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Effect of Stress on Spinodal Decomposition in Binary
Alloys: Atomistic Modeling and Atom Probe
Tomography

ALEXANDER DAHLSTRÖM, FREDERIC DANOIX, PETER HEDSTRÖM,
JOAKIM ODQVIST, and HELENA ZAPOLSKY

Self-organizing nanostructure evolution through spinodal decomposition is a critical phe-
nomenon determining the properties of many materials. Here, we study the influence of stress on
the morphology of the nanostructure in binary alloys using atomistic modeling and atom probe
tomography. The atomistic modeling is based on the quasi-particle approach, and it is
compared to quantitative three-dimensional (3-D) atom mapping results. It is found that the
magnitude of the stress and the crystallographic direction of the applied stress directly affect the
development of spinodal decomposition and the nanostructure morphology. The modulated
nanostructure of the binary bcc alloy system is quantified by a characteristic wavelength, k.
From modeling the tensile stress effect on the A-35 at. pct B system, we find that
k001< k111< k101< k112 and the same trend are observed in the experimental measurements
on an Fe-35 at. pct Cr alloy. Furthermore, the effect of applied compressive and shear stress
states differs from the effect of the applied tensile stress regarding morphological anisotropy.
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THE role of computational materials design is
consistently increasing for the development of novel
materials. The design process frequently adopts a
hierarchic engineering approach since properties of
materials at the macroscale are related to material
structures on both the micro- and nanoscale. The
bridging of the hierarchic scales is still challenging, for
example, connecting first principles calculations to the
arrangement of atoms at the nanoscale. However, there
are theories for structural evolution that have been
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proven valid at the nanoscale. One such technique is
phase-field crystal (PFC) modeling, which provides a
mean to bridge the mentioned gap.[1,2] A more general
formulation of the PFC approach is the atomic density
function (ADF) theory, which has been constructed by
Khachaturyan.[3] The continuum approach of the ADF
theory adopts a pseudo-particle approach where atoms
are built up by atomic fragments called fratons. This
method was developed by Lavrskyi et al.[4] to be able to
model complex patterning and treat different types of
phase transformations including diffusionless transfor-
mations, which involve short-range displacements of
atoms.

Spinodal decomposition is a phase separation phe-
nomenon found, for example, in Ag-Cu nanoparticles,
Ti-Al-N thin films, Fe-Mn, and Fe-Cr steels.[5–9] This
phenomenon is responsible for the self-organization of a
nanostructure isostructurally. The phenomenon is ben-
eficial in cutting tools with Ti-Al-N coatings, where the
increased hardness gives an increased lifetime of the
cutting tools,[10] while, for example, in Fe-Cr alloys,
spinodal decomposition restricts dislocation motion and
causes severe embrittlement of the alloys.[11,12] The effect
of stress is an important consideration in spinodal
decomposition. The Ti-Al-N coatings produced by
physical vapor deposition have large residual stresses
and are also exposed to large stresses during cutting at
high temperatures where decomposition occurs. In the
case of stainless steel weldments, it is known that the
existing residual stresses can enhance the decomposition
kinetics.[13]

The kinetics and morphology of spinodal decompo-
sition, when exposed to applied tension, have been
studied by Cahn.[14] Although Cahn did not perform
any simulations, he could deduce from his theoretical
treatment that uniaxial tension or compression should
result in a directionality of the decomposed morphology
that was normal to the axis of the applied tension or
parallel to the axis of the applied compression. In a
more recent study by Thompson and Voorhees,[15]

elastic energy was assumed to be a function of the
expansion difference between two coexisting phases
constituting different solute concentrations. Their work
considered stress in an inhomogeneous system as a
function of composition-dependent elastic constants and
an inhomogeneous strain field. Principal stress states
were investigated to elucidate the relationship between
the applied tension and the wavevector of the compo-
sition modulations. It was shown that the uniaxial
loading both yields directional effects on the developing
structure and can alter the limit of instability; that is, the
temperature at which the decomposition process starts
can be either suppressed or elevated dependent on the
elastic properties of the system. The directional effect
exhibited alignments of the nanostructure morphology
perpendicular or parallel to the applied traction; this
effect was found to be coupled to the sign of the applied
strain, the solute expansion, and the difference between
C11 – C12 elastic constants.

Despite the many significant results obtained in the
phase-field (PF) modeling of the spinodal decomposi-
tion in the Fe-Cr system under external load, the

understanding of the influence of atomic rearrangement
at the atomic scale in the Fe-Cr alloy under applied
stress in the zone of spinodal decomposition is still an
open question. In this work, we aim to elucidate the
effect of the anisotropic elastic properties of the crystal
structure in response to the applied stress through
three-dimensional (3-D) simulations and direct experi-
mental comparison. The binary system Fe-Cr is a
favorable model system to study the effect of stress on
spinodal decomposition due to the small lattice mis-
match between Fe and Cr and the relatively slow
decomposition kinetics. In addition, Fe-Cr is a techni-
cally important alloy used, for example, in reactor
pressure vessels in the nuclear industry,[16,17] where
thermal embrittlement is of major concern.[18] Further-
more, Fe-Cr alloys are also important structural mate-
rials, for example, in the aviation industry, where
complex load states may influence the spinodal decom-
position and the related fatigue performance.[19] Thus,
understanding spinodal decomposition at an atomic
scale beyond traditional thermodynamics is impor-
tant.[20] We apply an extended version of the continuum
ADF theory, called the quasiparticle approach (QA), to
model the spinodal decomposition of an elastically
strained binary alloy at the atomic scale.[4] The benefit of
using QA is that we operate at a time and length scale
that bridges the gap between DFT and MD simulations
to mesoscopic techniques such as PF. This new
approach opens a way to answer numerous outstanding
questions concerning the atomistic mechanisms of the
displacive phase transformation,[21] formation of
defects, dislocations, grain boundaries,[22,23] vacan-
cies,[24] and crystallization, the formation of polymers
due to the aggregation of monomers in their solu-
tion,[25] pattern formation,[26] etc. This list can be
significantly extended. In other words, the QA allows
description of the physical phenomena at the
atomistic scale, keeping the diffusion time scale.
Another benefit of the QA is that we do not have
to introduce a complex expression for the elastic
energy. As in the MD calculations, the interaction
potential contains all of the information about the
thermodynamic properties of the system and elastic
interaction is integrated self-consistently in the
model. The result is that we do not assume anything
about the phase transformation itself, such as devel-
oping composition modulations and material-depen-
dent interaction constants, which have major effects
on the developing structure. Instead, we use a simple
thermodynamic model that can capture the major
effects found in the experiment.
This article is organized as follows. First, an overview

of the QA with application to the binary system is
presented, with special emphasis on the choice of model
parameters. The QA is then applied to the model
spinodal decomposition in the binary system under
external stress. The effect of the tensile load along the
[101], [111], and [112] crystallographic directions is
examined. Finally, the simulation results are compared
to the 3-D atom probe results. As will be shown in this
article, the simulation results are in good agreement with
the experimental observations.
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To describe the spinodal decomposition dynamics in
binary alloys, we use the recently proposed quasi-par-
ticle approach (QA).[4] In this approach, the size of the
simulation grid is smaller than the distance between
neighboring atoms, and we assume that each atom is a
sphere comprised of a number of finite elements called
fratons. The atomic displacement can be associated with
the creation and annihilation of fratons at site r. The
choice of model Hamiltonian should describe the
interaction of fratons that results in both their ‘‘con-
densation’’ into atomic spheres and the redistribution of
these spheres into the desired equilibrium atomic con-
figuration. Then the main variable describing the atomic
configurations in the QA is the fraton density probabil-
ity function, na(r, t), which is the occupation probability
of finding a fraton of the kind a (a = 1,2,…, m) at the
site r, where m is the number of components in the
system. In other words, na(r, t) is the probability that a
given simulation grid point belongs to the atomic sphere
of the kind a. The temporal evolution of the density
function of the fratons na(r, t) is described by the
microscopic diffusion equation:[3]

dna *r; t
� �

dt
¼
X
*r0

Xb¼m

b¼1
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* � r

*0� � dF

dnb r
*0
; t
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Here, the summation is carried out over all points, r¢,
of the computational grid approximating the continuum
space. Labðr� r0Þ is the matrix of the kinetic coefficients
(i.e., exchange probabilities per unit time which in this
work are: LAA = LBB = 1 and LAB = LBA = –0.5), and
F is the free-energy functional. To guarantee the
conservation of the number of atoms during the
temporal evolution of the system, the conditionP
*r
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function can be written in the following form:
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where the first term describes the internal energy with
an approximation of pair interaction and the second
term represents the entropy term. Vab(r-r’) is the
potential of the interaction of a pair of fratons, a and
b. In the QA, Vab(r-r’) is constructed as a sum of two
terms corresponding to a short-range and a long-range
part of the interaction potential. The short-range
interaction potential accounts for the spontaneous
formation of atoms and prevents the overlapping of
atoms, and the long-range interaction assures the auto
assembly of atomic spheres in the desired crystal
symmetry. The Fourier transformation (FT) of the
interaction potential is

~Vab kð Þ ¼ 1

N0

X

r
*

Vab r
*
� �

e�i k
*

r
*

½3�

where the summation is carried out over all sites of
the computational grid, and the wave vector, k, is
defined at all quasi-continuum points, k, in the first
Brillouin zone of the computational grid, that is, at all
points (N0) in the k space permitted by the periodic
boundary conditions.
In accordance with Lavrskyi et al.,[4] the short-range

interaction potential was chosen as the step function

VSr rð Þ ¼
�1 if R<ri
f if R � ri þ Dr
0 if R>ri þ Dr

8<
: ½4�

where –1 accounts for the strength of the i-i fraton
agglomeration into atomic spheres, the constant R is
associated with the atomic radius (i.e., at r<R, fratons
agglomerate due to the attractive forces), Dr is the width
of the contact repulsion part of the short-range inter-
action between atoms, and f is the height of the
repulsive barrier ensuring structural integrity and repul-
sion between atoms.
For the long-range interaction, an isotropic potential

is considered in this work by using a Gaussian distri-
bution function. The number of wells and their position
determines the crystal symmetry of the system. In this
work, the binary bcc system is considered; it was
previously shown that only one minimum potential is
needed to reproduce this crystal symmetry.[4] Then the
isotropic long-range potential for the bcc crystal can be
written as

VLR k
*
� �

¼ � exp
ðk� k0Þ2

2r

 !
½5�

The minimum of the Gaussian function is situated at

k0=
2p
abcc

ffiffiffi
2

p
, where abcc is the lattice parameter of the bcc

crystal.
The elastic properties are essentially defined by the

width of the Gaussian r. Thus, the total interaction
potential VðabÞ normalized by the energy density change
determines the thermodynamic and mechanical proper-
ties of the system, which, in the binary case with a and b
fratons, is

Vab kð Þ ¼ kSr
VSr

a kð Þ
VSr

max � VSr
min

þ kLr
VLr

ab kð Þ
VLr

max � VLr
min

½6�

where kSr and kLr are weight constants for short- and
long-range interaction potentials, respectively. In these

simulations, these constants were set to kSr ¼ 1 and

kLr ¼ 0:5.[23,27]

To assure appropriate selection of the interaction
potential parameters, for any given system, the elastic

constant Cmn can be calculated by Cijkl ¼ @2F=@eij@ekl.
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Strain, e, is introduced by an infinitesimal displacement

of the atoms through a deformation matrix, cDk ¼ bIþ e
*
,

where bI is the identity matrix and e
*

is the strain vector
directly defined in real space. Thus, the free energy of a
deformed crystal can be evaluated by the change in the

interaction potential from V rð ÞtoV ðbIþ e
*Þr

� �
.[27] Then

the elastic constants are calculated through the change
in free energy of the system DFðeÞ due to the infinites-
imal deformation of the crystal.

For a cubic crystal, Cijkl is reduced to only three
independent values: C11, C12, and C44. To calculate these
constants, three characteristic deformations are defined
in compression/expansion:[24] hydrostatic deformation
ðx; y; zÞ ! 1� eð Þx; 1� eð Þy; 1� eð Þzð Þ for C44,
orthorhombic deformation ðx; y; zÞ ! 1þ eð Þx;ð
1� eð Þy; zÞ for C12, and monoclinic deformation
( ðx; y; zÞ ! xþ ey; y; zð Þ) for C11. Thus, the free energy
associated with the corresponding deformations is given
by

Fcub eð Þ ¼ Fþ V0
3

2
C11 þ 2C12ð Þe2

Fortho eð Þ ¼ Fþ V0 C11 � C12ð Þe2

Fmonoc eð Þ ¼ Fþ V0
C44

2
e2

½7�

where F is the free energy of the unstrained system
given by F in Eq. [1]. Usually, to quantify the relation
between the elastic constants of a cubic crystal, the
Zener anisotropy ratio (AZn ¼ C44= C11 � C12ð Þ) is used.
AZn ¼ 1 corresponds to a fully isotropic material. It will
be shown that the Gauss interaction potential used in
our model can be used to reproduce the anisotropic
properties of a bcc crystal. To calculate the elastic
constants for the bcc a-Fe crystal, the following set of
parameters have been used: r = 0.3, k0 = –0.005, ri =
6.4, Dr = 6.4, and f= 4. The computations are carried
out for a 128Dx3 computational cell with the lattice
parameter a0 =16Dx and the fraton density qA= 0.125.
First, to estimate the free energy of the unconstrained
bcc state F0, small periodic fluctuations were introduced
in the simulation domain and then the system was
relaxed to an equilibrium bcc state using the microscopic
diffusion Eq. [1]. To evaluate the elastic constants,
hydrostatic, orthorhombic, and monoclinic deforma-
tions were applied to the equilibrium bcc state by
changing the mesh spacing, as mentioned previously.
Then the free energy curves as a function of strain were

calculated and the values of elastic constants were
estimated using the second derivative of the free energy.
The obtained results are presented in Table I; included
in the table are also ab-initio and experimental data[18,19]

for comparison.
The work of Müller et al.[28] is based on DFT

calculations; however, in the article by Mendelev
et al.,[29] the embedded-atom method potential was
used. Hence, there are differences between the predicted
and the experimentally measured values of the elastic
constants in Table I. Using the ADF approach, proper
elastic constants of bcc Fe can be obtained through an
atomic interaction defined by either a Gauss potential
(as in this work) or by fitting to a structure factor
determined by X-ray diffraction, as in Kapikranian
et al.[24] The reproduction of Cr elastic constants is
cumbersome as Cr elastic is a brittle material with
negative Cauchy pressure that requires a negative
curvature of the embedding function. Hence, Pasianot
et al.[30] only managed to reproduce Cr by a polynomial
pair potential, something which was not done in this
work due to the complexity of the potential. The
anisotropy is of high importance as the influence of
crystallographic orientation is the main objective in this
work. Thus, it is more important to obtain robust values
for Fe C44 and C’, which will dictate the elastic
properties of this system.
For infinitesimal displacements where the material

exhibits linear elastic behavior, Hooke’s law (br ¼ bCbe) is
generally assumed valid. In this work, the stress tensor br
and strain tensor be are both field tensors of rank 2

coupled by a material tensor bC of rank 4 characterizing
the elastic compliance of the material. Then, it is

possible to use the stiffness tensor bS to relate stress,

stiffness, and strain (be ¼ bSbr). The position of an atom,
initially situated at point r, can after deformation be

defined using the three-by-three deformation matrix bD.
The atom position vector after deformation is given by

br0 ¼ bDbr. Similarly, in Fourier space, the relation between
the vectors k and k’, corresponding to the undeformed
and deformed structures, can be written using the
following expression:

~k~rT ¼ ~k D̂�1D̂
� �

~rT ¼ ~kD̂�1
� �

D̂~rT
� �

¼ ~k0~r0T ½8�

In the simulations, ~k~rT ¼ ~k0~r0T = 2p, where k
!

is a

row vector and k
!T

is a colon vector. From this
expression, we can relate the displacement of the wave
vector in reciprocal space to the deformation matrix in

real space by k
!0 ¼ k

! bD�1
. Thus, the deformation matrix

becomes

D̂�1 ¼
1 0 0
0 1 0
0 0 1= 1þ eð Þ

0
@

1
A ½9�

Table I. Elastic Constants of Bcc Fe From ADF Modeling

and Ab Initio (GPa)

Type C44 C0 B AZn

This work, Gauss potential ADF 116 49 130 2.37
Müller et al.[28] theory ab initio 96 65 190 1.48
Müller et al.[28] experiment — 116 43 169 2.69
Mendelev et al.[29] ab initio 116 49 178 2.37
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In this case, uniaxial deformation in the [001] direc-
tion is considered; however, any 3 9 3 deformation
matrix can be introduced, and through the introduction
of a 3-D rotation matrix, any crystal can be simulated,
rotated, and deformed. In this work, the rotation matrix
is

Hence, the strain is introduced by an infinitesimal
displacement of the atoms sitting on the lattice; the
displacement is inherently dependent on the discretiza-
tion of the simulation grid. In this work, the morphol-
ogy is of importance; thus, a trade-off between
computational cost and discretization is made. In this
work, the compromise was a0 =8Dx.

To relate the simulated and real deformation, the
length ratio L/L0 (current length L over initial length L0)
is in this case described by a Green–Lagrange strain
tensor, as it accounts for first- and second-order elastic
energy contributions given by the mean square displace-
ment. Thus, the displacement of atoms represents strain
that leads to a deformation of the simulated volume.
The Green–Lagrange description of the deformed sim-
ulation volume provides a better scaling to the exper-
iments, and it more easily defines the minimum of the
second-order equation, Eq. [7], that defines the elastic
limit. The experimental macroscopic deformation and
strain were obtained through tensile testing of the Fe-35
at. pct Cr alloy.

As previously stated for the definition of the elastic
limit in our simulations, we assume that the linear elastic
behavior with the relation DF / e2 holds. Thus, the limit

of elasticity is here defined by the point after which DF
starts to oscillate by higher-order terms. It is known that
the anisotropic properties of the crystal correlate with
anisotropic plastic deformation.[31] Thus, the DF ratio as
a function of the uniaxial tensile and shear deformations
is obtained by DF ekð Þ ¼ Dmono: ekð Þ=Dotho: ekð Þ, where ek

is strain or, more accurately, displacement introduced in
k space; the result is shown in Figure 1. This stress state
is related to the Zener anisotropy ratio and, therefore,
related to the effective shear.
The deformation in our simulations is introduced in

reciprocal space; thus, for ek >0, the system is com-
pressed, and if ek <0, the system is elongated (Figure 1).
For bcc Fe, the elastic limit is easily defined in
compression by the minimum in Figure 1 at ek= 0.61
as it thereafter starts to oscillate. The equivalent volume
dilatation in tension is given by ek ¼ �0:213. However,
the minima and subsequent deviation from linear elastic
behavior in tension begins just after ek ¼ �0:195, which
corresponds to 27.4 pct volumetric deformation. This
shows a difference in response upon tensile or compres-
sion loading of the system. Similar asymmetric stress
behavior has been observed by Huang et al.,[32] where
the difference was attributed to the change in Poisson’s
ratio. Thus, a discontinuous behavior may be recognized
as a change in the crystallography due to deformation.
Compression, therefore, is used to define the elastic limit
and normalize the load scale as it is well defined and
continuous.
The effect of stress on spinodal decomposition was

also studied experimentally for a binary Fe-35 at. pct Cr
alloy. The model alloy was received in hot-rolled and
air-cooled condition. Tensile specimens were produced
according to ASTM E-8, and the tensile axis was aligned
parallel to the transverse rolling direction. The samples
were cut to 2-mm sample thickness using a diamond
wire saw. The samples were aged at 525 �C for 100 hours
under an applied uniaxial tensile load of r = 235 MPa
in an MTS Landmark tensile rig. The yield strength of
the specimens was r0:2= 310 MPa at room temperature.
To prepare APT needles along certain crystallographic
directions, the gage section of the tensile specimen was
analyzed by electron backscatter diffraction after aging.
Specific grain orientations were selected, and site-specific
APT needles were prepared by FIB. At least three APT
needles per orientation were analyzed per condition, and
this forms the basis for the results presented here.
Statistical analysis was performed on representative
subvolumes for comparison. The APT analyses were
performed on a CAMECA�LEAP 4000 HR instrument
at 50 K, pulse fraction 20 pct, repetition rate 200 kHz,

Fig. 1—Change in free energy because of strain, ek (atomic
displacement), in reciprocal space k.

< u; h; cð Þ ¼ R100 uð Þ � R010 hð Þ � R001 cð Þ

¼
cos c cos h � sin c cosuþ cos c sin h sinu sin c sinuþ cos c sin h cosu
sin c cos h cos c cosuþ sin c sin h sinu � cos c sinuþ sin c sin h cosu
� sin h cos h sinu cos h cosu

0
@

1
A ½10�
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and evaporation rate 0.3 pct. The 3-D reconstructions of
the tips were performed using IVAS�3.8 according to
the reconstruction scheme by Moody et al.[33]

The influence of an applied load on Fe-Cr morphol-
ogy was previously studied using various simulations
and experiments.[7,13,34] In this work, the 3-D experi-
mental atomic-scale comparison is key; thus, we solely
work with uniaxial tensile loads to simplify the exper-
iments. The strength measured at room temperature,
furthermore, is expected to be reduced at elevated
temperatures. To assure that experiments are performed
purely within the spinodal regime, experimental aging is
made at 525 �C, where one can expect ~23 pct reduction
in yield strength.[35] The simulations are performed at a
slightly higher temperature than the experiment; since
the simulation kinetics is very sensitive to the selection
of temperature, lowering the temperature would dra-
matically increase the simulation time. Thus, the loads
of 235 MPa in experiments and 231 MPa (or
ek ¼ �0:171) in simulations are used for the direct
comparison. Furthermore, we assume that the Taylor
model holds, meaning all grains experience the same
level of strain in the polycrystalline alloy.[36]

Using the simulations, we start by applying different
stress levels in the [001] direction using a pure tensile
load. Then selecting the load equivalent to the one used
in the experiment, the crystal is rotated in the simulation
box so the different principal directions of the bcc crystal
are aligned in the z-axis of the simulation box. In
addition, the response of the system to different stress
states is simulated as well.

Figure 2 shows the microstructural evolution of the
binary A-35 at. pct B system as a function of tensile load
applied along the [001] direction. The minimum strain to
trigger a measurable response on the system is in this case
equivalent to ~19 pct of the elastic limit. The lack of elastic
energy contribution at lower strain can be attributed to

softening since these simulations are performed at ele-
vated temperatures to favor the kinetics. The critical
simulation temperature of instability (TcriticalÞ is defined in
the simulations by the potential k0 = 0.00; then the
undercooling is dependent on the negative depth of the
potential and the resulting simulation temperature is easily
compared to the critical value. The undercooling in this
work is 0.99129Tcritical or close to 565 �C in experimental
values. This information is used to calibrate the scale for
the load level, that is, assuming we have a 19 pct reduction
of the elastic limit for the A-35 at. pct B system at 565 �C in
comparison to room temperature. Thus, with an increased
load to ~98 pct of the elastic limit of 256 MPa at 565 �C, a
pronounced alignment of the B-rich region appears. Given
the system’s response to the external load given inFigure 1,
90 pct of the defined elastic limit, or ek ¼ �0:192, is amore
suitable choice for the maximum allowed stress in tension
as the abrupt change in behavior may be attributed to a
deformation of the crystal.
In addition, Figure 2 shows an alignment of the

decomposed structure directly related to the level of the
applied load. This alignment naturally affects the wave-
length of the structure in the load direction. The morpho-
logical effect is expected as the perpendicular directions
would contain lower elastic energy during high loads.
Basedon the initial results,we expandour simulations to

investigate the influence of uniaxial compression along the
[001] direction (Figure 3(b)) and shear of the {011} planes
(Figure 3(c)) on the morphology; the applied strain was
again fixed to 231 MPa equivalent. The simulation results
are shown in Figure 3(b), which produces a strong
morphological anisotropy during compression. In the case
of shear loading, it is possible to see some alignment at a 45
deg angle from the applied load.
The effects of tensile 231 MPa load along the [101],

[111], and [112] crystallographic directions are illus-
trated in Figures 3(d) through (f). Under the load

Fig. 2—(a) Microstructure evolution during the spinodal decomposition in the A-35 at. pct B system at 565 �C. (b) Different external tensile
loads applied along the [001] direction as indicated by the red arrows and the wavelength evolution as a function of stress in the direction of the
applied load (Color figure online).
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applied to the [101] direction, a more pronounced
alignment of the structure perpendicular to the load is
observed. The {101} plane is a close-packed plane; thus,
a greater orientation effect in relation to the [001]
direction can be expected. However, when the load is
applied along the {111} and {112} directions, the
alignment of the microstructure starts to rotate in
relation to the applied load. To quantitatively charac-
terize this effect, the structure factor s(k) was calculated
for the principal directions in their equilibrium state.
The result is shown in Figure 4, where s(k) is obtained
through the FT of the density probability function

n(k,t), also used to describe the primitive unit cell. In
Figure 4, we can clearly distinguish the effect of the
rotated crystal symmetry and applied load on the peak
position. Thus, the first peak of s(k) determines the
nearest neighboring atom in the direction of the static
concentration wave that is the equilibrium solution to
our simulation. As an example, for the 001 orientation,
we apply 231 MPa through –0.192 Å displacement of the
atomic position in reciprocal space. In Figure 4, the first
peak is located at 1.703 Å (1.703 Å 9 1.192 = 2.03 Å,
i.e., interatomic plane distance of {011} bcc Fe). Thus,
applying load in the [001] orientation favors the decom-
position in the [0-11] and [110] directions. Similarly,
applying load in the [110] orientation favors decompo-
sition in the [001] direction, and because [001] orienta-
tion is a soft direction, we see a more pronounced
alignment of the structure. In the case of [111] and [112]
orientations, we can see that their s(k) tends to align
themselves in a similar way as the 101 orientation. This
gives rise to an approximately 30 deg rotation of the
structure in real space, as seen in Figure 3.
In this section, simulating the response to the tensile

load was mainly performed in the elastically soft [001]
direction for load scale calibration and to potentially
maximize the effect of the applied stress.[14,37] This is a
known effect on Fe-Cr morphological anisotropy, pre-
viously modeled by phase-field methods,[7,38,39] where
morphological effects only were observed at very high
load levels. The advantage of the QA approach com-
pared to using the phase-field methods is the ability to
consider externally applied strains where elastic proper-
ties are independent from the developing composition
modulations.

Fig. 3—(a) through (c) Effect of 231 MPa tensile, compressive, and shear stress on morphology. (d), (e), and (f) Effect of 231 MPa tensile load
as a function of crystallographic orientations [101], [111], and [112], respectively.

Fig. 4—Simulated structure factor s(k) for bcc crystals under an
applied load.
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Focusing the analysis on the 235 MPa tensile load
presented in Figure 5, there is an apparent difference in
the volume fraction of a0 represented by the green atoms
for QA and APT. The volume fraction a0 obtained
through the lever rule in QA is roughly ~0.40, while in
APT, it is closer to ~0.1. This difference is due to the
construction of the miscibility gap in the model and
partially because we run the model to equilibrium,

which is not reached in experiments. In APT, a
0
near

equilibrium composition consists of ~80 at. pct Cr and a

contains ~14 at. pct Cr,[40] while in QA, we model atoms
that are considered pure elements with an associated
lattice site occupation probability. It should also be
noted that the reason we accept a higher volume fraction
in QA is that the simulated volume is much smaller; if
the volume fraction is much smaller, we are not be able
to quantify the wavelength of the spinodal structure in
real space. In Figure 6(b), the QA diffraction pattern is
shown as the probability distribution intensity I(k) =
IðkÞ ¼ ~n k,tð Þ � ~n k,tð Þ�. In this figure, we can clearly
distinguish the fundamental diffraction spots of the
bcc lattice and diffuse scattering around some main
spots. This pattern is used in comparison with the APT
detector hit density to make sure the right crystallo-
graphic orientation is analyzed; calculated stereographic
projections in the Appendix were used for APT recon-
struction calibration.
In Figure 5(a), there is a tendency of a0 to elongate

perpendicular to the applied stress seen experimentally;
in that case, the load was applied in the [001] direction,
which resulted in a0 alignment in the [010] direction. The
experimental aging time was 100 hours; still, the
nanostructural comparison of the results shows good
agreement in the morphological alignment between APT
and QA. The main morphological discrepancy is a
higher degree of anisotropic morphological alignment in
QA, presumably attributed to the difference in volume
fraction a0 between the modeling and experiment.
Figure 5 also shows the simulated diffraction pattern
and detector hit density map of the [001] direction, in
which the external load was applied. Naturally, in the
experiment, there are a few degrees deviation from the

Fig. 5—Visual comparison between (a) APT sample aged under 235 MPa tensile load in the [001] direction at 525 �C and (b) simulation results
from QA 231 MPa tensile load in the [001] direction at 565 �C. Units: nm.

Fig. 6—Stress aging of Fe-35 at. pct Cr, 100 h, 235 MPa tensile load
analyzing different grain orientations by APT; analysis volume 20 9
20 9 60 nm3.
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true calculated projections, which might slightly influ-
ence the results. Still, without a perfect APT/QA
comparison based on the morphology and behavior
dependent on the applied load, we obtain good repro-
duction of the nanostructure between the experiment
and modeling. Note in the comparison that the elastic
properties of A and B elements in the A-35 at. pct B
system are only fitted to a-Fe for the main component
A. Thus, a-Fe is the base element of the simulated
system and of the Fe-35 at. pct Cr alloy, which is used
for comparison. Hence, no difference in elastic behavior
between A and B atoms is modeled, even though that is
not true for the real Fe-Cr systems.

Figure 5 illustrates the visual correlation between our
model and the experimental work; only tensile load is
considered for this comparison. High a0 morphological
anisotropy for very high tensile load levels has been seen
before by APT in duplex Fe-Cr weld alloys,[13] where the
question regarding the thermal effect on the local stress
state due to the difference in thermal expansion was
unresolved. This issue is not of concern in this analysis
as these alloys are fully ferritic binary Fe-Cr alloys with
conservative load levels. The conservative load level is
presumably the reason no significant morphological
anisotropy could be quantified in these experiments.
However, there is good agreement in the system’s
response to the applied load regarding its effect on the
characteristic wavelength. Experimental investigations
in this case show accelerated fluctuations in Cr compo-
sition amplitudes dependent on crystallographic orien-
tation, which can be seen in Figure 6.

The bulk normalized concentration at zero distance is
evaluated by the radial distribution function (RDF),
which, in this case, relates to the amplitude of Cr

fluctuations.[41] In Figure 6, one can clearly evaluate
[111]< [001]< [112]< [101] even though the differences
are small. The Cr amplitude is known to be related to
the degradation of mechanical properties.[11]

The difference in morphology of the nanostructure
after applying tensile load along the [001], [101], [111], and
[112] directions is very small in both APT and QA.
However, in the trend of the characteristic wavelength k
obtained throughautocorrelation in real space,wefind from
the modeling that k001<k111<k101<k112, and in the exper-
iments, we obtain the same results from RDF: k001<
k111<k101<k112. These results are presented in Figure 7.
In APT, the k001 and k111 are relatively similar, while

the close-packed slip plane of [101] and the [112] slip
plane both produce longer wavelengths k101 and k112,
respectively. A similar trend is observed by QA. How-
ever, in QA, the supposedly soft orientation [001]
produced a much shorter wavelength, even though we
expect the opposite given s(k) in Figure 4. Still the
results in Figure 7(a) confirm the results shown in
Figures 3 and 5. Thus, this result may be attributed to a
visualization effect in 3-D and the subsequent voxeliza-
tion of real space to calculate the wavelength k by
autocorrelation. By visual inspection of the QA volumes
in Figures 3(b) and 2, one would expect the [001]
wavelengths to be longer than the others. Thus, one
should be careful to draw definitive conclusions given
the relatively small difference even though the trend
seems obvious.
In phase-field modeling of phase separation in

anisotropic elastic bodies, anisotropic alignment of the
a0 phase is derived from the Cahn–Hilliard theory.[38,39]

Zhou et al.[7] attributed the alignment of a0 to the ratio
of the shear modules between the precipitates and

Fig. 7—Orientation-dependent wavelength in (a) QA and (b) APT when a uniaxial tensile load of 231 and 235 MPa is applied, respectively.
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matrix, given that a0 precipitates in Fe-Cr alloys are soft.
A soft precipitate will align itself perpendicular to the
applied tensile strain. Li et al.[34] predicted directional
growth through effective eigenstrain; a direction with
lower eigenstrain is generally a favorable direction for
decomposition to proceed. In the case of Fe-Cr alloys,
exx < 0 and eyy > 0; thus, eigenstrain is compressive in
the x-axis and tensile in the y-axis. Therefore, elongation
occurs in the y-axis perpendicular to an applied load in
the z-direction. This is in line with our observations in
QA and APT (Figure 5); the merit of using QA is to
maintain true atomic resolution and crystal structure in
the analysis of nanostructural segregation on the con-
tinuum time scale without assuming concentration-de-
pendent elastic properties.

Treatment of anisotropy of drift diffusion due to elastic
strain fields in cubic crystals requires consideration when
comparing results from different orientations.[42] In the
presence of an external force field, the diffusion current
density needs to consider drift current, which is propor-
tional to the gradient of the interaction energy. The
symmetry of the host lattice can strongly affect the
symmetry of the elementary-jump mechanism of the
defect (e.g., vacancy) itself. The addition of a continuous
strain field alters the saddle point in the activation energy
barrier and jump rates in different directions. In addition,
the diffusion constant itself is a hyperbolic strain-depen-
dent coefficient.[43] The migration energy of diffusion in a
force field is proportional to the gradient energy between
the equilibrium energy and the saddle point; the external
field affects the saddle point and the equilibrium energy
remains unchanged. Under normal conditions, the exter-
nal strain is small so that it can be linearly approximated.
Thus, the expected effect of uniaxial loading in different
crystallographic directions on the diffusion constant is
only a few percent.

1. The effect of applied strain can be modeled at the
atomic scale using the QA approach. For the first
time, the real strain in the system was quantified and
directly compared with experimental data. Thus,
different strain tensors and rotation matrices are
introduced to alter the stress states. This approach
has shown promising results for tensile, compression,
and shear stress in addition to the rotation of the
crystal structure. Introducing an infinitesimal dis-
placement of an atom triggers a free energy response
of the system to alter its morphology in good
agreement with APT. In the case of Fe-Cr, high-load
levels are required to have a noticeable morpholog-
ical anisotropy effect near the elastic limit.

2. The added external load does affect the diffu-
sion-controlled decomposition process in the exper-
iment. The addition of elastic load in the Fe-35 at.
pct Cr system only has minor effects dependent on
the differences in the crystallographic orientation.
Still, the close-packed [101] orientation favors
decomposition in these experiments, indicating that
the ease of diffusion is more important than the
difference in elastic properties in the direction of the
applied load between the different orientations.

3. The exact stress state in the polycrystalline materials
is still unknown. However, it is unlikely to have a
dramatic effect on these results. It should be
mentioned that there is still room for improvement
in the treatment of the polycrystalline materials.
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APPENDIX

Calculated stereographic projections of the principal
directions of bcc Fe.
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