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The nickel-base superalloys are unsurpassed for hot sections of the gas turbine engines whose
efficiency can be improved by developing new superalloys with enhanced properties. The
artificial neural networks (ANN) method is utilized in alloy design of single-crystal nickel-base
superalloys. The ANN method is especially powerful in applications where developing a
physically sound model is challenging such as alloy design with multiple components. A design
space of 45,000 alloy compositions is generated, and then a multilayer perceptron (MLP)
feed-forward (FF) artificial neural network is used to predict the density and creep lives of these
alloys. The ANN method is coupled with physics-based (PHACOMP) calculations to predict
and then correlate the creep rupture life to the composition, precipitate volume fraction,
topologically closed packed phases, temperature, and stress. Then, an experimental alloy
composition is selected from the design space, and its solidification behavior is investigated by a
thermodynamics (CALPHAD)-based software. Moreover, single-crystal rods of the experi-
mental alloy are grown and machined into creep samples, which are creep tested at three
different stress–temperature couples. A good match between the experimental results and the
ANN predictions is displayed in scatter plots and in Larson–Miller plots for the experimental
alloy and for selected, well-known commercial single-crystal alloys. As the correlation of the
microstructure to mechanical properties is still in its infancy by thermodynamics and
mechanics-based software, an integrated ANN modeling is shown to be a powerful tool for
finding a composition and establishing relationships between the microstructure and properties
of alloys. This, of course, can help reduce the material development cycle time as aimed by the
Integrated Computational Material Engineering (ICME).

https://doi.org/10.1007/s11661-019-05252-7
� The Minerals, Metals & Materials Society and ASM International 2019

I. INTRODUCTION

CONVERSION efficiency of gas turbine engines
increases with an increased turbine entry temperature,[1]

which is attainable by availability of materials durable
at high temperatures. A good combination of creep
resistance, microstructure stability, and corrosion/oxi-
dation resistance provided by Ni-base superalloys,
makes them unsurpassed candidates as hot section
turbine engine materials. The high-temperature durabil-
ity of these alloys are achieved by a high-volume
fraction of a strengthening gamma-prime (c¢) precipitate
phase with an ordered face-centered cubic crystal
structure embedded in a disordered face-centered cubic
gamma (c) matrix.[1–3] Lightweight silicide-, nitride-, and
aluminide-based ceramics and intermetallics are aimed

to substitute for superalloys in turbine engines due to
their lower density and higher temperature capability.
However, their application is limited by their brittle
nature.[4] Therefore, designing superalloys with
increased temperature capability, improved life, and
reduced density is of a crucial importance in aerospace
and power industries.
A significant improvement has been achieved over the

many years in the high-temperature performance of
Ni-base superalloys despite an Edisonian alloy develop-
ment approach that relies on extensive experimentation
in various stages of the alloy development from a
concept to a validated part.[5] More than 10 alloying
elements are present in superalloys, which makes the
traditional experimental alloy design methods very time
consuming and costly. As a result, the alloy develop-
ment cycle is far behind the product development cycle.
The materials community has decided to overcome this
via the Materials Genome Initiative (MGI) and Inte-
grated Computational Materials Engineering (ICME).[6]

Computational methods reduce the materials develop-
ment cycle to keep pace with very fast developing
product design and development and hence enable
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development of new alloys to meet cost/performance
requirements.[7] These methods should consider several
parameters that are interlinked in a complex way. A
partial list of these parameters can include the size,
distribution, and volume fraction of the precipitates, the
ordered nature of the precipitates, lattice misfit between
the precipitates and the matrix, temperature, stress, and
environmental conditions. Recently, a number of soft-
ware are developed to model thermodynamics, diffu-
sion, microstructure, and mechanical properties.[8–10]

The existing software for mechanical properties is based
on simplified empirical approaches, and so they are
unable to make a full correlation between influencing
parameters.[11,12] Mechanical properties depend not only
on the atomic bonding and the atomic/molecular
arrangement, but they are also strongly influenced by
the morphology, distribution, and amount of multiple
phases, and interface strength, which are all determined
by the chemical composition of the alloy at given
operating conditions. In fact, interdependence of all
these makes it a challenging task to develop a unique,
physically sound model to predict the long-term prop-
erties of superalloys.

A major deformation mode in the hot sections of
turbine engines is the creep. While optimizing the
chemistry of an alloy to attain a high creep resistance,
a particular attention should be given to lowering the
density of the alloy. Suggested methods for density
estimation suffer either from low accuracy due to
complex interatomic bonding, or they do not include
all candidate alloying elements generally used in super-
alloys.[11,13] Addition of heavy refractory elements in
later generations of single-crystal superalloys to reduce
the diffusion and hence to increase the creep life has led
to an increase in the density, which adversely affects the
energy efficiency of the turbine engines.[14] In addition,
formation of the harmful TCP (topologically close
packed) phases such as Mu, P, Sigma, and Laves[15]

puts a limit on the amount of the refractory alloying
additions. The d-electrons concept based on the
PHACOMP (PHAse COMPutation) method gives a
good measure of the susceptibility for the TCP phase
formation and the gamma-prime (c¢) precipitate phase
volume fraction,[16–18] which can also be determined by
a very few thermodynamics-based commercial
software.[8–10]

As the modeling of interdependence of composition,
microstructure, properties, and performance in alloys is
a challenging task by physics and thermodynam-
ics-based models, the artificial neural network (ANN)
method appears to be a powerful approach for alloy
design. The artificial neural network has been effectively
used in alloy design and modeling the mechanical,
thermal, and physical properties of a variety of different
alloy systems such as carbon steels,[19–23] austenitic
stainless steels,[24] titanium alloys,[25] aluminum,[26,27]

molybdenum,[28] and polycrystal and single-crystal
Ni-based superalloys.[29,30] It has also been successfully
used for modeling the process parameters in a number
of manufacturing processes.[31–33] Moreover, ANN has
found applications in image analysis for classification of
defects in cast parts and in crept microstructures.[34,35]

Successful application of ANN particularly for design of
Ni-based superalloys has been reported in the literature
for predicting the thermal expansion,[36] yield and tensile
strength,[37–39] creep and fatigue life,[38–40] and lattice
parameters of the matrix and precipitate.[41]

This current study utilizes the artificial neural network
(ANN) modeling, integrated with the physics-based
PHACOMP and thermodynamics-based CALPHAD
(CALculation of PHAse Diagrams), for the alloy design
of Ni-base superalloys. Thus, the current work differs
from other studies in the literature by an integrated alloy
design approach that uses beneficial aspects of the
artificial neural networks, PHACOMP, and CAL-
PHAD. The artificial neural networks use known
examples (input) to infer rules for estimating correct
output that essentially unveils concealed patterns in the
input data. It is here shown that this method is capable
of correlating the chemistry of the alloys and their
operating conditions to the creep rupture life. The model
also provides very accurate density predictions. The c¢
volume fraction and the propensity for TCP formation
are calculated by the PHACOMP method.[16–18] The c¢
volume fraction is used as one of the inputs to the
network, but the TCP formation, judged by the Md

number, is used in post-processing of the ANN data.
The effect of alloying elements on the volume fraction of
the c¢ and formation of the TCP phases and then their
effect on the creep resistance are investigated, and
combined effects are illustrated in scatter plots. In
addition, single-crystal samples of an experimental alloy
with the third-generation composition are grown. The
composition of this alloy is within the design space
whose properties are predicted by the current ANN.
Following an aging treatment, creep experiments of this
alloy are conducted and the results are compared to the
ANN predictions. The promising results achieved in this
study can aid alloy designers/manufacturers to reduce
the degree of empiricism inherent in many previous
treatments and reduce the number of trial experiments
when developing new alloys.

II. ARTIFICIAL NEURAL NETWORK MODEL
AND EXPERIMENTAL VERIFICATION

Artificial neural network models are exceptionally
useful in complex pattern recognition and function
approximation tasks where other techniques are not able
to notice the trend. Therefore, they are especially used in
places where there is not a physically sound model such
as alloy design with multiple components. Among
various types of artificial neural networks, the multilayer
perceptron (MLP) feed-forward network is a commonly
used one due to relative ease in implementation and
lower number of required training samples.[42] Hence, an
MLP developed in Matlab is used in the present study.
The architecture of the MLP used in the current study is
schematically shown in Figure 1, which includes an
input layer (Xi), a processing unit called hidden layer
(aj), and an output layer (O). The hyperbolic tangent
and linear transfer functions[42,43] are used, respectively,
in the hidden and output layers. The weights Wi,j are
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assigned for the connections between the input and the
hidden layers and bj are between the hidden and output
layers. The Bayesian Regularization (BR) backpropa-
gation algorithm[44,45] is used to adjust the weights in
neurons after each iteration in order to increase the
accuracy in the output.

A Ni-base superalloy database for the training and
testing of the artificial neural network model is formed
by collecting data from the open literature, comprised of
articles and patents. The database contains 260 sin-
gle-crystal superalloys for the density modeling and
1250 datasets for the creep rupture time. The test
temperature ranges from 750 �C to 1200 �C and the test
stress ranges from 30 to 845 MPa in the alloy database
for the rupture time which itself ranges from 15 to 1050
hours. Eighty percent of the literature data is selected
randomly to train the network and the remaining twenty
percent is used to test the performance of the trained
network.

MLP architectures of 10-8-1 and 14-10-1 are devel-
oped for modeling the density and rupture time,
respectively. The network has 10 input nodes (concen-
tration of 10 alloying elements) for the density modeling
and 14 input nodes (concentration of 10 alloying
elements, volume fraction of the c¢ phase, density,
temperature, and stress) for the rupture time modeling.
The number of neurons (nodes) for the hidden layer (8
for the density and 10 for the rupture time) is selected
based on the error level of the network. Both networks

have one output node, which is the density or rupture
time. The error of the network is determined for the
training and testing of the network for both the density
and rupture life estimation as presented in Figures 2(a)
and (b). It is seen that by increasing the number of nodes
in the hidden layer, the network error decreases. Beyond
8 nodes in the density modeling and 10 nodes in the
rupture time modeling, the error of the network is
stable.
An alloy design space is created using randomly

generated numbers in the composition ranges for
elements shown in Table I. Obviously, an alloy design
space can cover infinite number of alloys depending on
the composition resolution. For the ANN modeling,
forty-five thousand (45,000) alloy compositions are
generated. The volume fraction of the c¢ phase[16] and
the Md value[18] for each alloy in the generated design
space are determined according to the PHACOMP
model. The artificial neural network then has predicted
the rupture time and density for the generated 45,000
alloy compositions.
An experimental alloy (named ERBALLOY) with the

third-generation composition (Table II) and a moderate
rupture time is selected from the design space. In fact,
ERBALLOY composition differs from the second-gen-
eration commercial single-crystal superalloy CMSX-4
composition only by 2 pct more Re, which makes it a
third-generation superalloy. Although we have tried, it
has been impossible to prepare (melt) alloy

Fig. 1—Schematic architecture of the MLP used in this study showing the input, hidden, and output layers.
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compositions with much higher rupture time predicted
by the integrated ANN approach in this study. Please
see Section III for predicted alloy properties by the
ANN method. Hence, we have used CMSX-4 as a
master alloy to prepare ERBALLOY which is proces-
sible in our laboratory. Despite its lower rupture time
compared to alloys in its generation, utilization of
ERBALLOY for the purpose of delineating the steps
and procedures in an alloy development program is
crucial and instructive. Solidification range (1403 �C to
1354 �C) and precipitate solvus temperature (1250 �C)
of ERBALLOY are determined by Thermo-Calc
(CALPHAD) using the TCNI7 database. Then, sam-
ples of this alloy are grown in [001] direction as
single-crystal rods of 15 mm diameter and 90 mm
length by the Vertical Bridgman method.[46] Creep test
samples with 6 mm reduced diameters are machined
according to the ASTM E139. The samples are then
subjected to a step-wise solution treatment to prevent
incipient melting according to 1280 �C/2 hours +
1290 �C/2 hours +1300 �C/2 hours + 1305 �C/2 hours
+ 1315 �C/4 hours/Water Quench. The solu-
tion-treated microstructure contains cuboidal precipi-
tates with a unimodal size distribution and a mean
edge size of 90 nm. Following the solution treatment,
the samples are first aged at 1140 �C/6 hours/Water
Quench and then at 870 �C/24 hours/Water Quench.
Thus, creep samples have a bimodal precipitate size
distribution containing 48-nm-diameter spheroidal and
327-nm-edge-length cuboidal precipitates. These pre-
cipitate sizes are determined by ImageJ software from
the digital Scanning Electron Microscope (SEM)
images. Similarly, precipitate volume fraction is deter-
mined by ImageJ software to be about 70 pct after
aforementioned heat treatment. Nevertheless, the vol-
ume fraction of the precipitates at room temperature
following solidification is predicted by both PHA-
COMP and CALPHAD (Thermo-Calc) as 58 pct.
Then, the creep behavior of this alloy is determined
in three different test conditions at 750 �C/750 MPa,
982 �C/248 MPa, and 1100 �C/137 MPa according to
ASTM E139.

III. RESULTS AND DISCUSSION

A major objective in the design of superalloys used in
the hot sections of the turbine engines is to come up with
alloy compositions that provide a high creep life with a
low alloy density. Of course, there are other equally
important parameters like the oxidation resistance, hot
corrosion resistance, castability, and cost which are
affected by the chemical composition of the alloy.[2,11]

Although the latter properties could also be included in
the artificial neural network model, this study focusses
only on the former properties to fit the results within
publishable number of pages. The density of an alloy is
predicted based on the amount and atomic weights of
the elements forming the alloy, while the creep rupture
life is related to the elements in the alloy, volume
fraction of c¢, Md values, stress, and temperature.
The training and testing of the network are accom-

plished by comparing the predicted values and the
experimental (literature) ones. A network with one
hidden layer that contains eight neurons is observed to
perform with the lowest error (Figures 3(a) and (b)) for
the density estimation. Likewise, a network with one
hidden layer and ten neurons has the best performance
for the rupture time estimation as seen in Figures 3(c)
and (d). It is apparent that the artificial neural network
model performs very well in modeling the density and
rupture time with the correlation levels of 99.3 and
92.7 pct, respectively. Clearly, the prediction accuracy
for the rupture time is lower. The rupture time depends
on other parameters (i.e., temperature and stress) than
the chemistry of the alloy alone, which increases the
sensitivity of the experiments and causes fluctuations in
the experimental data. Since the input data are gathered
from published papers and patents, the unknown
inaccuracy of the input data is conveyed to the network.
The density, volume fraction of the c¢, and Md

distributions of the alloys in the entire design space
are shown in Figure 4. The spread is between 8 and
9.6 g/cm3 for the density, 40 and 95 pct for the c¢
volume fraction, and 0.9 and 1.08 eV for the Md. The
respective peaks occur at 8.6 to 8.7 g/cm3, 60 to 65 pct,

Fig. 2—Error for training and testing the networks with different numbers of hidden nodes for estimation of (a) density and (b) rupture time.
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and 0.97 to 0.98 eV. These histograms show symmetric
normal distributions, and the peak values match the
typical properties of the commonly known single-crystal
superalloys, which indicate a well-representing alloy
design space.

The average creep rupture lives of the alloys in the
design space are determined for various composition
ranges of a selected element (Re, Cr, Al, and Ta/W), and

the results are plotted in Figure 5. Obviously, these plots
can be generated for any element in the alloy composition.
The increased Re content substantially increases the
rupture life. Re partitions preferentially to the matrix (c)
and is a strong solid solution strengthener of thematrix in
the Ni-based single-crystal superalloys.[15] Re is also a
slow diffusing element in the matrix which is the main
reason for the rhenium effect, increasing the rupture

Table I. Composition Ranges Used to Generate the Alloy Design Space

Element Ni Re Cr W Co M Hf Ti Al Ta

Range (Wt Pct) bal. 0 to 6 0 to 10 0 to 10 0 to 10 0.6 0.1 1 3 to 7 0 to 10

Table II. Composition of ERBALLOY

Element Ni Re Cr W Co M Hf Ti Al Ta

Range (Wt Pct) bal. 5.0 7.1 6.5 9.3 0.5 0.0 0.8 5.0 5.5

Fig. 3—The ANN-predicted values are plotted against the known values for the density and rupture time after training (a density, c rupture
time) and testing (b density, d rupture time).
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strength.[47–49] Unfortunately, like other refractory ele-
ments, Re increases the tendency for the TCP phase
formation which is predicted in this study by utilizing
Md.

[16] A high Md number increases the propensity. Due
to the Re’s highMd number, the overallMd number of an
alloy containing Re increases.[50] Figure 6 plotsMd vs the
volume fraction of c¢. The first row (Figures 6(a) through
(c)) shows the percentage of alloys vs Md for the specified
concentration ranges of the elements Re, Cr, and Al. In
Md vs volume fraction of the c¢ scatter plots, the gray
background shows the entire alloy design space, and the
red (darker in b/w print) regions show the alloys with
various contents of Re, Cr, or Al. The values for the
well-known commercial superalloys are also pro-
vided.[51–53] When investigating the scatter plots in
Figures 6(d) through (l), note that the histograms in
Figures 6(a) through (c) show the population density of
theMd values in the scatter plots. Hence, one can see, for
example, theMd values are not equally distributed in a red

region. Although very weak, a shift toward a lower
volume fraction of c¢ and a higherMd number is observed
in alloys with a higher Re content (Figures 6(e), (f), and
(g)). A higher alloy density and a lower volume fraction of
c¢with increasedRe are also predicted by theANNmodel.
These predictions corroborate with the literature, and
that is why recent activities have focused on developing
high creep-resistant alloys with low levels of Re.[49]

Cr, a c-forming and fast diffusing element in the
matrix,[2] clearly decreases the rupture life as seen in
Figure 5. Similar to Re, Cr has a high propensity to
form the brittle TCP phases, which reduce the creep
resistance of an alloy. The presence of Cr in an alloy
increases the partitioning of the refractory elements to
the matrix,[54] and so enhances the formation of the TCP
phases. This claim is supported by Md vs the volume
fraction of the c¢ scatter plots for the alloys with various
Cr contents as seen in Figures 6(g), (h), and (i).
Increasing amount of Cr shifts the alloy design space
toward the region with lower volume fraction of c¢ and
higher values of Md. The observed shift is more
discerned with Cr than Re. While the presence of Cr is
necessary for the hot corrosion and oxidation resistance,
a low Cr content is beneficial for the rupture strength
and stability of the microstructure. Hence, in later
generation superalloys, the Cr level is reduced to less
than 4 wt pct to accommodate more useful refractory
elements.[54,55]

Al is an essential element for oxidation resistance due
to formation of the Al2O3 oxide layer. Moreover, it is
the major element in the strengthening c¢ phase and is a
solid solution strengthener in the matrix, yet Figure 5

Fig. 4—Percentage of the alloys vs density (a), volume fraction of c¢ (b), and Md (c).

Fig. 5—Rupture time vs concentration of Re, Cr, and Al. The
secondary top axis shows rupture time vs ratio of Ta/W.

cFig. 6—Percentage of alloys in givenMd ranges shown in (a) through (c).
Scatter plots display Md vs the volume fraction of the c¢ for different
concentrations of Re (d through f), Cr (g through i), and Al (j through l).
The triangle, circle, and diamond show the first (CMSX-2)-,[51] second
(CMSX-4)-,[52] and third (CMSX-10)-generation[53] superalloys, respec-
tively.
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suggests that its content should be adjusted carefully for
an increased rupture life. Figures 6(j), (k), and (l) show
the plots of Md vs the volume fraction of c¢ for various
Al concentrations. As shown before, Md vs the volume
fraction of c¢ shows an inverse relationship for Re and
Cr. In contrast, alloys with higher Al content have
higher volume fraction of c¢ and higher Md values.
Moreover, the plots show a very discernible increase in
the Md value with a slight increase in the Al content.
Although Al is the main c¢ forming element, its excessive
usage diminishes the high temperature stability of the
alloys by making them prone to precipitation of the
TCP phases.[56] Therefore, increasing the Al content
increases both the volume fraction of c¢ and the Md

values.
Two other major elements used in superalloys are the

refractory W and Ta, and the ratio of Ta/W is important
in the alloy design. From the processing point of view, a
high Ta/W ratio is reported to increase the interface
stability and reduce the extent of the freckling type
casting defects caused by convective instabilities during
solidification processing.[57] Ta, by segregating into the
interdendritic regions, alleviates density inversion in
these regions induced by the W segregation to the
dendritic cores. Thus, a Ta/W ratio around unity is
beneficial. Hence, the Ta/W ratio can give a hint on the
manufacturability of alloys as single crystals. In addi-
tion, it has been reported that alloys with the ratios close
to the unity have the best hot corrosion resistance.[58]

The ANN modeling results of the current study predicts
these reported experimental findings. The rupture
strength in Figure 5 increases until this ratio becomes
unity and then it decreases. The effect of this ratio on the
creep properties relies also on the Ta/W relation to the c¢
phase fraction. At a given Al concentration, Ta
increases the volume fraction of c¢, while alloying
elements like W, Mo, Cr, and Re decrease it.[2] It has
been also shown that the variation of the Ta/W ratio has
a significant effect on the size and morphology of the c¢
phase in single-crystal superalloys, both of which are a
strong function of the test temperature and misfit that
determine the creep strength of the alloys.[58] Increasing
this ratio may lead to changing the shape from the
cuboidal to the spheroidal one which reduces the
rupture life.

The rupture life of the designed alloys can be screened
for selected elements and parameters. An example is
shown for Re, considering the density, volume fraction
of c¢, and the Md values in a series of scatter plots
presented in Figure 7. The gray background shows the
entire alloy design space, and the red (darker in b/w
print) regions show the alloys with Re content similar to
those in the 1st, 2nd, and 3rd generation single-crystal
superalloys in the respective columns. The first row
(Figures 7(a) through (c)) shows distribution of alloys
with respect to the rupture time for varying Re contents.
While interpreting these histograms, the population
density distribution of the red (rupture time) is a more
important parameter than the ratio of the total red to
the total gray bars. Figures 7(d) through (f) show an
overall sigmoid relationship between the rupture life and
the alloy density with a large variation in both the axes.

The overall trend of the data indicates about 1000-hour
increase in the creep life for a 1 g/cm3 density rise.
However, the creep life exists in a broad band for a given
density. Closeness of the experimental data [51–53] (filled
symbols) presented in the design space to the artificial
neural network predictions (empty symbols) for well-
known first (CMSX-2: triangle)-, second (CMSX-4:
circle)-, and third (CMSX-10: diamond)-generation
commercial superalloys displays the prediction accuracy
of the artificial neural network. The rupture life
increases with addition of Re (Figures 7(a) through (f),
red regions). A striking observation is, however, that
alloys with a high amount of Re (Figures 7(c) and (f))
are not necessarily the best creep-resistant ones and the
rupture life spans a large range from about 100 to 1000
hours. This shows the unavoidable effect of the other
elements than Re and the current artificial neural
network demonstrates this nicely.
Figures 7(g) through (i) show that in the entire design

space, alloys with the c¢ volume fractions around 55 to
65 pct have the highest rupture strengths, which is in
accord with the data published for some advanced
single-crystal nickel-based superalloys.[1,2,15] The rup-
ture strength decreases when moving away from these
values. For high rupture strength alloys, the range
within which the c¢ volume fraction varies gets narrower.
It is noteworthy that dependency of the rupture life on
the c¢ volume fraction is high and positive on the
low-fraction boundary (left), while it is lower and
negative on the high-fraction boundary (right). The
dependency may be seen by the slopes of the lines that
may be drawn on the left and right boundaries of the
scatter plots in Figures 7(g) through (i). The role of the
Re addition on the rupture life is prevalent in Fig-
ures 7(g) through (i), but that on the c¢ volume fraction
is vague. Figures 7(j) through (l) indicate an Md value of
about 0.98 to yield the highest creep lives in the design
space. Again, the role of the Re addition on Md is not
obvious in these figures. The reduced c¢ volume fraction
and increased Md with the Re additions are seen,
however, in Figures 6(a) through (c).
The combined effect of elements is shown for two

groups of alloys in Figures 7(f), (i), and (l). As described
earlier, the red region, whose boundary is outlined with
dots, shows alloys containing Re greater than 5 wt pct.
The first overlaid group contains Re and Cr and is
shown by the color green, whose boundary is outlined
with a white line. The second group contains Re, Cr, Ta,
and Al and is shown by the color light blue, whose
boundary is outlined with a dashed line. The element
contents in both the groups are equivalent to those in
the 3rd generation superalloys. It is clearly illustrated by
these figures that the artificial neural network results can
be post-processed to highlight any alloy composition
ranges for any investigated property. In fact, investi-
gated properties for definite alloy compositions are
already shown for well-known commercial superalloys
as illustrated in Figures 6 and 7. Data for ERBALLOY
(h) are also shown in Figures 7 (f), (i), and (l).
ERBALLOY has a rupture time slightly greater than
the CMSX-4, and its composition differs from that of
the CMSX-4 only by 2 wt pct more Re.
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Fig. 7—Percentage of alloys in given rupture time ranges shown in (a) through (c). Rupture time vs density (d through f), volume fraction of c¢
(g through i), and Md (j through l) are plotted. The data for the experimental alloy (ERBALLOY) of this study are also shown as square
symbols. See the text for other symbols.
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Figure 8(a) shows the artificial neural network-pre-
dicted influence of temperature and stress on the rupture
time of ERBALLOY. It is observed that with increasing
temperature, time to rupture decreases at all stress
values. The rate of decrease, however, is lower at higher
stresses. The same is true for the effect of the stress and
the results show that at higher temperatures, the
dependency of the rupture strength to the stress
decreases. Interactions between the temperature, stress,
and rupture time are better presented by the Lar-
son–Miller plots.[2] Figure 8(b) shows the artificial
neural network-modeled Larson–Miller plots (continu-
ous lines) for the first (CMSX-2)-, second (CMSX-4)-,
and third (CMSX-10)-generation alloys as well as for
ERBALLOY. Experimental data points are also shown
for the commercial alloys from the literature[51–53] and
for ERBALLOY. A close agreement is evident between
the experimental and artificial neural network-predicted
Larson–Miller plots.

Influence of the major elements on the density is
shown in Figure 9 for ERBALLOY. The effect of each
alloying element on the density is studied by varying the
concentration of that element only, compensated by the
Ni content while keeping the content of the other
elements fixed. This plot is generated to show the
capabilities of the artificial neural network model for the
density estimation, and similar plots can obviously be
generated for any alloy composition. The plot simply
shows variation in the density, which is related to the
amount of the elements in the alloy and their atomic
weights. The data point symbol corresponding to an
element’s concentration in ERBALLOY is made larger
in Figure 9. A careful look will discern that the larger
symbols are all at correct density value of 8.88 g/cm3 for
ERBALLOY, which again indicates the prediction
capability of the ANN model. It is apparent that
elements with atomic weights larger than Ni increase
the density of the alloy and vice versa. Co has almost a
neutral effect on the density. The refractory elements
like Re and W, which increase the creep resistivity of the

alloy, increase the density of the alloy and therefore
their addition should be done with caution to have a
balance between the density and creep resistivity.
The results of this integrated artificial neural network

alloy design study can be used to suggest alloys with
superior properties compared to existing commercial
superalloys. Figure 7 can be utilized for such purpose as
it shows rupture time for all 45,000 alloys in the design
space and for selected commercial alloys. Although
hundreds of alloys with superior properties can be
screened out, Table III lists ten alloys in each of the
first-, second-, and third-generation single-crystal super-
alloy groups. A well-known commercial alloy precedes
the list in each group. The listed alloys are selected with
a lower density and a greater rupture time than the
commercial alloy in each generation. As already dis-
cussed before, while moving from the first-generation to

Fig. 8—Temperature–stress–rupture time plot (a) for ERBALLOY and Larson–Miller plots (b) for selected alloys. Continuous lines in (b) show
the ANN modeling results, whereas the dotted lines show the experimental values.

Fig. 9—Density variation of ERBALLOY with concentration of the
elements.
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the third, the Cr content decreases, the Re content
increases, and the gamma-prime precipitate volume
fraction increases. The Al content is selected to be 5 to
6 pct which is, in general, the amount in commercial
superalloys. The Ta/W ratio and Md values are around
unity, which provides the highest rupture time.

The foregoing has presented that the ANN alloy
design is a powerful method with highly accurate
prediction of the alloy properties. The ANN method
can use results from the PHACOMP and CALPHAD-
based methods as inputs. Alternatively, the results of the
three methods can be utilized in the post-processing step
to establish correlations between the microstructure,
property, and performance. In addition, the ANN
results can be transferred to a CALPHAD-based
modeling platform to predict solidification and heat-
treated microstructures. Conversely, composition mod-
eling can, of course, be done by using only the
PHACOMP or CALPHAD-based methods. However,
this requires a sequential treatment of several

microstructural entities, thermodynamic properties,
mechanical properties, and employment of a multitude
numbers of phase diagrams. Nevertheless, this is very
cumbersome, and trustable simulation correlations
between the composition of a multicomponent alloy
and its mechanical properties are still in their
infancy.[8–12] Evidently, an integrated ANN modeling
can provide a faster route to finding a correct compo-
sition window and establishing a sound composi-
tion–microstructure–property relationship. Obviously,
ANN modeling requires an access to a reliable alloy
property database, which itself is not easily available
and a tedious work to compile.

IV. CONCLUSIONS

Designing superalloys with increased temperature
capability, improved life, and reduced density is of a
crucial importance in aerospace and power industries. A

Table III. Suggested First-, Second-, and Third-Generation Superalloys

Alloy Cr Co Re W Al Ta Ti Mo Hf
Density (g/

cm3)
c¢ Vol.
(Pct)

Md

eV
Ta/
W

Rupture Time
(h)

First-Generation Single-Crystal Superalloys
CMSX-2 8 4.6 — 7.9 5.6 5.8 0.9 0.6 — 8.56 64 0.987 0.73 74
1 9.19 8.75 0.15 5.35 6.51 5.06 1 0.6 0.1 8.29 67 0.993 0.95 74
2 9.95 5.21 0.44 6.91 6.10 5.40 1 0.6 0.1 8.43 63 0.998 0.78 74
3 7.9 6.3 — 7.6 6.2 5.7 1 0.6 0.1 8.47 68 0.993 0.75 77
4 9.23 6.82 0.39 6.41 6.03 6.49 1 0.6 0.1 8.48 64 0.997 1.01 80
5 9.6 4.9 0.2 6.4 5.6 6.7 1 0.6 0.1 8.55 62 0.989 1.03 85
6 10 2 0.36 6.62 5.56 6.85 1 0.6 0.1 8.56 62 0.992 1.04 96
7 8.9 3.9 0.3 6.6 5.7 6 1 0.6 0.1 8.52 65 0.984 0.92 98
8 9.06 2 — 7.39 5.84 6.81 1 0.6 0.1 8.55 66 0.995 0.92 105
9 8.2 6.5 0.1 5.4 5.2 4.1 1 0.6 0.1 8.50 65 0.953 0.75 135
10 8.4 8.3 0.2 4.5 5.3 4.4 1 0.6 0.1 8.46 64 0.955 0.97 146

Second-Generation Single-Crystal Superalloys
CMSX-4 6.5 9 3 6 5.6 6.5 1 0.6 0.1 8.7 65 0.985 1.08 275
1 5.84 7.10 3.03 9.96 6.60 6.98 1 0.6 0.1 8.68 68 1.001 0.70 277
2 6.79 8.50 3.19 8.26 6.33 7.94 1 0.6 0.1 8.66 66 1.000 0.96 279
3 6.79 6.08 2.75 7.89 5.91 6.55 1 0.6 0.1 8.69 69 0.996 0.83 287
4 5.09 7.75 2.5 8.36 6.30 7.01 1 0.6 0.1 8.70 67 1.003 0.84 291
5 4.33 8.85 2.5 7.71 6.06 7.08 1 0.6 0.1 8.69 65 0.997 0.92 292
6 4.92 9.83 3.5 6.98 6.44 7.05 1 0.6 0.1 8.67 66 0.992 1.01 303
7 7.07 2.74 3.5 7.11 6.50 8.69 1 0.6 0.1 8.68 70 0.992 1.22 307
8 6.15 2.72 3.5 7.15 6.00 6.68 1 0.6 0.1 8.67 69 0.997 0.94 326
9 6.29 6.45 2.54 8.93 6.29 8.00 1 0.6 0.1 8.70 70 0.996 0.90 346
10 6.65 3.15 2.69 9.13 6.42 8.26 1 0.6 0.1 8.70 69 0.999 0.90 362

Third-Generation Single-Crystal Superalloys
CMSX-10 2 3 6 5 5.7 8 0.2 0.4 — 9.05 77 0.965 1.60 840
ERBALLOY 7.1 9.3 5 6.5 5 5.5 1 0.6 0.1 8.88 58 0.971 0.85 361
1 0.86 3.88 5 8.54 6.19 10 1 0.6 0.1 9.02 78 1.015 1.17 841
2 0.94 7.37 6 10 6.42 8.13 1 0.6 0.1 9.03 75 1.022 0.81 842
3 0.45 10 5.29 9.81 6.43 7.96 1 0.6 0.1 9.01 76 1.015 0.81 842
4 0.32 6 5.09 8.16 6.24 9.84 1 0.6 0.1 9.04 75 1.012 1.21 843
5 2.42 0.51 5.13 10 5.96 8.24 1 0.6 0.1 9.03 74 1.010 0.82 843
6 1.69 6.80 6 8.04 5.92 8.11 1 0.6 0.1 9.02 73 1.002 1.01 844
7 1.51 5.22 5.69 10 6.42 6.98 1 0.6 0.1 8.98 76 1.014 0.70 855
8 0.76 9.02 5.25 9.58 6.02 8.23 1 0.6 0.1 9.05 74 1.007 0.86 875
9 0.50 7.32 5.13 10 6.54 8.38 1 0.6 0.1 9.00 76 1.023 0.84 894
10 0.30 8.01 5.74 9.14 6.30 8.62 1 0.6 0.1 9.05 76 1.013 0.94 895

Element contents are in wt pct.
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multilayer perceptron (MLP) feed-forward (FF) artifi-
cial neural network (ANN) with Bayesian regularization
(BR) backpropagation algorithm is developed and used
to model the density and rupture time of single-crystal
superalloys. The input to the network are the compo-
sition for the density modeling and the composition,
density, precipitate volume fraction, temperature, and
stress for the creep life modeling. The precipitate volume
fraction is calculated via the PHACOMP method.
Propensity for the TCP phase formation is also deter-
mined by the PHACOMP method and is used in
post-processing of the ANN results. The results are
presented in scatter plots, which show effect of Re, Cr,
Al, and the Ta/W ratio on the density, creep life,
precipitate volume fraction, and TCP propensity. In
addition, Larson–Miller plots are generated for known
commercial alloy compositions. The ANN model vali-
dation is carried out by comparing the ANN predictions
with the experimental literature data and with the data
produced in the present study for an experimental alloy
of a 3rd generation composition. The predictions are in
close agreement with the experimental data. Before
determining the creep lives for the experimental alloy,
the solidification behavior of the alloy is studied by a
CALPHAD-based software, and then single-crystal rods
are grown by the Vertical Bridgman method for
preparing creep test samples. It is shown that ANN
model unveils the complex correlations between the
microstructure, application parameters, and the prop-
erties, so it is a powerful alloy design approach with
highly accurate predictions of the alloy properties.
Furthermore, the ANN results can be transferred to
thermodynamics-based modeling platforms to predict
alloy solidification and heat-treated microstructures.
Thus, the ANN modeling can facilitate in finding the
correct composition window and final microstructure/
properties of the product, which can help reduce the
material development cycle time.
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Sci. Eng. A, 2005, vols. 413–414, pp. 465–69.

11. R.C. Reed, T. Tao, and N. Warnken: Acta Mater., 2009, vol. 57,
pp. 5898–5913.

12. D.J. Crudden, B. Raeisinia, N. Warnken, and R.C. Reed: Metall.
Mater. Trans. A, 2013, vol. 44 (5), pp. 2418–30.

13. P. Caron: Superalloys 2000, TMS, Warrendale, PA, 2000,
pp. 737–64.

14. R.A. MacKay, T.P. Gabb, J.L. Smialek, and M.V. Nathal: JOM,
2010, vol. 62 (1), pp. 48–54.

15. E. Fleischmann, M.K. Miller, E. Affeldt, and U. Glatzel: Acta
Mater., 2015, vol. 87, pp. 350–56.

16. Y. Murata, S. Miyazaki, M. Morinaga, and R. Hashizume: Su-
peralloys 1996, TMS, Warrendale, PA, 1996, pp. 61–70.

17. N. Yukawa, M. Morinaga, Y. Murata, H. Ezaki, and S. Inoue:
Superalloys 1988, TMS, Warrendale, PA, 1988, pp. 225–34.

18. K. Matsugi, Y. Murata, M. Morinaga, and N. Yukawa: Super-
alloys 1992, TMS, Warrendale, PA, 1992, pp. 307–16.

19. N.S. Reddy, J. Krishnaiah, S.G. Hong, and J.S. Lee: Mater. Sci.
Eng. A, 2009, vol. 508, pp. 93–105.

20. W. You, Y.X. Liu, B.Z. Bai, and H.S. Fang: J. Iron Steel Res. Int.,
2008, vol. 15 (2), pp. 87–90.

21. Z. Sterjovski, D. Nolan, K.R. Carpenter, D.P. Dunne, and J.
Norrish: J. Mater. Process. Technol., 2005, vol. 170 (3),
pp. 536–44.

22. S. Rath, P. Talukdar, and A.P. Singh: Am. J. Neural Netw. Appl.,
2017, vol. 3 (3), pp. 36–39.

23. Z. Guo and W. Sha: Comput. Mater. Sci., 2004, vol. 29, pp. 12–28.
24. S. Mandal, P.V. Sivaprasad, S. Venugopal, K.P.N. Murthy, and B.

Raj: Mater. Sci. Eng. A, 2008, vol. 485 (1–2), pp. 571–80.
25. S. Malinov and W. Sha: Mater. Sci. Eng. A, 2004, vol. 365 (1–2),

pp. 202–211.
26. S. Al-Lubani: Int. J. Mech. Prod. Eng. (IJMPE), 2018, vol. 6 (5),

pp. 15–18.
27. R.S. Yassar, O. AbuOmar, E. Hansen, and M.F. Horstemeyer:

Mater. Des., 2010, vol. 31, pp. 3683–89.
28. B.D. Conduit, N.G. Jones, H.J. Stone, and G.J. Conduit: Scripta

Mater., 2018, vol. 146, pp. 82–86.
29. J. Warde and D.M. Knowles: ISIJ Int., 1999, vol. 39 (10),

pp. 1015–19.
30. F. Tancret and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2003,

vol. 19, pp. 283–90.
31. S.B. Singh, H.K.D.H. Bhadeshia, D.J.C. MacKay, H. Carey, and

I. Martin: J. Ironmak. Steelmak., 1998, vol. 25 (5), pp. 355–65.
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