generalization, the previously
given definition of the backscattering coefficient, and the
fact that for longitudinal incidence the differential longitu-
dinal wave backscattering cross section is given by |A2|, to
arrive at the expression for the backscattering coefficient.
Following this procedure, we find

21
21 3 3 2h 5 V *d x*d x' ^v dr (x)~ !24prVl

2 22 k dC (x)][v dr (x') [3]3333

22 k dC (x')]& exp [2ik(x 2 x' )]3333 3 3

where we have assumed the incident wave to propagate in
the 13 direction. Here, V is the volume of integration, and

0dr (x) 5 r (x) 2 r [4a]

0dC (x) 5 C (x) 2 C [4b]3333 3333 3333

where r0 and are the spatial averages of the density0C3333

and elastic stiffness, respectively. The notation ^ & denotes
an ensemble average over samples with nominally identical
microstructures. This result is equivalent to the result that
would be obtained by combining Eqs. [7] and [13] of Ref-
erence 29, generalized to include the effects of density as
well as elastic constant changes, and including a complex
conjugation operation that was omitted on the last two sets
of fields in Eq. [7] of Reference 29. It should also be noted
that Reference 29 established that the backscattering coef-
ficient is equal to the square of the FOM for backscattering,
as defined by Margetan and co-workers.[23,24]

The microstructural information enters this theory
through quantities of the form ^dC3333(x) dC3333(x')&, which
describe the correlation in the perturbation in properties, in
this case of the elastic stiffnesses, at two points in the mi-
crostructure. We will use the phrase ‘‘two-point correla-
tion’’ to refer to such quantities in the remainder of this
article. Other terms in Eq. [3] involve the correlation in the
density and the cross correlation of the density and elastic
stiffnesses. Rose has discussed how such correlations de-
pend on grain size in equiaxed microstructures involving
one[30] or multiple[28] phases with random crystallite orien-
tation. A major purpose of the present article is to extend
that work to cases in which the microstructural features
may be elongated and have long-range orientation corre-
lations arising from solid-state transformations.

Before proceeding, however, it is convenient to simplify
Eq. [3] by a change of variables. The physical motivation
is the observation that for macroscopically homogeneous

microstructures, the two-point correlation will only depend
on the difference, x 2 x'. Therefore, if we define the new
variables

r 5 (x 1 x')/2 [5a]

s 5 (x 2 x') [5b]

Eq. [3] simplifies to the form

21
3 4h 5 *d s[v ^drdr& (s)~ !24prVl

2 22 2v k ^drdC & (s) [6]3333

41 k ^dC dC & (s)] exp (2iks )3333 3333 3

where notation of the form ^drdr&(s) represents the quantity
^dr(x) dr(x')&, which only depends on s as noted previ-
ously. Here, we have also assumed that ^dr(x)dC3333(x')& 5
^dr(x')dC3333(x)&.

Equation [6] provides a general expression for the back-
scattering coefficient for longitudinal waves, valid in the
limit of weak scattering by individual crystallites such that
the Born approximation and single-scattering approxima-
tions made in this work are valid. An important question
regards the range of validity of these approximations. A
definitive treatment of these issues goes beyond the scope
of this article. However, the following discussion gives
some partial insight into this question.

In Reference 29, Rose used the preceding approach to
derive an expression for the backscattering coefficient of
randomly oriented, equiaxed, single-phase polycrystals.
Margetan et al.[23,25] have compared Rose’s predictions to
measurements on well-characterized specimens of copper,
stainless steel, and titanium. The results showed, with no
adjustable parameters, an absolute agreement between the-
ory and experiment to within a factor of 2, which was taken
to be in support of the theory given that the backscattered
signals were 40 to 50 dB lower that incident illumination.
Rose[28,29,30] also notes that ‘‘the analysis is restricted to that
early time portion of the backscattering signal for which
acoustic attenuation is negligible.’’[28] The essence of his
argument is that since each grain represents a weak acoustic
contrast, the total wave field is nearly the same as the in-
cident wave field for an early period after the beam enters
the solid.[28] In the derivation of the Born approximation for
a single scattering, one replaces the actual fields within the
scatterer by the incident fields. This is only expected to be
a good approximation when the phase difference between
these two fields does not become too large. Hence, we hy-
pothesize that sufficient conditions for application of this
theory are that the propagation distances involved be such
that wave attenuation is small and the microstructural fea-
ture size be such that the phase of a wave is not signifi-
cantly perturbed within the feature from that which it would
have in the effective medium.

III. BACKSCATTERING IN DUPLEX
MICROSTRUCTURES

A major motivation for this work is the observation that
in titanium alloys, there are sometimes large anisotropies
in the backscattered noise with no discernible features in
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Fig. 1—Different scales of microstructure and their relationship.

optical or SEM micrographs that correlate with this anisot-
ropy.[2,27] Here, we will apply the general backscattering
model of the previous section to a set of idealized structures
to see if such observations could be explained by correla-
tions in crystallite orientation. Although motivated by tita-
nium alloys, general results will first be derived, valid for
any material system in which the microstructure is devel-
oped through a solid-state transformation in which the ori-
entation of the transformed phase is restricted to particular
values that are related to the orientation of the parent phase.
Later, more detailed results will be presented for the par-
ticular case of titanium alloys.

There are several microstructural scales in Ti alloys. Fig-
ure 1 schematically illustrates a model structure consisting
of macrograins, colonies, and crystallites. Such a structure
might be developed if a casting were rapidly cooled, such
that the beta grains which formed during solidification were
converted to transformed beta via a martensitic transfor-
mation. Because of the crystallographic relationship
(0002)a//{110}b and ^11 0&a//^111&b, the transformed beta2
would have an orientation given by of one of six elastically
distinct variants. Thus, the structure would consist of the
three dimension scales shown in Figure 1: macrograins (i.e.,
prior beta grains), colonies, and crystallites. In the simpli-
fied processing sequence described, the macrograins and
colonies would be expected to have equiaxed structures
with the crystallites being elongated due to the character-
istics of martensitic transformation. If this simple process
were modified by working in the beta field, one might ex-
pect the macrograins to become elongated with the colonies
remaining equiaxed. On the other hand, working in the al-
pha 1 beta field would produce elongation of both macro-
grains and colonies.

In commercially important processing sequences, the
steps followed and microstructures developed are more
complex. However, the preceding structure appears to be
simple enough to analyze yet complex enough to contain
many elements of reality. Hence, it will be the basis for the
analysis in this article.

To simplify the problem further, some additional as-
sumptions are made. First, random orientation of prior beta
grains is assumed. In this case, the two-point correlation
function for the macrograins will have a simple form. Sec-
ond, it is assumed that each variant occurs with equal prob-
ability. Third, it is assumed that individual crystallites are
too small to make a significant contribution to the grain
noise. As will be seen based on the analysis of the relative
contributions of colonies and prior beta grains, this can be
expected to be true when the wavelength is large with re-
spect to the crystallite size. The colonies will be found to
have a unique influence on backscattering because they can
have only one of six possible orientations within each ma-
crograin. This is quite different from the continuous range
of orientations found in single-phase material and will have
some interesting and technologically important conse-
quences.

Based on these assumptions, an equation for the two-
point correlation function will be evaluated for such a mi-
crostructure. Next, a formula for the backscattering
coefficient will be derived based on this two-point corre-
lation function. Finally, certain general conclusions regard-
ing the relative importance of macrograins and colonies in
determining the backscattering, as inferred from the func-
tional form of the backscattering coefficient, will be dis-
cussed. During the development of the theory, a few
additional assumptions will be introduced to make the prob-
lem simpler, which helps us to understand the factors that
control the grain noise in two-phase alloys.

A. Two-Point Correlation Function

1. Randomly oriented, equiaxed, single-phase
microstructures
Consider first a randomly oriented, equiaxed, single-

phase polycrystal. Then, the two-point correlation function
is controlled by the distribution of grain sizes. If x and x'
are in different grains, dC(x) and dC(x') will be uncorre-
lated, while if they are in the same grain, they will be highly
correlated. For example, Stanke and Kino[18] and Stanke[35,36]

have discussed these correlations in detail, including their
relationship to standard metallographic definitions of grain
size, in the development of theories for ultrasonic attenua-
tion, and Rose[28,29,30] has incorporated similar ideas in his
theories for backscattering. As noted by Stanke:[36] ‘‘if the
cord lengths have Poisson statistics, then the spatial auto-
correlation function has the inverse exponential form.’’ Un-
der these conditions, the probability that two points fall
within the same grain is described by the function

GP (r 2 r') 5 exp [2|r 2 r|/a ] [7]g

where ag is the correlation distance, equal to one-half the
effective average linear dimensions of the grains.[18] It is
this probability function that was employed in the analysis
of Rose. Note, however, in the comparison of theory and
experiment presented by Margetan et al.,[23,25] the experi-
mentally observed form of this function, which differed
slightly from an exponential, was utilized.

Under these assumptions, the two-point correlation of the
elastic stiffnesses becomes

g g^dC dC & (s) 5 ^dC dC & exp [2s/a ] [8]3333 3333 3333 3333 g

where the elastic moduli on the right-hand side are the elas-
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Table I. Euler Angles for Six Variants with Respect to
Cubic Axes of Prior Beta Grain

Euler
Angle

Variant
1

Variant
2

Variant
3

Variant
4

Variant
5

Variant
6

f 245 45 90 90 0 0
u 290 290 245 45 245 45
c 125.26 125.26 144.74 35.26 144.74 35.26

tic stiffness of a grain and the ensemble average reduces to
an average of all orientations of the grain, assumed to be
equally probable. The results of this ensemble average have
been derived by Rose[29] and are reproduced in the article
by Margetan et al.[2] This treatment becomes the basis for
that of the effects of duplex microstructures.

2. Duplex microstructures
To simplify the problem for duplex microstructures, it is

assumed that the shapes of macrograins and colonies are
independent of their crystallographic orientation and the
orientations of the macrograins are random. Based on these
assumptions and following the preceding argument, one can
relate the two-point correlation of elastic stiffnesses of the
sample to that of the macrograin as follows:

^dC (x)dC (x')&ijkl pqrs

M M M5 ^dC (x)dC (x')& P (x 2 x') [9]ijkl pqrs

where M is a macrograin index, PM(x 2 x') is a function
describing the probability that two points, x and x', are in
the same macrograin, and ^ (x) (x')& is the two-M MdC dCijkl pqrs

point correlation of elastic constants of the points x and x'
under the condition that they are in the same macrograin.
The macrograin two-point correlation function then may be
related to the properties of the colonies as follows:

M M P P^dC (x)dC (x')& 5 ^dC dC & PP (x 2 x')ijkl pqrs ijkl pqrs

P Q1 ^dC dC & PQ(x 2 x') [10]Σ ijkl pqrs
P≠Q

where P and Q are colony indices. The first term treats the
case when x and x' are in an elastically equivalent variant,
which occurs with probability PP(x 2 x'). The second term
treats the case when the two points are in elastically distinct
variants, which occurs with the probability PQ(x 2 x'). The
quantity ^ & is an ensemble average of the productP QdC dCijkl pqrs

of the indicated variant elastic moduli, averaged over all
macrograin orientations. This would go to zero for large
values of |x 2 x'| if the colonies had random orientations.
However, if only N elastically distinct variants are allowed,
the ensemble averages are finite and PQ(x 2 x') has a lim-
iting value of (N 2 1)21.

The ensemble average elastic constant product terms may
be obtained by considering the orientation relationship be-
tween the sample, the macrograins, and the colonies as fol-
lows:

(1) rotate variants P and Q to satisfy crystallographic ori-
entation relationships with respect to macrograin using
Euler angles (Table I gives the values appropriate for
titanium);

(2) rotate a macrograin with arbitrary set of Euler angles,
u', f', and c';

(3) calculate , , and , andP Q P QdC dC dC dCijkl ijkl ijkl pqrs

(4) average over u', f', and c'.

The results, relevant to longitudinal wave backscatter in
titanium, obtained using a symbolic manipulation routine
in MATHEMATICA are as follows:[37]

P P 2^dC dC & 5 (0.975238 c 2 0.650159 c c3333 3333 11 11 13

21 0.24381 c 2 1.30032 c c 1 0.16254 c c13 11 33 13 33

21 0.568889 c 2 1.30032 c c 1 0.975238 c c33 11 44 13 44

21 0.325079 c c 1 0.975238 c )/8 [11]33 44 44

where the cIJ are the single-crystal elastic constants of the
alpha phase in matrix notation. When P 5/ Q, there are two
cases, depending on whether the parent {110}b planes are
orthogonal. One finds for orthogonal {110}b planes,

P Q 2^dC dC & 5 (20.446984 c 1 0.16254 c c3333 3333 11 11 13

21 0.0406349 c 1 0.731429 c c 2 0.24381 c c13 11 33 13 33

22 0.24381 c 1 0.325079 c c 1 0.16254 c c33 11 44 13 44

22 0.487619 c c 1 0.16254 c )/8 [12]33 44 44

and for nonorthogonal {110}b planes,

P Q 2^dC dC & 5 (20.129524 c 1 0.111746 c c3333 3333 11 11 13

22 0.0609524 c 1 0.147302 c c 1 0.0101587 c c13 11 33 13 33

22 0.0787302 c 1 0.223492 c c 2 0.24381 c c33 11 44 13 44

21 0.0203175 c c 2 0.24381 c )/8 [13]33 44 44

Each variant (P) has one orthogonal and four nonortho-
gonal pairs (Q), as Figure 2 shows.

Examination of Eq. [6] shows that two-point correlations
involving products of densities, and density and elastic con-
stants, are also required in general. However, for the case
in hand, in which the contributions of the individual crys-
tallites is neglected, we would expect the average density
to be the same in each colony and hence those terms will
be neglected in the present work.

For equiaxed macrograins of radius am, we will assume
that the probability function PM is the same as that used in
prior work, Eq. [7]. Thus, we take

MP (s) 5 exp [2s/a ] [14]m

When the macrograins are elongated, we generalize this to
the form used by Ahmed and Thompson[38] in the analysis
of attenuation,

M 2 2 2 1/2P (s) 5 exp [2s{(1 1 (a /c 2 1) cos (u)} /a ]m m m [15]

Figure 3 shows the geometry of an elongated macrograin,
in which the interpretation of cm as the macrograin radius
along the axis of rotational symmetry and am as macrograin
radius in the perpendicular plane is evident.

Insight into the form of the probability terms PP(x 2 x')
and PQ(x 2 x') has been gained from computer simulations
of colonies in a macrograin of titanium. In the simulation,
an initial macrograin, in the shape of a cube with sides 15-
voxels long, was created and divided into cubic voxels
whose dimensions were 1/15 of the initial cube. Then, 100
voxels were randomly selected as initial seeds, at which
colonies were randomly initiated and assigned one of the
six variant orientations. A voxel was then added at a ran-
domly selected position on the boundary of a randomly
chosen colony. Here, the unit cube could be added only if
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Fig. 2—Schematic representation of relationship between variants (P and
Q).

Fig. 3—Schematic representation of elongated macrograin.

Fig. 4—Schematic representation of simulation of colonies in a
macrograin (top: initial seeds; middle: after an interval of growth; and
bottom: at the end of growth).

that site was not occupied by other colonies. This growth
procedure was repeated until all pixels had been selected and
the macrograin was filled with colonies. Figure 4 is a sche-
matic representation of the simulation. After that, two points
were randomly picked and checked to determine whether
they had the same orientation (variant number) or not. Figure
5 shows PP(s) based on the average result of 40 such sim-

ulations. The fact that the results for each variant are essen-
tially identical is consistent with our assumptions.



METALLURGICAL AND MATERIALS TRANSACTIONS A VOLUME 28A, JANUARY 1997—97

Fig. 5—Probability function, PP(x 2 x'), in two-phase alloy (result of 40
simulations).

Fig. 6—Probability function, PP(s) (analytical equation), when ac 5 0.1
mm.

There are three distinctive regions in Figure 5. In the first
region, PP(x 2 x') decreases in a fashion very close to an
exponential, which is related to whether the two points are
in the same colony or not. This is very similar to the be-
havior of a single-phase polycrystal. This interpretation is
consistent with the fact that the e21 decay constant is ap-
proximately (33.75)1/3 5 3.23 units, where 33.75 is the av-
erage volume per grain in cubic units. In the second region,
there is a plateau. This is associated with the fact that for
largely spaced points, there is always 1/6 probability that
the two colonies are of the elastically equivalent variant. In
the third region, PP(x 2 x') goes to zero. This is an artifact
introduced by the size limit of the simulated macrograin. If
the macrograin size were infinite, this cutoff would not ex-
ist. Since PP(x 2 x') is only concerned about what happens
inside a macrograin, it should not depend on macrograin
size. If one of the points is outside the macrograin, PM goes
to zero, so the quantity of PP(x 2 x') is not meaningful
anymore. Therefore, it is more reasonable for PP(x 2 x')
to approach 1/6 when |x 2 x'| → `. Put in other words,
this limit is consistent with the fact that PP(x 2 x'), as
introduced in Eq. [10], is the probability that two points
fall in the same variant, assuming that they fall in the same
macrograin.

From Figure 5, we see that there are two conditions
which PP(s) should satisfy for equiaxed colonies. First,

when s is zero, the function has to be 1. Second, when s
goes to infinity, it should be 1/N. Considering these con-
ditions, PP(s) is taken to have the following form:

C CPP(s) 5 P (s) 1 [1 2 P (s)]/N
C5 (N 2 1)P (s)/N 1 1/N [16]

where N is the number of elastically distinct variants. (Note
that for the beta to alpha transition in titanium, there are 12
variants, but N 5 6 since the transverse isotropy of the
hexagonal alpha phase renders pairs of these elastically in-
distinguishable.)

Here, we may qualitatively think of PC as representing
the probability that two points are in the same colony. In
this work, we will assume PC(s) to have an exponential
form

CP (s) 5 exp (2s/a ) [17]c

where again ac is approximately the colony size. Figure 6
shows PP(s) when ac is 0.1 mm. It will be observed that
this function has a shape quite similar to the simulation
result shown in Figure 5.

In the case in which the colonies are elongated, we take
PC(s) to have the following form, in analogy to Eq. [15]:

C 2 2 2 0.5P (s) 5 exp [2s{1 1 (a /c 2 1) cos (u)} /a ] [18]c c c

B. Figure of Merit

Using Eqs. [9] and [10], one can relate ^dCijkldCpqrs& in
Eq. [6] to ^ &, ^ &, PM(s), and PP(s) asP P P QdC dC dC dCijkl pqrs ijkl pqrs

follows:

4k
2 P Ph 5 FOM 5 [^dC dC &3333 33332 2(4prV )l

3 M* d sP (s) PP(s) exp (2ik zs) [19]
P Q 3 M1 ( ^dC dC &/(N 2 1)) * d sP (s)Σ 3333 3333

P≠Q

{1 2 PP(s)} exp (2ik zs)]

where PM(s) and PP(s) are the macrograin probability func-
tion and variant probability function previously discussed.
Here, we have also assumed

PQ(s) 5 (1 2 PP(s))/(N 2 1) [20]

where N is the number of elastically distinct variants (N 5
6 for Ti).

As mentioned before, macrograins have probability terms
similar to equiaxed grains of single-phase material. For
equiaxed macrograins, PM(s) will be assumed to have an
exponential form, as Eq. [14] shows.

Substituting Eq. [16] into Eq. [19] and regrouping terms
leads to the result

4k
M Mh 5 [^dC dC & f3333 33332 2(4prV )l

C C1 ^dC dC &g] [21]3333 3333

where

3 Mf 5 *d sP (s) exp (2ik zs)] [22]

3 M Cg 5 *d sP (s) P (s) exp (2ik zs)] [23]
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Table II. Elastic Constants of Ti-6Al-4V Annealed Above the Beta Transus and Water Annealed (GPa)

Component 11 12 13 33 44 66

Single crystal cIJ 154.24 86.76 63.62 174.45 44.3 33.74
(hexagonal)
Macrograin cVM

IJ 157.293 73.184 73.184 157.293 42.978 42.978
Voigt average
(cubic)
Sample CVO

IJ 158.032 72.814 72.814 158.032 42.609 42.609
Voigt average
(isotropic)

M M P P^dC dC & 5 [^dC dC &3333 3333 3333 3333

P Q1 ^dC dC &]/N [24]Σ 3333 3333
P≠Q

C C P P^dC dC & 5 [(N 2 1)^dC dC &3333 3333 3333 3333

P Q2 ^dC dC &]/N [25]Σ 3333 3333
P≠Q

C. General Implications

A number of general conclusions can be drawn from this
form. First, consider long wavelengths, i.e., the case of
small k. When the colony size becomes sufficiently small,
the second term in Eq. [21] will become negligible with
respect to the first. One can think of this first term as de-
scribing the contributions of the macrograins, had they been
viewed as having an average set of elastic constants. The
symmetry of these average elastic constants is determined
by that of the parent phase, assuming equal populations of
each variant. For the case of titanium, this is cubic. Com-
paring this term to the corresponding result for an aggregate
of randomly oriented crystallites having the average elastic
stiffness of the macrograins, one finds that the expression
for ^ & given in Eq. [24] is identical to that whichM MdC dC3333 3333

would be obtained for a randomly oriented, single-phase
polycrystal if one assumed the average elastic stiffnesses of
the macrograin to be given by the Voigt averages[31] of the
elastic stiffnesses of all of the variants, (Appendix A).VMcIJ

For example, for the case of titanium, in which the average
symmetry of the macrograin is cubic, the preceding argu-
ment, combined with the results of Rose for single-phased
polycrystals,[29] leads to the conclusion

M M VM VM VM 2^dC dC & 5 48 (c 2 c 2 2c ) /15753333 3333 11 12 44 [26]

In general, one would expect the quantity in parentheses to
have a relatively small value, since averaging the elastic
stiffnesses of the N anisotropic variants would tend to pro-
duce a much more isotropic response. Another consequence
of the form of Eq. [21] is the fact that at long wavelength,
the backscattering will become independent of direction.

In the opposite limit of high frequency, the second term
in Eq. [21] will often become dominant. This may be un-
derstood by noting that the integral is essentially a Fourier
transform of PM(s)PC(s). Since this function can be much
more localized than PM(s), which appears in the integral of
the first term, higher values will be expected at large k.
From the physical perspective, this is a consequence of the
fact that the scattering is dominated by the structure whose
scale is on the order of the wavelength, in this case, the
colonies. The relative values of the coefficients,
^ & and ^ & will influence when theM M C CdC dC dC dC3333 3333 3333 3333

crossover from macrograin to colony response occurs. In
general, one would expect ^ & to be considerablyC CdC dC3333 3333

greater, since it is approximately equal to ^ &,P PdC dC3333 3333

controlled by the anisotropic stiffness of the colony rather
than the macrograin.

IV. RESULTS FOR PARTICULAR MACROGRAIN
AND COLONY GEOMETRIES IN TITANIUM

If PM and PC are provided, the FOM may be calculated.
In this section, such a calculation will be performed for a
variety of cases involving spherical or elongated macro-
grains and colonies. The elastic constants are estimated val-
ues selected to correspond to the case of a sample of
titanium annealed above the beta transus (the boundary in
the phase diagram which separates the high-temperature b
phase and the low-temperature a phase) followed by
quenching. It is assumed that all of the b phase transforms
to a' of the same concentration. The numerical values ap-
pear in Table II.[37]

Before presenting these results, however, some further
comments are required regarding accuracy, although as
noted in Section II, these must be viewed as somewhat
speculative. The foundation of the discussion is the previ-
ously reported comparison between theory and experiment,
which showed that our basic assumptions, single scattering
and the Born approximation, are valid for early time arri-
vals in randomly oriented polycrystals of copper, stainless
steel, and alpha titanium. In those measurements, ka ranged
from 0.3 to 0.7. It would therefore seem to be a reasonable
approximation that our approaches are useful at early times
when ka ,; 1 for such materials, with the accuracy at larger
values an open question.

As an independent check on this notion, consider the
Born approximation. There, it is assumed that we can re-
place the true wavefield by the incident wavefield within
the scattering object. The degree to which this is possible
will depend on the anisotropy of the material. For the elas-
tic moduli of alpha titanium given in the first row Table II,
the ratio of the speeds of longitudinal waves traveling in
the ‘‘3’’ and ‘‘1’’ directions is 1.06 ( ). With respect=c /c33 11

to the velocity computed from the sample Voigt average
( ), the speed is greater by=[8c 1 3c 1 4c 1 8c ]/15r11 33 13 44

5.1 pct in the 3-direction and lower by 1.2 pct in the 1–2
plane. Taking the former as a worst case, the error in phase
between a wave propagating in the effective medium and
in the anisotropic grain along the 3-direction is Df 5 0.1
radian 5 5.7 deg when ka 5 1. In other directions, it is
less. This seems to be a reasonable regime in which to
apply the Born approximation. Based on both the compar-



METALLURGICAL AND MATERIALS TRANSACTIONS A VOLUME 28A, JANUARY 1997—99

Fig. 7—ham vs kam for equiaxed macrograins ignoring colonies.

Fig. 8—h vs am for equiaxed macrograins ignoring colonies (A: k 5 5
mm21; B: k 5 10 mm21; and C: k 5 15 mm21).

ison of theory and experiment discussed in the previous
paragraph and the theoretical arguments given previously,
a reasonable criteria for convergence would appear to be
kac ≤ 1, where ac is the radius of the colony in the direction
of propagation.

The macrograins can be considerably larger. However,
because their average stiffnesses are considerably less an-
isotropic in our model because of the equal probability
given to all variants, the Born approximation may still be
appropriate. For the cubic symmetry of the average elastic
constants of the macrograins, the wave speeds in the
[100], [110], and [111] directions are ,VM=c /r11

, and .VM VM VM VM VM VM= =(c 1 c 1 2c )/2r (c 1 2c 1 4c )/3r11 12 44 11 12 44

These are, respectively, 0.23 pct lower, 0.06 pct higher, and
0.15 pct higher than the sample Voigt average. Taking the
[111] direction as the worst case, it is reasonable to assume
that the maximum macrograin size scales with respect to
the maximum colony size as the inverse of their anisotropy.
Thus, we would expect reasonable predictions up to at least
kam 5 10.

In the numerical results that follow, we will show pre-
dictions within the preceding ranges (kac ≤ 1, kam ≤ 10) as
solid lines. When colonies or macrograins are not spherical,
the dimension parallel to the direction of propagation will
be used. Since these arguments, ultimately based on the

aforementioned comparison to experiment for equiaxed po-
lycrystals, set lower bounds, the curves will be extended as
dashed lines to indicate their greater uncertainty. At present,
we have no quantitative estimate of the uncertainties of the
model predictions in this regime.

A. Macrograins Ignoring Colony Effect

We first consider the case in which the size of the col-
onies is sufficiently small that the macrograin can be
viewed as a continuum. As was discussed previously, for
the case of titanium and our idealized assumptions, this
macrograin will have cubic symmetry. We will separately
treat the cases of equiaxed and elongated macrograins.

1. Spherical macrograins ignoring discreteness of
colonies

Inserting Eqs. [14], [17], and [22] through [25] into Eq.
[21] and evaluating the integral, the following equation is
obtained in the limit ac → 0:

4k
M M 3 2 2 2h 5 ^dC dC & [8pa /(1 1 4k a ) ]3333 3333 m m2 2(4prV )l

[27]

As noted in section III.C, this result is the same as that
previously derived for the single-phase case. We find
it convenient to define the normalized quantity
h 5 &. Then h is given by2 2 M M(4prV ) h/^dC dCl 3333 3333

3 4 2 2 2h 5 8pa k /(1 1 4k a ) [28]m m

which eliminates the effects of the macrograin elastic con-
stants. In the absence of colonies, h illustrates the depend-
ence of backscatter on macrograin size and frequency and
has the dimension of length21. Figure 7 shows the behavior
of the dimensionless quantity ham as a function of kam. As
noted previously by Rose, in the low-frequency region (kam

,, 1), ham is proportional to k4 (Rayleigh region), and in
the high-frequency region (kam .. 1), it becomes constant
(p/2).

Figure 8 presents a series of plots showing how h de-
pends on am at different values of k. By fixing k, we can
see that h increases at low am, reaches a maximum, and
then decreases, approaching zero as am approaches infinity.
The value of h is maximum at /(2k). The physical=a 5 3m

interpretation of this result is that the backscattering will
first increase as macrograin size increases and the medium
becomes less like a continuum. However, a maximum must
be reached because as macrograin size continues to grow,
the medium becomes more like a single crystal, which has
no backscattering.

In this and subsequent plots of h vs k, it may be of
interest to note that the frequency f is equal to Vlk/2p. Since
Vl ; 2p in units of mm/ms for titanium and a number of
other common metals, the numerical k in mm21 is close to
the numerical value of f in MHz for such materials. Hence,
these plots also can be interpreted in terms of typical ultra-
sonic frequencies. For example, use of such relations says
that at 5 MHz, the maximum, macrograin-only backscat-
tering would be for the values of am ; 0.17 mm.

2. Elongated Macrograins Ignoring Discreteness of
Colonies

Next, the effects of macrograin shape will be discussed.
In this case, we assume that PM(s) is now described by Eq.
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Fig. 9—h vs k ignoring colonies (am 5 0.01 mm and cm 5 1 mm).

Fig. 10—h(t)/h(90 deg) vs t ignoring colonies (k 5 5 mm21; am/cm 5
0.01; and cm 5 1 mm).

[15], which was schematically illustrated in Figure 3. Based
on this geometry and Eq. [21], the normalized backscatter-
ing coefficient becomes

4 2 Mh 5 k *** dsdudf s sin (u) P (s) exp [2iks

{sin (u) sin (t) sin (f) 1 cos (u) cos (t))] [29]

where t is the angle of propagation with respect to the
major axis of the elongated macrograin. In this case, the
normalized backscattering coefficient becomes

2p p `

4 2h 5 k * * * exp (2As) s sin (u) ds du df [30a]
0 0 0

2p p
4 3 35 k a * * 2 sin (u)/(A a ) du df [30b]m m0 0

where

2 2 2 0.5A 5 {1 1 (a /c 2 1) cos (u)} /am m m

1 2ik {sin (u) sin (t) sin (f) 1 cos (u) cos (t)} [31]

An analytical expression for the angular integral has not
been available. Therefore, numerical integration using a
subroutine used in Reference 38 was performed to obtain

the following figures. The result of the numerical integra-
tion yielded a well-behaved function with zero imaginary
part, as would be expected on physical grounds.

Figure 9 presents a series of plots of h against k for three
different values of t (direction of propagation with respect
to orientation of macrograin) for a macrograin having a
100:1 aspect ratio and a value of cm 5 1. It is interesting
to note that at low frequencies, the backscattering is isotro-
pic, while at high frequencies, the backscattering is greatest
for illumination perpendicular to the long axis of macro-
grain. Figure 10 shows h(t)/h(90 deg) vs t at k 5 5 mm21

for the same microstructure. One would expect that at short
l (high k), local curvature (evaluated at the point at which
the incident wavefront becomes tangent to an ellipse having
the aspect ratio of the macrograin) is a dominant factor (the
higher the radius curvature, the higher the backscattering
coefficient). For instance, for the spherical macrograin case,
h was proportional to p/2am in the high-frequency region.
The local radius of curvature increases as t increases.
Therefore, the h should also increases as t increases, as
shown in Figure 10. On the other hand, at long l, exami-
nation of Eq. [21] shows that h 5 k4Ve, where Ve 5
*d3sPM(s). Figure 9 confirms such behavior. In summary, h
behaves differently as a function of t, depending on the
value of k. The effect of elongation is more prominent at
higher frequency.

B. Macrograins Considering Discreteness of Colonies

1. Spherical macrograins with spherical colonies
In this case, h can be evaluated using Eqs. [14], [17],

and [21] through [25]. The latter may be rewritten as fol-
lows:

4k
M Mh 5 [^dC dC & f3333 3333 12 2(4prV )l

C C1 ^dC dC & g ] [32]3333 3333 l

where

3 2 2f 5 8pa /(1 1 (2a k) ) [33]l m m

3g 5 8p{a a /(a 1 a )} /l m c m c

2 2[1 1 {2ka a /(a 1 a )} ] [34]m c m c

Equation [32] clearly separates the contributions of the ma-
crograins and colonies. Based on Eqs. [32] through [34],
the dependence of h on k has been examined. Figure 11(a)
compares the responses for size ratios (ac/am) of 0.1, 0.01,
0.001, and 0, consistent with previous discussions. Consid-
ering the macrograin only response (ac/am 5 0, case A) as
a reference, one sees that the effect of the colonies is to
cause deviation from the macrograin-only case, occurring
at lower frequencies as the colony size increases. This is
reasonable behavior because colonies are a smaller scale
microstructural feature, so their effect should be more sig-
nificant in the higher frequency (shorter wavelength) re-
gion.

Other aspects of the relative contributions of colonies and
macrograins are illustrated in Figure 11(b), in which the
same information has been slotted in a different frequency
regime to highlight the contributions of the colonies. Here,
h is plotted vs k for much larger values of k with ac/am as
a parameter and am 5 1 mm. These are the same cases that
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(a)

(b)

Fig. 11—h vs k for equiaxed macrograin and colonies with am 5 1 mm
(A: macrograin only; D: ac/am 5 0.001; E: ac/am 5 0.01; and F: ac/am 5
0.1) (a) at low k regime and (b) at high k regime.

Fig. 12—ach vs kac for equiaxed macrograin and colony with am 5 1 mm
(D: ac/am 5 0.001; E: ac/am 5 0.01; and F: ac/am 5 0.1).

were shown in Figure 11(a), but the macrograin-only re-
sponse has been omitted since it would be indistinguishable
from the abscissa. It can be seen that as one decreases the
colony size, the backscattering starts to grow at a higher

frequency but approaches a higher plateau. The former is a
consequence of the requirement that kac ; 1 for significant
interaction. The latter is a consequence of the fact the num-
ber of colony boundaries per unit volume, which individ-
ually scatter energy, varies as . However, one requires23ac

kac .. 1 before the scattering from individual boundaries
is fully effective.

In regimes in which the colonies dominate the scattering,
it might be more illuminating to examine a dimensionless
plot, which was normalized by ac rather than am. Such a
case is shown in Figure 12. One can see that the complex
behavior shown in Figure 11(b) can be explained in a uni-
fied way by such a plot. The high-frequency asymptotic
limit is as follows:

C C^dC dC & a 1 a3333 3333 m cha 5 p[ ] [35]c ~ !M M^dC dC & 2a3333 3333 m

The fact that ^ &/^ & .. 1 is the rea-C C M MdC dC dC dC3333 3333 3333 3333

son the plateau in Figure 12 is much higher than that in
Figure 7. The underlying physical reason is that the ani-
sotropy of the elastic stiffnesses of the colonies is much
greater than that of the Voigt average of the variants in the
macrograin.

2. Elongated macrograins with equiaxed colonies
So far, it has been shown that colonies affect the back-

scattering significantly, especially in the high k region.
Therefore, it is suspected that colonies would result in in-
teresting behaviors when they are elongated. Depending on
processing history, the colonies may be equiaxed or elon-
gated. If colonies were formed before deformation of ma-
crograins, then colonies would be elongated. On the other
hand, if they were formed after the deformation of macro-
grains, they might be equiaxed. The latter case was consid-
ered first.

Inserting Eqs. [15] and [17] into [21], the resulting equa-
tion for FOM is as follows:

4k
M Mh 5 [^dC dC &f3333 3333 22 2(4prV )l

C C1 ^dC dC &g ] [36]3333 3333 2

where

3 2 2 2 0.5f 5 * d s exp [2s{1 1 (a /c 2 1) cos (u)} /a ]2 m m m

exp [2iks{sin (u) sin (t) sin (f) 1 cos (u) cos (t)}]
[37]

3 2 2 2 0.5g 5 * d s exp [2s{1 1 (a /c 2 1) cos (u)} /a ]2 m m m

exp [2s/a ] exp [2iks {sin (u) sin (t) sin (f)c

1 cos (u) cos (t)}]
[38]

Here, f2 is the same function that appeared in Eqs. [29] and
[30]. The g2 has a similar form to Eq. [30a], except A has
been replaced by A2, where

2 2 2 0.5A 5 {1 1 (a /c 2 1) cos (u)} /a 1 2ik2 m m m

{sin (u) sin (t) sin (f) 1 cos (u) cos (t)} 1 1/a [39]c

Therefore, the same numerical analysis techniques which
were used to evaluate Eq. [32] were applied in this case,
too.
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Fig. 13—h vs k for elongated macrograin with equiaxed colonies with cm

5 1 mm, am/cm 5 0.1, ac/am 5 0.5, and t 5 p/2 (A: macrograin only and
B: macrograin with colonies).

Fig. 14—h(t)/h (90 deg) vs t. When k 5 10 mm21, am/cm 5 0.1, cc/am 5
0.1, cc/ac 5 1, and cm 5 1 mm (A: macrograin only and B: considering
the colony effect).

Fig. 15—h(t)/h (90 deg) vs t. When k 5 10 mm21, am/cm 5 0.1, cc/am 5
0.1, cc/ac 5 0.2, and cm 5 1 mm (A: macrograin only and B: considering
colony effect).

Figure 13 shows the effect of colonies on the frequency
dependence of backscattering when cm 5 1 mm, am/cm 5
0.01, ac/am 5 0.1, and t 5 p/2. The increasing contribution
of the colonies at higher frequencies is clearly demon-
strated. It is interesting that the colony effect becomes no-

ticeable at surprisingly low values of kac (;0.01). We
speculate that this is related to the much greater elastic an-
isotropy of the colonies with respect to the macrograins. A
similar behavior has been shown in Figure 11(a).

Figure 14 compares the angular dependence of h(t)/h(90
deg) for the cases when colonies are ignored and consid-
ered. It was previously shown that for macrograins only, h
reaches a higher asymptotic limit when the radius of cur-
vature in that direction is higher. However, h shows a much
more isotropic behavior when the colonies are considered.
The reason is that the colonies are equiaxed. As mentioned
before, the colony effect will be more dominant in the high
k region. Therefore, as k increases, h will be more isotropic.
We also have seen that backscattering is isotropic at long
wavelength, a result that can be reconfirmed by examining
the limits of Eqs. [37] and [38] as k goes to 0. Hence, for
this case, there must be some intermediate frequency at
which the anisotropy is greatest.

3. Elongated macrograins and elongated colonies
Equation [36] may be used in this case, too, if g2 is re-

placed by the following g3:

3 2 2 2 0.5g 5 * d s exp [2s {1 1 (a /c 2 1) cos (u)} /a ]3 c c c

2 2 2 0.5exp [2s {1 1 (a /c 2 1) cos (u)} /a ] [40]m m m

exp [2iks {sin (u) sin (t) sin (f) 1 cos (u) cos (t)}]

The preceding g3 also may be evaluated using Eq. [30a] if
A is replaced by following A3:

2 2 2 0.5A 5 {1 1 (a /c 2 1) cos (u)} /a3 m m m

1 2ik {sin (u) sin (t) sin (f) 1 cos (u) cos (t)} [41]
2 2 2 0.51 {1 1 (a /c 2 1) cos (u)} /ac c c

Here, the h behaves similarly to the former case; when kac

,, 1, colonies are ignorable, but at kac .. 1, colonies
are dominant. However, since colonies are elongated in this
case, the h shows a significant angular dependence, regard-
less of whether the colonies are considered, as Figure 15
shows. The anisotropy is less in the presence of colonies
because of their smaller ellipticity. Again, at sufficiently
long wavelength, the response must become isotropic.

V. SUMMARY

A theory has been presented that predicts the backscat-
tering coefficient in duplex microstructures consisting of
macrograins containing colonies whose orientations are
crystallographically related and assumed to occur with
equal probability. Included is a qualitative discussion of the
expected accuracy of the major assumption: single scatter-
ing treated by the Born approximation. The results are pre-
sented in general form and then specified to the case of
microstructure characteristics of titanium alloys.

The main difference between the alloys of duplex mi-
crostructures and single-phase alloys is the presence of col-
onies with specific crystallographic relationships to the
parent grain (prior beta in the case of titanium). It has been
found that these differences have several important conse-
quences on the theory of backscattering. First, these crys-
tallographic relationships result in nonzero values of the
quantity ^ & when P is not equal to Q. Second,P QdC dCijkl pqrs
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because of the finite number of variants, there is always a
finite probability that two points in the same macrograin
will lie in the same variant, no matter how far apart they
are as compared to the colony size. Consequently, a plateau
region exists when one plots the two-point correlation of
elastic stiffnesses vs separation of two points in a macro-
grain. The backscattering coefficient (h) was calculated
based on these effects. For sufficiently small colonies, the
results are found to be equivalent to those obtained when
the macrograins are viewed as a homogeneous continuum
whose properties can be taken as a Voigt average of those
of the variants. However, finite colonies can make signifi-
cant additional contributions to the backscattered noise
when the wavelength approaches their size. Thus, the back-
scattering depends on the microstructure in a complex way
that is controlled by the relative values of ultrasonic fre-
quency, macrograin size and shape and colony size and
shape. At sufficiently long wavelengths, the backscattering
is found to be isotropic. At wavelengths approaching the
colony size, the anisotropy of the backscattering will be
controlled by the colony elongation. At intermediate wave-
lengths, the anisotropy of the backscattering is a complex
function of the elongation of the macrograins and colonies.
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APPENDIX A
Equivalence of duplex analysis, in the limit of small

colonies, to results of a continuum model of
macrograins

In the Voigt approximation, the continuum elastic stiff-
nesses of a macrograin are given by

N
1

VM PMc 5 c [A1]Σijkl ijkl
P51N

where are the colony elastic stiffnesses of variant P,PMcijkl

also expressed in the coordinate system of the macrograin.
In the coordinate system of the sample, this takes the form

N
1

VM PC 5 C [A2]Σijkl ijkl
P51N

where lower cases have been changed to upper cases to
denote the changes in coordinates. The Voigt average stiff-
nesses of the sample are then

VO VM PC 5 ^C & 5 ^C & [A3]ijkl ijkl ijkl

Viewing the macrograin as the fundamental microstructural
unit (i.e., ignoring the individual colonies and viewing the
macrograin as a continuum) and following the analysis of
Rose,[29] we know that the backscattered noise is controlled
by the quantity ^ &, whereVM VMdC dC3333 3333

VM VM VOdC 5 C 2 C [A4]ijkl ijkl ijkl

Simple arithmetic then shows that

VM VM VM VO VM VO^dC dC & 5 ^(C 2 C )(C 2 C )&3333 3333 3333 3333 3333 3333

N N
1 1

Q QP P5 ^( C 2 ^C &)( C 2 ^C &)& [A5]Σ Σ3333 3333 3333 3333
P51 Q51N N

N N N
1 1

Q QP P5 ^( dC )( dC )& 5 ^dC dC &Σ Σ Σ3333 3333 3333 33332 P51 Q51 Q51N N

for any P, where

P P VOdC 5 C 2 C [A6]3333 3333 3333

The left-hand side of Eq. [A5] controls the noise in the
single-phase analysis, as is indicated in Eq. [26]. The right-
hand side of Eq. [A5] is equivalent to Eq. [24] and thus is
the quantity that controls the noise in the current duplex
analysis when the colonies are small. Hence, the analyses
are equivalent in this limit, as would be expected.
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