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Eutectic solidification gives rise to a wide range of microstructures. A commonly observed
morphology is the periodic arrangement of lamellar plates with well-defined orientations of the
solid–solid interface in a given eutectic grain. It is typically believed that this form of
morphology develops due to the presence of solid–solid interfacial energy anisotropy. In this
paper, we provide evidence using phase-field simulations where our focus is on alloys where the
minority phase fraction is low. Our aim is to establish the role of solid–solid interfacial energy
anisotropy in the stabilization of broken lamellar structures in such systems in contrast to the
formation of a rod microstructure. In this regard, we conduct phase-field simulations for
different strengths of anisotropy in both constrained and extended settings, using which we
clarify the mechanisms by which a lamellar arrangement gets stabilized in the presence of
anisotropy in the solid–solid interfacial energy.
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I. INTRODUCTION

EUTECTIC alloy solidification as an example of
complex pattern formation has been studied by both
experimentalists and theoreticians.[1–14] The phase trans-
formation yields a wide range of microstructures like
rods, lamellae, labyrinthine, andmixed growth structures
during two-phase growth, and the patterns become
increasingly complex with the addition of more phases
and components.[15–20] While the influence of volume
fractions on the morphology is quite well established
wherein alloys with minority phase volume fractions
lower than the critical value for lamellar to rod transition
(� 30 pct),[21] a rod microstructure is observed and close
to equal volume fractions yield labyrinthine/lamellar
microstructures, yet there exist alloys which show behav-
ior contrary to this rule. Eutectics like Ag-Bi,[22–27]

Ag-Pb,[26,28] Ag-Sn,[29,30] Al-Au,[31] Al-Sb,[32] Al-Sn,[6,28]

Bi-Mg,[6] Bi-Mn,[33] Bi-Zn,[24,27] Cd-Ge,[34] In-Zn,[28,35]

Sn-Zn[3,36–42] and some organic systems[43] exhibit a
lamellar type of microstructure even with a less than 10
pct volume fraction of the minority phase. It has been
proposed by several authors as early as Jackson–Hunt[21]

along with experimental evidence provided by Caroli
et al.,[44] Chadwick,[3] Jaffrey and Chadwick,[37] that the
reason for the formation of such lamellar structures could
be the presence of strong solid–solid interfacial energy
anisotropy where the Wulff plot of the solid–solid
interface consists of cusps. The lamellar interface orien-
tations are therefore well defined in a given eutectic grain
as those corresponding to the low energy directions in the
Wulff plot. The presence of such anisotropy can lead to
tilted solidification fronts during thin-film growth and has
been studied extensively,[44–49] using experiments and
simulations. In bulk solidification, evidence from
phase-field simulations also suggest that the presence of
anisotropy leads to the formation of lamellar structures
instead of labyrinthine morphologies[50] in equal volume
fraction alloys. Similarly, utilizing phase-field simula-
tions, Gránásy and colleagues[51] have investigated the
effect of anisotropy on the evolution of different eutectic
patterns.
Therefore, while there is enough evidence to suggest

the influence of solid–solid interfacial energy anisotropy
in biasing the morphologies towards a periodic arrange-
ment of lamellae, yet, there seems to be lack of
understanding on the mechanisms by which a lamellar
microstructure gets stabilized, particularly in alloys
where the minority fraction is below the critical value
for rod-lamellar transition (� 30 pct). This is the main
objective of the paper, where using phase-field simula-
tions we investigate the differences in morphological
evolution that arise as a result of the presence of
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anisotropy in the solid–solid interfacial energy that leads
to the stabilization of the lamellar morphology instead
of the rod microstructure that is typically observed with
isotropic solid–solid interfaces. The phase-field method
provides an ideal methodology for conducting dynam-
ical simulations of phase transformations allowing for
tracking of morphological changes during evolution,
thereby providing clarity to the underlying mechanisms.
For this purpose, we choose to mimic the Sn-Zn system,
which has a minority phase percentage of around 9 pct
and is experimentally known to give structures that are
‘‘broken lamellar’’ instead of rods. In separate experi-
mental work, we have characterized this alloy exten-
sively where we have confirmed the following aspects.
The microstructure reveals a general alignment of
lamellar plates with a gradual increase in the length of
the broken fragments as the solidification progresses,
where lengthening occurs by merging of lamellae frag-
ments along well-defined directions for a given eutectic
grain. In this alloy, there exists a set of crystallographic
orientation relationships between the Sn and the Zn
phases during eutectic growth. Further, the Zn phase
determines the orientation of the lamellar interface,
wherein solidification occurs such that the solid–solid
interface is always parallel to the basal planes of the Zn
crystal. As a corollary, therefore, the growth directions
remain invariant upon change of heat and solutal flux
directions. Since, we did not find strong solid–liquid
interfacial anisotropy all of the previous experimental
observations point towards the presence of solid–solid
interfacial energy anisotropy in this alloy that is also
supported by earlier findings from Jaffrey and Chad-
wick,[37] thus making this a good candidate for the
present study.

Following is a brief structure of the paper. We begin
with the description of the phase-field model and the
simulation setup in Section II, followed by the results
elaborating on the range of microstructures that are
derived in the phase-field simulations in Section III. We
finally conclude in Section IV by combining the numer-
ical results in this paper with observations from separate
experimental work (presented elaborately elsewhere)
where we summarize the mechanism through which
the broken lamellar morphology forms.

II. NUMERICAL SIMULATIONS

A. Model Description

We use a phase-field model based upon the grand
potential functional.[52,53] As per this model, the Sn-Zn
binary eutectic system is completely described by the
following three independent variables, the order param-
eter (/ ¼ f/a;/b;/c; . . . ;/Ng) that is composed of the

volume fractions of the N different phases, the diffusion
potential (l), and the temperature (T). In the following
sections, we describe the time evolution equations for
these three variables. The three phases (N ¼ 3) in the
eutectic reaction, namely the Sn-Zn liquid, the Sn-solid
and the Zn solid phase are assigned three different
phase-fields or order parameters (/a) such that,

/a 2 ½0; 1� and
XN

a

/a ¼ 1:

The grand potential functional reads,

XðT; l;/Þ ¼
Z

X
wðT; l;/Þ þ �að/;r/Þ þ wð/Þ

�

� �
dX:

½1�

Here, � is the width of the diffuse interface, which is
chosen such that the smallest feature in the resulting
morphology is accurately resolved. wð/Þ is the double
obstacle potential, given as,

wð/Þ¼

PN;N

a<b
d 6¼a 6¼b

16
p2 cab/a/bþcabd/a/b/d if/2 ½0;1�;

1 otherwise.

8
><

>:
½2�

cab is the isotropic surface energy of the a�b interface.
In the present study, the solid–liquid interfaces are iso-
tropic, while the solid–solid interfaces are anisotropic.
cabd are third-order terms added in order to suppress

the appearance of a third phase at a binary interface.
að/;r/Þ is the gradient energy term and wðT;l;/Þ is
the grand potential which will be described later. The
anisotropy in the interface energy is incorporated in
the gradient energy term as,

að/;r/Þ ¼
XN;N

a<b

cab acðq abÞ
� �2jq abj

2; ½3�

where ac is the anisotropy function of the a–b interface
normal vector q ab ¼ /ar/b � /br/a: We utilize an

interfacial energy anisotropy function that has a 2-fold
symmetry for orientations of the solid–solid interface
normal that are perpendicular to the growth direction,
where we use the following expression, as described in
Reference 50:

ac ¼ 1þ dab
q02y � q02x

q02x þ q02y þ q02z

 !
; ½4�

where dab is the strength of anisotropy. q0x; q
0
y; q

0
z are the

components of q0ab along the x, y and z directions. q0ab is
obtained by rotating qab by an angle hR about the

growth direction (Z axis), where hR is the orientation
angle of the interface anisotropy function. The solid–
solid interfacial energy polar plots for two different
orientations of the rotation angle hR ¼ 0 deg and 90 deg
are shown in Figure 1 along with their corresponding
equilibrium shapes (Wulff construction). For stable min-
imization of the grand potential functional, dab in our
phase-field model can have a maximum value of 1/3 for
the 2-fold anisotropy function.[54,55] We note that the
choice of the 2-fold anisotropy is the minimal symmetry
that is observed experimentally in this alloy system, for
orientations of the lamellar interface normal, perpen-
dicular to the growth direction. However, the complete
Wulff plot in 3D of the solid–solid interface is unavail-
able to us either experimentally or through other lower
length-scale modeling routes. In light of this, we have
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presented the following results using a simplified
anisotropic form.

w is the grand potential density, which is obtained at
any point as a weighted sum of the grand potential
densities of each phase present at that point,

w ¼
XN

a

hað/Þwa; ½5�

where hað/Þ is a third-order interpolation function that
reads,

hað/Þ ¼ 3/a
2 � 2/a

3 þ 2/a

XN;N

b; c 6¼ a
b<c

/b/c: ½6�

wa ¼ waðl;TÞ is the grand potential density of phase a
and can be written as

waðT; lÞ ¼ faðcaðT; lÞÞ � lcaðT; lÞ; ½7�

where fa is the Helmholtz free energy density per unit
volume. Under constant pressure and volume, fa; the
Helmholtz free energy density differs from the Gibbs
free energy density by a constant.[56] We use a parabolic
approximation to the free energies obtained from the
COST-507 database[57] and incorporate in the phase-
field model similarly as References 49, 58. The BCT_A5
phase and the HCP_ZN phase from the database are

called the Sn and Zn phases in the paper, respectively.
The parabola for each of the phases is of the form,

fa ¼ AaðcaÞ2 þ BaðTÞca þDaðTÞ; ½8�

where the coefficients Aa;BaðTÞ and DaðTÞ are derived
such that the reproduced phase diagrams have the cor-
rect equilibrium composition, temperature, liquidus
slopes, while the Gibbs–Thomson coefficient is accu-
rately reproduced at leading order at the eutectic
point. The liquidus slopes for any a� l phase equilib-
rium will be denoted as ml�a; while the corresponding
solidus slope as ma�l: The value of Al is derived
directly from the second derivative of the free energy
vs composition diagram of the liquid, computed at the
eutectic composition as,

Al ¼ @2fl

@cl
2
; ½9�

and this same value is used for all the solid phases.
This is done to increase the efficiency of the phase-field
simulations in terms of optimizing the possible
time-step for stable temporal integration. We also note
that since at leading order the Gibbs–Thomson coeffi-
cient of each of the solid phases may be written as,

Ca ¼ calm
l�a

@2fl

@c2
caeut � cleut
� � ; where caeut; c

l
eut are, respectively,

Fig. 1—Polar plots (a) and (b) of the 2-fold solid–solid interfacial energy anisotropy function, plotted for solid–solid interface normals/directions
that lie in the transverse plane perpendicular to the solidification direction. Two orientations of the solid–solid interfacial anisotropy function,
corresponding to rotations about the growth direction, are shown, where (a) hR ¼ 0 deg and (b) hR ¼ 90 deg and strength dab ¼ 0:3: The filled
ellipses in (c) and (d) are the transverse cross-sections of the equilibrium Wulff shapes (schematic) corresponding to the two rotation angles
(orientations) of the anisotropy function.
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the a and liquid phase compositions at the eutectic
temperature; we expect to retrieve the correct
Gibbs–Thomson effect with respect to the shift of the
liquid compositions in equilibrium with the solid, since
the interfacial properties such as the solid–liquid inter-
facial energies as well as the thermodynamic parame-
ters such as the liquidus slopes, equilibrium
compositions, and the second derivative of the liquid
free energies are derived from either databases or from
literature. Taking BlðTÞ ¼ 0 and DlðTÞ ¼ 0; we obtain
the coefficients of the parabola corresponding to the
solid phases as,

BaðTÞ ¼ 2Alcleut � 2Aacaeut þ ðT� TeutÞ
2Al

ml�a
� 2Aa

ma�l

� �
;

½10�

and

DaðTÞ ¼ �Alcleut
2 þ Aacaeut

2 þ ðT

� TeutÞ � 2Alcleut
ml�a

þ 2Aacaeut
ma�l

� �
; ½11�

where Teut is the eutectic temperature. The reproduced
phase diagram constructed using the parabolic free
energies is shown in Figure 2(b). The equilibrium
volume fraction of the phases in this phase diagram
differs from the actual value because of the assumption
of equal densities of all phases. Hence, the volume
fraction of the phases used in the phase-field model is 14
pct, while it is around 9 pct in reality. However, since
both these volume fractions fall well below the limit
(� 30 pct)[21] where the rod morphology is expected to
be stable instead of lamellae for isotropic interfacial
energies, we will assume its influence on the eventual
microstructural evolution to be insignificant for the
scope of this study. The values of the parameters used in
the phase-field model are listed in Table I.

The minimization of the grand potential functional in
Eq. [1] drives the system towards equilibrium. The
simplest equation which definitely decreases the grand
potential functional with time is given by the Allen–
Cahn type equation that for multiple phases is written
as,

s�
@/a

@t
¼� r � @að/;r/Þ

@r/a
� @að/;r/Þ

@/a

� 	

� 1

�

@wð/Þ
@/a

� @WðT; l;/Þ
@/a

� k;

½12�

where s is the relaxation constant which controls the
kinetics of the phase evolution equation and is interpo-

lated at the interface as

PN;N
a;b sab/a/bPN;N
a;b /a/b

; where sab cor-

responds to the relaxation constant of the a�b
interface. The values of sab are chosen according to
the thin-interface asymptotic analysis performed in
Reference 52, such that diffusion-controlled growth
may be achieved for the solid–liquid interfaces, while
the lowest value among the two solid–liquid interfaces
is chosen for the solid–solid interface, such that the
relaxation of the solid–solid interfaces is always faster
than the solid–liquid interfaces. Also, at points wherePN;N

a;b /a/b ¼ 0; s ¼ minðsalÞ: k is the Lagrange multi-

plier utilized for imposing the constraint
PN

a /a ¼ 1;
i.e., the sum of volume fraction of all the phases is 1.
This equation is solved in a coupled manner along
with the mass conservation equation. The evolution
equation for the diffusion potential l of the indepen-
dent component (Sn) that ensures mass conservation is
written as,

Fig. 2—Sn-Zn phase diagram, BCT_A5 is the Sn phase, and HCP_Zn is the Zn phase. (a) Phase diagram generated using the Thermo-Calc
software.[59] (b) Reproduced phase diagram from parabolic free energies showing liquidus below the eutectic temperature, zoomed in plot around
the eutectic point.
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@l
@t

¼
r �Mrl�r � ðjatÞ �

P
a hað/Þ

@ca

@T

@T

@t
�
X

a

caðT; lÞ @hað/Þ
@/a

@/a

@t

P
a hað/Þ

@ca

@l

; ½13�

where for parabolic free energies, we have,

@ca

@l
¼ 1

2Aa
; ½14�

ca ¼ l� BaðTÞ
2Aa

: ½15�

Additionally, the derivative of the phase composition
with temperature is derived as,

@ca

@T
¼ 1

ml�a
; ½16�

where ml�a is the liquidus slope of phase a: jat is the
antitrapping current that is added to the flux for incor-
porating asymptotic corrections in a one-sided diffu-
sion problem. jat is a flux directed from the solid side
of the interface to the liquid side in the direction of
the interface normal as,

jat ¼
p�/a 1� hað/Þ½ �
4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/að1� /aÞ

p � cbðT; lÞ � caðT; lÞ
� � @/a

@t

r/a

jr/aj
;

½17�

where b represents the liquid phase, and a represents the
solid phases.

B. Simulation Setup

The phase-field, composition, and temperature evo-
lution equations described above are solved in a coupled
manner using forward Euler method in time discretized
on a 3D staggered grid. The simulation results have been
verified for different interface widths and grid resolution
for numerical consistency in Appendix B.. The code is

parallelized using MPI with parallel file I/O using the
parallel HDF5 library[61] to run large simulations
efficiently across multiple processors. ParaView[62,63]

and matplotlib,[64] scikit-image,[65] and PyMKS[66,67]

libraries in Python are used for post-processing and
visualization of simulation output.
Jackson and Hunt[21] proposed a relationship between

the average interface undercooling and the characteristic
spacing during coupled growth of two-phase eutectic
alloys, which can be utilized for deriving information
about the possible morphologies that might be observ-
able in experiments. Additionally, the expression for the
undercooling at the interface may be utilized for the
calculation of the shape of the solid–liquid interface. In
the following section, we perform these calculations
using the phase-field method where we compute the
interface shapes and the resultant interfacial undercool-
ing for different characteristic spacings in the presence of
solid–solid interfacial energy anisotropy. These simula-
tions are going to be performed in constrained 3D
domains as in Reference 68. Later, we perform extended
simulations comparable to experimental conditions in
order to investigate realistic microstructure evolution.
Following is a brief description about the simulation
settings.
Constrained simulations enable us to specifically

study the effect of interface energy anisotropy on the
eutectic morphology. These simulations are initialized
with a hexagonal configuration of Zn rods in the Sn
matrix. We choose this initial hexagonal configuration
as it is the stable one for isotropic interfaces when the
minority phase volume fraction is low. Due to hexag-
onal symmetry, we choose a small rectangular domain
as shown in Figure 3(a) with reflective boundary
condition applied across the cross-section. This
cross-section is depicted as the white rectangle in
Figure 3(b). On mirroring the cross-section about the
boundaries, the hexagonal configuration is reproduced
as shown in Figure 3(b) (in green). We have also
depicted the Cartesian coordinate system in Figure 3(b)

Table I. Simulation Parameters Calculated Using the Physical Values from Refs. [40] and [60], the Procedure for

Non-dimensionalization is Described in Appendix A.

Parameter Symbol Value (Non-dimensional) Value (Dimensional)

Eutectic Temperature Teut 1 471.7 K
Eutectic Composition (Mol. Fr. Sn) cleut 0.8675 0.8675

cSneut 0.9942 0.9942

cZneut 0.0007 0.0007

Liquidus Slope ml�Sn 0.5 235:85Kmol�1

ml�Zn �1:30 �613:21Kmol�1

Interface Energy cSn�l 1.0 0:104 Jm�2

cZn�l 0.782 0:0813 Jm�2

cSn�Zn 1.46 0:1519 Jm�2

cabd 15 —

Isotropic Interface Width W 10.8 4:6� 10�9 m
Diffusivity Dl 1.0 3:5� 10�9m2 s�1

Velocity v 0.005 4:1� 10�2 m s�1
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which we will follow throughout the paper, the growth
axis is along the Z direction (out of paper), and the X
and Y axes are in the plane of cross-section (transverse
plane). The influence of the solid–solid interfacial energy
anisotropy function on the morphology is determined by
symmetry, strength, as well as the orientation of the
anisotropy with respect to the simulation domain.
Thereby, we perform simulations by varying the
strength of the anisotropy and the orientation angle,
hR ¼ 0 deg and 90 deg (see the section on model
formulation for details) for the 2-fold anisotropy func-
tion. While these simulations would let us identify the
different morphologies that are possible, the steady state
attained in these constrained simulations might not be a
true reflection of the possibilities in an extended simu-
lation due to the restricted degrees of freedom. How-
ever, the effect of changing the anisotropy parameters
on the morphology is evident from the constrained
simulation results. In order to get a more realistic
picture akin to the experimental conditions, we perform
extended directional growth simulations as described in
Figure 3(c). We initialize with a random distribution of
Zn rods in the Sn matrix. In this case, all the Zn rods

have the same orientation relationship with the Sn
phase. The domain length for both of the above
simulation conditions in the growth direction is taken
to be 600 grid points, which is � 3:6D=v; long enough to
mitigate boundary effects on the liquid diffusion profile.
Since we are simulating solidification from an infinite
reservoir of liquid, the far-field liquid composition
should remain uninfluenced from the interfacial mass
diffusion as the solid grows. Thus, we have implemented
regular shifts against the growth direction,[69] in which
solidified cells at the start of the simulation box are
removed and liquid cells of initial composition are
added to the end of the simulation box. In order to
impose directional growth at a constant velocity, we
impose a moving temperature gradient given as,

Tðz; tÞ ¼ T0 þ GTðz� vtÞ: ½18�

The thermal diffusivity value is typically about three
orders of magnitude larger than the compositional dif-
fusivity,[70] resulting in a 3 orders faster temperature
readjustment compared to the composition profiles.
Due to this rapid thermal diffusion w.r.t. to solute dif-
fusion, we can assume that the temperature is always

Fig. 3—Simulation setups that are utilized for the constrained (a, b) and extended (c) simulations, where red = Sn phase, blue = Zn phase. (a)
k is the initial spacing for the rod morphology. Reflective boundary condition is applied on the cross-section boundaries, where the simulated
region in (a) corresponds to the region in the white rectangle in (b). On mirroring about the four edges of the white rectangle, the hexagonal
arrangement of Zn rods is obtained. The X and the Y axes are as depicted in (b), and the Z axis (growth direction) is out of the plane of paper.
(c) Simulation setup for extended simulation, reflective boundary condition is applied on the cross-section boundaries (Color figure online).
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at steady state, which in the case of directional solidifi-
cation is the externally imposed linear temperature
gradient and thereby the rate of change of temperature
is,

@T

@t
¼ �GTv; ½19�

which is an input in Eq. [13].

III. RESULTS AND DISCUSSIONS

A. Constrained Simulations

1. Undercooling vs spacing
We begin with constrained simulations, firstly to

identify the undercooling vs spacing relationships in the
presence of anisotropy, secondly to investigate the
change in the shape of the solid–liquid interfaces of
the rod phase as a function of spacing, and thirdly to
ascertain the stability of the hexagonal configuration
towards either change in the arrangement of the rods or
the formation of lamellae as the spacing is changed. In
order to derive the undercooling vs spacing relationship,
we initialize the hexagonal rod configuration with
different spacings. For smaller spacings, the final
steady-state morphology remains as a hexagonal array
of rods, with modifications in the shapes of the Zn rods.
The undercooling vs spacing relations for the three
cases: isotropic, anisotropic with (hR ¼ 0 deg), and
anisotropic with (hR ¼ 90 deg) are depicted in Figure 4,
where the simulation points are fitted with the expres-
sion DT ¼ k1vkþ k2=k; v being the velocity and k the
rod spacing. We see that the curves for the two
anisotropic cases almost overlap and the minimum

undercooling spacing (kanisomin ¼ 62) is almost the same

with the isotropic case (kisomin ¼ 64). However, the min-
imum undercooling for the anisotropic case is slightly
lower than the isotropic case. The analytical kmin

calculated for the isotropic case following the

Jackson–Hunt derivation is 78, and the difference in
the minimum undercooling with respect to the simulated
one is <1 pct. Throughout the paper, we have normal-

ized k with respect to kisomin ¼ 64; unless explicitly stated
otherwise.

2. Steady-state shapes: small spacings
Figure 5 represents the steady-state morphology

showing the top view of the solid–liquid interface for
an initial spacing of k ¼ 69:6; which corresponds to

1:09kisomin or 1:12kanisomin : The steady-state shapes of the
rods within the stability limit (stability towards branch-
ing) are characterized by the aspect ratio of the rod
cross-section, which is plotted in Figure 5(d). For lower
spacings, the aspect ratio tends towards that given by
the Wulff shape of an isolated rod under the same
anisotropy conditions, where the Zn rods become
elongated such that the interfaces with the lower energy
have larger interface areas as depicted in the Wulff
shapes in Figures 1(c) and (d). However, with increase in
the spacings, the cross-sectional shape of the rods
deviates from the equilibrium Wulff shape and actually
tends towards circular shapes, where there is also an
apparent symmetry with respect to the rod morpholo-
gies derived for the two different orientations of the
solid–solid interfacial energy anisotropy (hR).
The individual shapes of the solid–liquid interfaces as

well as the triple lines are depicted in Figure 6, where
one of the striking differences from the case of isotropic
interfacial energy is that the triple-line contour does not
lie in a single plane, which implies that the points on the
triple line are not corresponding to the same undercool-
ing. This can be understood clearly on the basis of the
variation of the solid–solid interfacial energy where the
orientations corresponding to higher solid–solid inter-
facial energies are also the directions where the triple
line is depressed more with respect to the average
position of the solidification front and thereby also are
regions of higher undercooling. The orientations for
which the solid–solid interfacial energies are high are
also the parts of the solid–liquid interface, we expect the
curvature undercooling to be larger and thereby because
of this variation of undercooling with orientation, the
change in the shape of the triple line with respect to the
isotropic case is expected. Moreover, we see that with an
increase in spacing, the shape of the rod–liquid interface
becomes flatter near the center of the rod with only one
of the principal curvature values being non-zero. The
situation thus tends towards the case of a lamella with a
single non-zero principal curvature as seen in Figure 7
(right column) for larger spacings in comparison to the
smaller ones [Figure 7 (left column)].
We note that the changes in the shapes of the rods can

also arise in isotropic situations but these occur for
spacings much larger than the minimum undercooling
spacing.[68] These shape changes result out of a shape
bifurcation leading to elongation either towards the first
or the second nearest neighbors in the hexagonal rod
configuration. Given that the elongations are not
symmetric, the shape bifurcation behavior is different
for the elongation of the rod morphologies in the two

Fig. 4—Undercooling vs spacing curves for the rod morphology for
three different cases; isotropic, anisotropic solid–solid interfacial
energies with orientation of the anisotropy function hR ¼ 0 deg and
90 deg. The points for the two anisotropic cases overlap for most
spacings.
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directions. The nature of the bifurcated shapes and the
critical spacing depends on the domain and the volume
fractions. However, the shape changes described previ-
ously in the presence of solid–solid interfacial energy

anisotropy are different from the isotropic case as these
occur continuously across the entire range of spacings
where stable rod morphologies exist and do not arise as
a result of a bifurcation beyond a critical spacing.

Fig. 5—(a through c) Top view of the solid–liquid interface for a spacing corresponding to k ¼ 69:6 (i.e., 1:09kisomin or 1:12kanisomin ), red = Sn phase
and blue = Zn phase for isotropic, hR ¼ 0 deg and 90 deg, respectively. No transition from the hexagonal arrangement of Zn phase is observed.
(d) Aspect ratio of the cross-section of the steady-state anisotropic rods, calculated as the ratio of horizontal axis to vertical axis of the elliptical
cross-section of the rod. Spacing is normalized with kanisomin (Color figure online).

Fig. 6—(a) Solid–liquid interface corresponding to the rod phase for two different spacings (k ¼ 52:8 in the left column and k ¼ 69:6 in the
center and right columns) and a comparison with the shape for the case of isotropic interfacial energy (right column). (b) and (c) Comparisons
of the triple lines in two different views. The growth direction for image rows (a, b, c) is shown in the last column.

6334—VOLUME 51A, DECEMBER 2020 METALLURGICAL AND MATERIALS TRANSACTIONS A



3. Branching and morphology transition: large
spacings

We now shift our attention towards spacings larger
than the minimum undercooling spacing that are
amenable to branching instabilities (splitting of rod into
two). Figure 8(1 and 3) (and also in the supplementary
video ‘Figure S1’, refer to Electronic Supplementary
Material) depicts the time sequence of morphology
evolution for the two orientations of the solid–solid
interfacial energy anisotropy hR ¼ 0 deg and 90 deg,
with respect to the chosen hexagonal rod configuration.

For a spacing corresponding to k ¼ 93:6 (i.e., 1.46kisomin

or 1.51kanisomin ), in the isotropic case, the final morphology
depends upon the initial rod shape (discussed later in
this section), whereas for the anisotropic case, there is a
morphological transition to a different arrangement
depending only on the orientation hR: The branching
instabilities occur as this spacing is beyond the stability
limit, i.e., in the diffusion-dominated branch of the DT�
k curve. Thus the system tends to reduce the spacing by
branching of the rods, in order to accelerate diffusion
and consequently decrease the overall interfacial under-
cooling. In order to understand the dynamics of this
transition from the initial hexagonal rod morphology,
we take a closer look at the temperature profile at the
solid–liquid interface. From Figure 8(2 and 4), we note
that the higher undercooling regions of the solid–liquid
interface also correspond to the locations where the
solid–solid interfacial energies are larger. As the Zn rod
elongates in Figures 8(b) through (d), the interfacial area
increases. This elongation happens such that the
solid–solid interfaces with higher energy increase in
area, which seems contrary to the notion that the system
should always try to decrease its average undercooling.

However, this elongation is followed by branching of
the Zn rod in Figure 8(e) (splitting of a rod into two rods
in the top view corresponds to a branching in 3D), such
that newly created interfaces are of the least energy. Due
to this directional branching determined by anisotropy
orientation, two distinct morphologies emerge, one is a
transient arrangement for hR ¼ 0 deg, and the other is a
rectangular arrangement for hR ¼ 90 deg. While in the
case of hR ¼ 90 deg, a steady state is reached, whereas
for hR ¼ 0 deg, microstructural evolution continues with
the individual rods coming closer and aligning in a
straight line, as highlighted in Figure 8(f1). Subse-
quently, they merge to form lamellae in Figures 8(g1)
and (h1). This approach of individual rods towards each
other only in the case of hR ¼ 0 deg can possibly be
explained by the proximity of the regions corresponding
to higher interfacial undercooling. After branching in
Figure 8(e2), the interfaces with a higher undercooling
are closer for hR ¼ 0 deg (approximately half of the
original rod spacing) and there exists a topological
pathway by which the regions of higher undercooling
can first come towards each other, by a lateral transla-
tion of the rods and after alignment, lengthening and
merging along the higher undercooling directions. The
configuration with hR ¼ 90 deg also has the higher
undercooling regions of the rods separated by the
shorter distance of k=2; however, no mechanism exists
for the direct merging of these regions through the
growth of the rods towards each other in the Y
direction. For the case of hR ¼ 0 deg, the higher
undercooling interface regions are eliminated by align-
ment of the Zn rods, where they subsequently merge to
form lamellae. Thus, the average interfacial undercool-
ing shows a sharp dip as the morphology transitions to
lamellar around a time of 20 (all time values represented
in the paper are scaled by v=kmin), as shown in
Figure 9(a). Once a steady-state morphology is reached
(after time = 25 for hR ¼ 0 deg and time = 9 for hR ¼
90 deg), the interfacial velocity and undercooling do not
vary with time in Figures 9(a) and (b) and thereby these
are steady-state configurations for these spacings.
The above conclusion can very well be observed from

the average DT�k plot in Figure 9(c). The k axis
represents the initial spacing at the start of the simula-
tion. The curves correspond to fitting of simulation
points according to the equations of the type DT ¼
k1vkþ k2=k: The lamellar morphology for the isotropic
case has a higher average undercooling than that of the
corresponding rod microstructure, which is expected
when the volume fraction of the minority phase is far
lower. For spacings outside the stability window (two of
them are shown), the morphologies which transform to
rectangular and lamellar configurations have a lower
average interfacial undercooling. As the rod-to-lamellar
transition occurs, it leads to a lamellar configuration
where the solid–solid interfaces are oriented such that
the solid–solid interfacial energies are lower
(cSn�Zn ¼ 1:022) than for the case of the simulation
with the lamellar morphology with isotropic interfacial
energies (cSn�Zn ¼ 1:46). Accordingly, this lamellar
arrangement formed upon transformation from the
rod morphology has a lower undercooling. The

Fig. 7—Plots of the principal curvatures superimposed on the
solid–liquid interface of the rod j1 (row a) and j2 (row b) for k ¼
0:85kanisomin and k ¼ 1:12kanisomin for hR ¼ 0 deg. Here j1 and j2 are
calculated at each point of the rod–liquid interface as: j1 ¼
H�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 � K

p
and j2 ¼ Hþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 � K

p
where H is the mean

curvature and K is the Gaussian curvature.
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rectangular arrangement has two possible spacings, one

(k=2) in the vertical direction and the second (
ffiffiffi
3

p
k=2) in

the lateral direction, whereby it is a different arrange-
ment which corresponds to none of the undercooling vs
spacing relations of either the rod or the lamella.

It is worth pointing out that the spacing beyond which
the hexagonal configuration becomes unstable to

branching instabilities (k=kanisomin � 1:33) is approximately
just beyond the point where the aspect ratio of the
cross-section of the rod becomes nearly circular

(k=kanisomin ¼ 1:26) as in Figure 5(d). The branching of
the rods occurs by elongation in the directions corre-
sponding to the lower interfacial energies and narrowing
of the rods along the regions of higher undercooling (or
higher solid–solid interface energies) where the matrix
phase invades the rod phase leading to splitting.
Branching also occurs in isotropic situations giving rise

to arrangements that are similar (for k=kisomin � 1:46);
however, there is no transition to a lamellar state.

Figure 10 shows arrangements that are derived
post-branching for an initial spacing of k ¼ 93:6; corre-

sponding to k=kisomin ¼ 1:46; starting with two different
initial rod shapes: horizontally elongated ellipse in
column 1 whereas vertically elongated ellipse in column
2. The results are somewhat different to those reported
in Reference 68 as we do not find broken lamellar states
in our simulations, but rather a connected rod mor-
phology. Additionally, we find a change in the arrange-
ment of the rods, whereupon starting with an ellipse that
is elongated vertically we derive a rectangular arrange-
ment of nearly touching rods. In terms of the differences
in the branching behavior between the isotropic and the
anisotropic cases, firstly the critical spacing where
branching events occur in isotropic situations shifts to

larger values of k=kisomin ¼ 1:46 in comparison to the

anisotropic case (k=kanisomin � 1:33). Moreover, the nature
of branching is non-directional for the case of isotropic
interfacial energies, while it is biased in the presence of

Fig. 8—Morphology evolution with time increasing from row (a) through (h), where columns 1 and 3 are the top views of the solid–liquid
interface, columns 2 and 4 depict the temperature field superimposed on the solid–liquid interface (coloring as per the temperature legend, red =
lower undercooling and blue = higher undercooling). Column 1 shows hexagonal rod-to-lamellar transition, column 3 shows a transition to a
rectangular arrangement for two different orientations of the solid–solid interfacial energy anisotropy function (Color figure online).
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anisotropy in the solid–solid interfacial energy. This is
because anisotropy provides a natural perturbation to
the solid–liquid interface making it amenable for the
invasion of the rod phase in the regions of higher
undercooling. Thus, while in isotropic situations,
branching in all directions can occur, where the mode
of branching depends on the starting conditions or the
departure from the isotropic hexagonal arrangement,[68]

in the presence of anisotropy, the direction of branching,
as well as the final state of the microstructure depends
strongly on the orientation of the anisotropy. Addition-
ally, while no lamellar states are derived in the isotropic
case whereas in the presence of anisotropy, the merging
of rods post-branching events leads to the elimination of
higher undercooling regions leading to the formation of
lamellae. The merging of rods occurs, following the
evolution of the rods towards each other, where given
that the interfacial undercooling varies along the triple
line, the rod evolution occurs such that the regions of
higher undercooling approach each other (see
Figures 8(e) through (g)). Therefore, it is apparent that
it is this difference in undercooling along the triple line

Fig. 9—Undercooling (DT) and velocity with time (time normalized with v=kmin): (a) hR ¼ 0 deg and (b) hR ¼ 90 deg. Reduction in
undercooling(DT) around time = 20 in (a) is due to transition to a lamellar morphology. A steady-state arrangement with a constant DT is
attained towards the end of simulation in both (a) and (b). (c) Transformed lamellar states (green triangle, hR ¼ 0 deg) and rectangular
arrangements (blue square, hR ¼ 90 deg) have a lower undercooling than the hexagonal (black circle) configuration they started with. Here, the
spacing is scaled with kmin ¼ kisomin (Color figure online).

Fig. 10—Arrangement of rods (a) during branching and (b) steady
state for two different starting situations (column 1 is a horizontally
elongated ellipse and column 2 is a vertically elongated ellipse) for
isotropic solid–solid interfacial energies. In both cases, we observe
incomplete merging events leading to connected elongated rod
morphologies arranged in either a hexagonal or in a rectangular
lattice.
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that provides a natural transition mechanism to a
lamella. Since the difference in undercooling along the
triple line is a function of the anisotropy, we expect the
possibility of transformation to a lamella to depend on
the strength of anisotropy. This can be appreciated from
the results depicted in Figure 11 where a rectangular
arrangement of elongated rods is derived for an
anisotropy strength that is dab ¼ 0:15; hR ¼ 0 deg that
is half of the previously utilized value of dab ¼ 0:3; hR ¼
0 deg where complete merging occurs. We note that here
as well the rods branch in a manner that leads to the
invasion of the majority phase in the higher undercool-
ing regions of the rod phase and a similar gradual
alignment of the rods as depicted in Figure 8 and also in
the supplementary video ‘Figure S1’ (refer to Electronic
Supplementary Material), leading to the formation of a
rectangular array, but no lamella formation. Therefore,
we can draw an inference that with increasing strength
of anisotropy, the possibility of a transition from a rod
to a lamellar arrangement increases. While the con-
strained simulations reveal the influence of anisotropy
on the rod shapes, the eventual evolution of the
microstructures are constrained by the imposed domain
boundary conditions as revealed in the simulations for
the orientation hR ¼ 90 deg, where although branching
occurs, they do not merge leading to the lamellae
formation. Thus, the steady-state morphology achieved
under the imposed domain constraints might not reflect
the final steady state possible in an extended simulation
with more spatial degrees of freedom to rearrange.
However, these results show us exclusively the influence
of interfacial energy anisotropy on the rearrangement
dynamics.

B. Extended Simulations

Having studied the effect of anisotropic interfaces on
constrained simulation domains, we now explore the
influence of anisotropy on microstructural evolution in
large simulation domains comparable to experimental
conditions. Thus, we choose a simulation box of

cross-section ð8kminÞ2 and initialize with a random
arrangement of Zn phase bricks in the Sn matrix.
Simulations are performed for two cases: isotropic and
anisotropic solid–solid interface energies, where we
initialize both the isotropic and the anisotropic simula-
tions with the same random arrangement. In the
anisotropic case, the orientation of 2-fold interface
energy anisotropy function is hR ¼ 0 deg for all the
Sn-Zn interfaces, thereby replicating conditions of
growth in a single eutectic grain. The strength of
anisotropy is dSn�Zn ¼ 0:3: For this strength of aniso-
tropy, we expect the formation of a lamellar morphol-
ogy as observed in the constrained simulations.

1. Morphology evolution with time
The isotropic case reaches a steady state as the

interfacial undercooling and velocity become nearly
constant in Figure 12(a), which is not observed in the
anisotropic case in Figure 12(b). The average under-
cooling still decreases in the anisotropic case as the
morphology transitions from random ! rectangular !
aligned broken lamellar in Figure 13 (right column)
(also in the supplementary video ‘Figure S2’, refer to
Electronic Supplementary Material). In order to analyze
the lengthening dynamics of anisotropic lamella, we plot
the average fragment length and the length of an
individual fragment against simulation time in
Figure 14. The lamella fragment is not always straight,
and hence, we have calculated the lamella length
considering its actual geometry. First we consider a
transverse section (XY plane) below the solid–liquid
interface where only the solid phases are present.
Thereafter, we identify the different lamellar/rod frag-
ments using the Hoshen–Kopelman algorithm [71] as
shown in Figure 14(a). For each lamella fragment in this
transverse plane, we construct a central line (curve)
passing through the fragment in the following way: for
each y coordinate, the x coordinate corresponding to the
centroid of the lamella fragment is calculated, where-
upon joining these points, we derive the central line of
each fragment (see the central black line in
Figure 14(a)). The arc length of this central line is the
length of the lamella fragment which is computed by the
cumulative sum of the lengths of the discrete line
segments forming the central line and this accounts for
cases where the fragments are curved. In Figure 14(d),
an individual lamella elongates linearly with time,
interspersed with jumps in the length when merging
with a neighboring fragment occurs. Moreover, for this
particular lamella fragment, we track the triple-point
region with time, along a longitudinal section (YZ
plane) (see Figure 14(b)) intersecting the leading edge of
the lengthening lamellar fragment at its ‘tip’, i.e., the x
coordinate of the YZ plane is chosen such that the plane
contains the highest y coordinate of the particular

Fig. 11—Steady-state solid–liquid interface, (a) dSn�Zn ¼ 0:15, (b)
dSn�Zn ¼ 0:30: For higher dSn�Zn we find alignment of the rods by
lateral translation and then merging, whereas for lower anisotropy
strength dSn�Zn; only alignment of the rods occurs after branching
but no merging. Higher anisotropy strengths and appropriate
orientations of the solid–solid interfacial energy lead to a lamellar
morphology as in b1 by merging of solid–solid interfaces, in the
constrained simulations.
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lamella (see Figure 14(b), where the white line is the
longitudinal plane, which cuts the lamella tip inside the
black ellipse). The triple-point regions are displayed in
Figure 14(e), where we observe that the solid–solid
interface has a tilt with respect to the imposed direction
of the thermal gradient. We have measured the magni-
tude of this tilt angle (calculated from the slope of the
solid–solid interface line in Figure 14(e)) as a function of
time between two merging events and plotted in
Figure 14(f). Correlating the tilt angle measurements
with the length of a single lamella fragment as in
Figure 14(d), we see that just before a merging event, the
tilt of the solid–solid interface increases and thereafter
reduces to a minimum value before it starts to increase
again when it approaches a second fragment before
merging. The value of the minimum angle of tilt is
approximately the same between any two merging
events and this value is approximately (� 1:27 deg)
from the vertical temperature gradient direction. The
tangent of the tilt angle is nearly equal to the ratio of the
lamella lengthening velocity (� 1:08� 10�4) to the
imposed directional solidification velocity (0.005)
thereby indicating that locally the growth of the lamellae
fragment is at an angle to the imposed thermal gradient
direction. Thus, the lamella also traverses in the Y
direction with the Y component of the growth velocity.
Therefore, the lengthening dynamics of the lamella
between two merging events is proportional to the
imposed directional solidification velocity as well as the
tilt of the solid–solid interface with respect to the growth
direction. We expect this tilt of the tri-junction that leads
to the invasion of the phase with the lower volume
fraction while also resulting in merging events and
elongation of lamellar fragments, to be a function of the
strength of solid–solid interfacial energy anisotropy, the
imposed velocity, as well as the local spacing and
arrangement of the lamella fragments/rods in the
extended simulation domain. The influence of the local
conditions is evident in the supplementary video ‘Fig-
ure S2’ (refer to Electronic Supplementary Material),
wherein there exist fragments that do not monotonically

increase in length and there are times for which the
length of a given fragment also reduces. However, the
average length of the lamella fragments increases mono-
tonically with time.
Since the merging events occur along the directions

corresponding to the higher solid–solid interfacial
energies, a natural biasing of the microstructure where
lamellae globally assume a common solid–solid interface
orientation and thereby a uniform interfacial energy is
expected. The alignment of the lamellae is revealed in
the two-point spatial correlation map (see Figure 15
(right column)) which also indicates the gradual length-
ening of lamellae fragments with time as derived from
the lengthening of the maximum intensity spot at the
center. Additionally, the correlation depicts the devel-
opment of a uniform lamellar spacing with time as
highlighted by the separation of the linear streaks in the
spatial correlation plot. Conversely, the spatial correla-
tion of the isotropic case (see Figure 15 (left column))
highlights the development of the hexagonal symmetry
in the rod arrangement with the time of solidification.
While there is globally a tendency towards alignment of
the lamella fragments, during merging in the presence of
solid–solid interfacial energy anisotropy, there do occur
small changes in the solid–solid interface orientation
during growth. This is to be expected as locally the
arrangement of the lamella fragments/rods is not
perfectly in position for merging with the same given
solid–solid interface orientation. Deriving from the
results of the constrained simulations, where the rods
approach each other such that the higher undercooling
interface regions come closer by motion in the transverse
plane, the lamellae fragments in the extended simula-
tions are similarly expected to change growth directions
during the merging events, leading to small changes in
the solid–solid interface orientations. The fact that the
merging events are globally correlated through the
diffusion field in the liquid and not just a function of
the local interfacial conditions is revealed in the devel-
opment of a uniform lamellar spacing during the
merging events.

Fig. 12—Interface undercooling (DT) and velocity vs time (time normalized with v=kmin) for (a) isotropic and (b) anisotropic interfacial energy.
(a) Attains a steady state, (b) moving towards steady state with undercooling still decreasing.
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2. Comparison with experiment
The results from our simulations suggest that the

presence of anisotropy in the solid–solid interfacial
anisotropy provides mechanisms for the formation of
lamellae microstructures even when the volume frac-
tions of the minority phase is below the critical value for
rod-lamella transition in isotropic systems. The merging
of lamellar fragments during solidification is observed in
our experimental investigations of this alloy (that are
reported elsewhere). Figure 16 reveals the gradual
lengthening of the average lamellar fragment length
with time. While we do not observe actual merging
events, we see that the lengthening of the lamellar
fragments is biased in a given direction in this eutectic
grain. Since our experimental investigations indicate the
presence of solid–solid interfacial anisotropy(that is
reported elsewhere), the combination of the morpho-
logical changes as seen in Figure 16 leading to the
lamellae formation in the experiments and the simula-
tion results that reveal the mechanisms by which such
transitions occur provides strong evidence that the
presence of solid–solid interfacial energy anisotropy
leads to the formation of lamellar microstructures even
in these systems where the minority fractions are low.
We note that our conclusions are notwithstanding the
simplified assumptions with respect to the choice of the
form of anisotropy in the solid–solid interfacial energy
where we have applied the simplest form which satisfies
the symmetry of the experimentally observed solid–solid
interfaces. From the envelope of the solid–solid inter-
faces in Figure 16, a 2-fold symmetry is expected for the
solid–solid interfacial energies for orientations where the
normal to the solid–solid interface lies in the transverse
plane. However, the actual 3D Wulff shape correspond-
ing to this system might indeed be more complicated.
While we do not address the additional contributions
that might be attributed to the symmetry features of the
real anisotropy function, the modeling effort does clarify
that the presence of solid–solid interfacial anisotropy
even in its simplest form leads to the formation of
lamellar structures. This evidence that we have pre-
sented has therefore implications for several such alloys
where lamellar structures are observed. However, the
measurement of the actual form of the anisotropy of the
solid–solid interfaces and its utilization in a phase-field
simulation remains a scope for future, experimentally
informed theoretical and numerical work.

bFig. 13—(a through l) Top views of the solid–liquid interface during
morphological evolution, where the left column is for isotropic
interfacial energies (time increasing from 0 to 100), while the right
column is for anisotropic Sn-Zn interfacial energies (time increasing
from 0 to 142). Starting from the same random morphology, the
isotropic case gradually transitions towards a hexagonal
configuration, while the anisotropic one transitions towards a
rectangular arrangement of Zn rods and eventually to a broken
lamellar morphology. The simulation time is normalized with v=kmin.
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Fig. 14—(a) Transverse (XY) plane for the fragment length calculation. The black line inside each fragment shows the central line used for
calculation of the lamellar length. (b) The white line is the longitudinal (YZ) plane intersecting the lengthening fragment at its tip depicted inside
the black ellipse. (c) Average lamella length with time. (d) Length of an individual lamella fragment grows linearly with time (fit with black
dashed line), interspersed with jumps that depict merging events (time normalized with v=kmin). (e) Longitudinal cut-section of all interfaces near
the triple line region along the leading interface front for the same lamella in (b). The lamella elongates towards the left with increasing time
from 82 to 121. The solid–solid interface is tilted from the vertical temperature gradient direction. (f) Plot of the tilt angle w.r.t. to the imposed
thermal gradient direction of the solid–solid interface with time.
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Fig. 15—2-Point self-correlation of the Zn phase at different simulation times, the left column is for isotropic interfacial energies, the right
column is for anisotropic Sn-Zn interfacial energies. A hexagonal periodicity emerges in the isotropic case with time, whereas the anisotropic
tends towards a broken lamellar pattern.
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IV. CONCLUSIONS

In this paper, we present evidence using phase-field
simulations that the presence of anisotropy in the
solid–solid interfacial energy leads to the formation of
the lamellar morphology even in systems where the
minority phase fraction is low. Though we created a
model system mimicking properties similar to those
exhibited by the eutectic phases in the Sn-Zn alloy, the
particular observations regarding the influence of
anisotropy are generic and are applicable to the coupled
growth of any two-phase eutectic system. The
rod-lamellar transition occurs via a branching and
merging mechanism, wherein the rods first branch in
order to reduce diffusion distances, while new solid–so-
lid interfaces are produced. Thereafter, merging of rods
occurs such that the higher energy orientations are
eliminated and orientations that are retained correspond
to lower energy and thereby also resulting in reduced
average undercooling of the solid–liquid interface. We
note that the first step of branching is common between
both isotropic and anisotropic systems; however, the
formation of lamellae by merging along specific orien-
tations is observed only for the case where the
solid–solid interfacial energies are anisotropic. While
such merging events can certainly occur in isotropic
situations with an increase in volume fractions, there is
no strong basis to expect any biasing with respect to the
formation of either lamellae or lamella fragments similar
to what we find for the case with anisotropic solid–solid
interfacial energies. Therefore, it is not surprising that
the propensity for rods to merge and form lamellae
depends on the strength of anisotropy, with a higher
strength of anisotropy giving rise to a greater tendency
for lamella formation. Additionally, we also note that
the merging of lamella fragments proceeds via several
invading lamellae-front where the properties of the
tri-junction such as the tilt of the solid–solid interface
during the invasion remains fairly constant for a
particular lamella fragment for long periods of the
invasion. We, however, expect the tilt of the solid–solid
interface at the leading front of the invading lamella
fragment to be a function of the velocity, local spacing,
and the anisotropy strength of the solid–solid interfacial
energy and thereby the lengthening dynamics must vary
spatially as well as depend on the solidification velocity

and the strength of anisotropy in the solid–solid
interfacial energy. We find evidence of the lamella
fragment lengthening process in our own experiments
where the lengthening occurs along given crystallo-
graphic directions that are supported by the simulation
results in this work. Therefore, using a combination of
experiments and simulations, we are able to precisely
determine the effect of anisotropic solid–solid interfacial
energy on the resulting microstructure, particularly on
the rod-to-lamellar transition in eutectic system, that
was not quite clear until now.
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APPENDICES

A. NON-DIMENSIONALIZATION
OF SIMULATION PARAMETERS

The parameters used in the simulation are obtained
through non-dimensionalization of the physical param-
eters. The procedure is enlisted below, where the

asterisked values are defined as: T� ¼ 471:7; f� ¼ RT�

Vm
;

l� ¼ r
f�

and t� ¼ l�2

D
: Here, the values of molar volume

Vm ¼ 1:6� 10�5 m3; interface energy r ¼ 0:104 Jm�2

and diffusivity D ¼ 3:5� 10�9 m2 s�1 are obtained from
References 40, 60. Dividing the dimensional parameters
with the corresponding asterisked (*) variables gives
their non-dimensional values.

Fig. 16—Images captured using a scanning electron microscope (SEM), which are taken at equally spaced transverse sections along the growth
direction, following the same eutectic grain of the sample solidified at 50 lm/s. (a) is 20 mm from the bottom, (b) is 30 mm from the bottom, (c)
is 40 mm from the bottom, (d) is 50 mm from the bottom, and (e) is 60 mm from the bottom. The images indicate a gradual lengthening of the
average lamella fragment length as a function of time.
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B. NUMERICAL CONSISTENCY AND GRID
RESOLUTION

The simulations have been checked for numerical
accuracy against different grid resolutions (dx) and
interface widths as shown in Figure AI.

ELECTRONIC SUPPLEMENTARY MATERIAL

The online version of this article (https://doi.org/10.
1007/s11661-020-05995-8) contains supplementary
material, which is available to authorized users.
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51. L. Rátkai, G.I. Tóth, L. Környei, T. Pusztai, and L. Gránásy: J.

Mater. Sci., 2017, vol. 52, pp. 5544–5558.
52. A. Choudhury and B. Nestler: Phys. Rev. E, 2012, vol. 85,

p. 021602.
53. M. Plapp: Phys. Rev. E, 2011, vol. 84, p. 031601.
54. R. Kobayashi: Physica D, 1993, vol. 63, pp. 410–23.
55. J.J. Eggleston, G.B. McFadden, and P.W. Voorhees: Physica D,

2001, vol. 150, pp. 91–103.

Fig. AI—Numerical consistency and grid resolution, checked with
different interface widths.

6344—VOLUME 51A, DECEMBER 2020 METALLURGICAL AND MATERIALS TRANSACTIONS A

https://doi.org/10.1007/s11661-020-05995-8
https://doi.org/10.1007/s11661-020-05995-8


56. P. Mathis: J. Indian Inst. Sci., 2016, vol. 96, pp. 179–98.
57. I. Ansara, A. Dinsdale, and M. Rand: Cost 507: Thermochemical

Database for Light Metal Alloys, Office for Official Publications of
the European Communities, Luxembourg, 1998, vol. 2.

58. A. Choudhury, M. Kellner, and B. Nestler: Curr. Opin. Solid State
Mater. Sci., 2015, vol. 19, pp. 287–300.

59. J.-O. Andersson, T. Helander, L. Höglund, P. Shi
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