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A Transfer Function for Relating Mean
2D Cross-Section Measurements
to Mean 3D Particle Sizes
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It is common practice to estimate mean 3D particle and
grain size of polycrystalline materials by multiplying 2D
cross-sectional measurements by a multiplication factor.
However, the most frequently used multiplication fac-
tors apply only to uniform or specific dispersions of
particles, and therefore can provide misleading results.
In the present work, empirical equations are developed
to more accurately predict the mean 3D grain size of a
lognormal spherical particle dispersion, regardless of the
dispersion’s width. The equations provide an improve-
ment over scalar multiplier values by allowing the effects
of particle size distribution to be accounted for using
inputs that can be obtained by cross-sectional analysis.
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3D particle size is an important input parameter in
many microstructure evolution models,[1–6] yet it can
only be directly measured in situ for a very small
percentage of materials. While serial sectioning can be
used to obtain the 3D attributes of polycrystalline
materials, it is either prohibitively expensive or imprac-
tical for the majority of applications. Often, the
researcher must instead utilize stereology to estimate
the 3D sizes from observations on a 2D cross-sec-
tion. Stereologically appropriate 2D measurements are
either lineal intercepts (the chord length of linear probe
intersections with volumetric features) or section areas
(the intersection areas of a planar probe cutting through
volumetric features).[7] The lineal intercepts or section
areas can then be used to predict the 3D caliper diameter
distributions using either the Cahn–Fullman or

Johnson–Saltikov methods, respectively.[8] However,
both techniques suffer from relatively large error prop-
agation issues (e.g., as described in Reference 9).
In the absence of sufficient 2D distribution data,

many researchers will instead resort to estimating the
mean 3D particle size through the use of a scalar
multiplication factor, denoted here as j. These values
are often based on geometric constants. For example,
the diameter of a single sphere is equal to 1.5 times the
average randomly oriented chord length through its
volume. As such, multiplication of the mean 2D lineal
intercept measurement by 1.5 to estimate the mean 3D
particle size is an acceptable practice when the particles
in a system can be reasonably approximated by a
collection of uniformly-sized spheres. However, this
multiplication factor is no longer accurate when the
system contains spherical particles with a distribution of
sizes. In fact, the correct value of j will always be less
than 1.5 when the particle sizes follow a lognormal,
gamma, or Rayleigh distributions.[7,10,11] Additionally, it
is worth noting that non-spherical shapes have different
caliper-size-to-intercept ratios. Uniform distributions of
regular polyhedrons can have values of j ranging from
1.5 for a sphere to 2.25 for a cube,[7,12] with even higher
values for shapes representing non-equiaxed grains: The
proper multiplication factor for any distribution is
therefore also a strong function of the expected particle
shape and 3D distribution.
An alternative multiplication factor focusing on

polycrystalline grain structures was proposed by Men-
delson in 1967 and took into account the effect of both
particle shape and distribution.[11] Mendelson began by
determining the correct j value for a uniform dispersion
of tetrakaidecahedral particles, j0 = 1.7756, as this was
expected to more accurately represent an equiaxed grain
structure than a sphere. Mendelson then obtained the
expected total surface area per unit volume of a
lognormal distribution of particles with identical shapes
and differing sizes. This function was given in terms of
the lognormal shape parameter, r; the statistical value
that controls the variance of a lognormal distribution.
Adjusting for the assumption of tetrakaidecahedral
particles, this gave the following equation:

K ¼
�D
�L
¼ 1:7756� ðe�2:5ðr2ÞÞ ½1�

where �D is the mean 3D caliper diameter, �L is the
mean 2D lineal intercept through the volume, and r is
the lognormal shape parameter of the 3D particle dis-
tribution. This approach is not limited to tetrakaideca-
hedra. It can also be applied to any particle shape
assuming an appropriate adjustment is made to j0.
As pointed out by Mendelson in the original work,[11]

Eq. [1] is of little practical use because the r for the 3D
distribution must be known a priori. At the time (prior
to automated serial sectioning), very little reliable data
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existed for reasonable estimation of expected ranges of r
based on the composition or thermal and mechanical
history of a specimen. Mendelson used experimental
data from Feltham[13] to predict that a typical equiaxed
polycrystalline material would likely have a r value of
0.2291, giving a j value of 1.558. As a verification, he
found a similar result, j = 1.570, using Hillert’s distri-
bution function for steady state growth in place of a
lognormal distribution.[11,14]

To date, Mendelson’s multiplication factor is the most
generally accepted method for estimating 3D particle
dimensions from lineal intercept data, as evidenced by
inclusion in the appendix of ASTM E112.[15] However,
it cannot be assumed that a multiplication factor in the
range of 1.5 to 1.6 would be appropriate for all particle
or grain size measurements in microstructures because
not all particle distributions have identical values of
r = 0.2291.[16,17] Additionally, as has been noted many
times elsewhere, Hillert’s distribution skews the opposite
direction from what is typically observed in material
microstructures.

From inspection of Eq. [1], it appears that it should be
possible to obtain an improved estimate of 3D particle
size using an empirical function relating a measurable
2D metric of dispersion to j for a given particle shape
and distribution type. In the present work, we develop
such a transfer function computationally by using
simulated particle size distributions to relate the stan-
dard deviation of lineal intercepts and section areas
(which are measurable in 2D) to the multiplication
factor, j.

For this study, synthetic microstructures were gener-
ated containing random lognormal dispersions of spher-
ical particles. In each simulation, a lognormal dispersion
of spheres was packed into a cubic voxel array measur-
ing 1500 voxels on each side. This was done by
randomly sampling particle diameters from a lognormal
probability density function with a fixed mean of
�D = 30 and a given lognormal shape parameter r as
shown in Eq. [2], until the sum of the volumes of the
spheres reached 25 pct of the total volume of the cubic
array.

fVðDÞ ¼ 1
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To ensure these lists accurately represented a lognor-
mal distribution, the mean of each list was restricted to
less than 1 pct variation from 30, and the Shapiro/Wilk
test for normality[18] was required to return a p value of
95 pct or greater on the log of the values in the list. If
either of these criterion was not met, the list of particle
volumes was rejected and a new random list was
generated from the distribution.

Once these lists of particle diameters were obtained,
spheres of corresponding volumes were randomly placed
inside the synthetic microstructures, starting from
largest and going to smallest with centers at floating
point coordinates to avoid any grid-based bias. Spheres

were not allowed to come within 1 voxel of another
sphere or extend outside the simulated volume bound-
aries, in order to prevent edge effects. An example of a
resulting microstructure with r = 0.99 can be seen on
the left hand side of Figure 1.
Every simulated microstructure was given an initial r

between 0 and 0.99 at intervals of 0.01, and enough
simulations were run at each value of sigma to result in
at least 100,000 spheres. This resulted in a total of
approximately 11.12 million individual spheres across
735 simulated microstructure, grouped into 100 families
based on the initial sigma chosen to generate the
spheres.
Once all simulations were complete, a probability plot

was made from the diameters for each family of data, as a
final assurance of lognormality. Figure 2 shows all 100
probability plots in a single plot, grouped by color into
sets of 10 to help aid the eye, with the lightest color lines
in each series corresponding to r = 0.0, 0.1, 0.2,…,0.8,
0.9. This figure validates the claim of lognormality, while
also highlighting problems related to resolution, sample
size, and common misunderstandings about the lognor-
mal distribution. In terms of resolution, it is often
necessary when imaging real materials to define a
minimum particle size below which an apparent feature
has a high likelihood of being a ‘‘false positive’’ due to
imaging noise, and is effectively no longer observable.
Note in Figure 2 that that all plots with r>0.68 have 1
pct or more of their particles represented by a diameter of
three or fewer voxels, as indicated by the dashed lines. An
analysis with a minimum particle size of three pixels
would not register the contribution of these particles to
the distribution, thereby shifting down the rest of the plot
and distorting the observed mean value. The fraction of
particles excluded by a given minimum particle size
requirement varies with r. An oft-quoted rule-of-thumb
is that sufficient analytical resolution for particle size
measurement requires the mean particle diameter to be
the equivalent of at least 10 pixels. Three voxels is 1/10th
of the nominal mean 3D particle diameter used in all of
our simulations. Considering that Feltham’s estimation
of r for equiaxed polycrystalline grains[13] is significantly
less than 0.68, the rule-of-thumb appears appropriate for
most applications.
The choice of sampling methodology can also affect

the large particle side of the distributions. Despite there
being over 100,000 spheres sampled in each dataset, the
right-side tails of all datasets exhibit deviations from
lognormality, especially points representing diameters of
300 or greater. This is because it is very difficult to
sample enough values from a widely dispersed popula-
tion to properly characterize the right-side tail. Failing
to do so can throw off the calculated mean. As such,
when collecting data from cross sections, it is important
to sample enough values to accurately represent the
population. Since the impact of feature resolution and
sample size on accuracy are both non-linear functions of
r, there is no minimum requirement for either that is
applicable to all situations.
Finally, it is worth noting that even though every

distribution has a �D between 30.3 and 29.7, most plots
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do not pass though the 50th percentile at D = 30. That
is because the lognormal distribution is asymmetric, and
as such the mean and median are not generally the same
value. The two are linked by Eq. [3], but the implications
of this distinction are often overlooked when discussing
lognormally distributed particle data.

Median ¼ �D� exp
r2

2

� �

½3�

After verifying lognormality, exhaustive cross sec-
tional analysis was performed on each simulated
microstructure. Every column in the X, Y, and Z
directions was analyzed, and the length across every
intersected grain recorded to simulate the most likely
dispersion of chord lengths (‘) from a random cross
sectioning. Each synthetic microstructure was also cross
sectioned across every plane of voxels in the X, Y, and Z
directions and the 2D section area a of each exposed
particle section was recorded for each plane. This gave
the most likely distribution of cross sectional areas
expected from a random cross sectioning for each
simulation. These values were then converted into
circle-equivalent-diameters (d) according to Eq. [2]:

d ¼ 2�
ffiffiffi

a

p

r

½4�

An example of a slice through a synthetic volume with
r = 1, along with the measurements performed on the
slice, can be seen on the right hand side of Figure 1.
The mean chord length (�‘), mean circle-equivalent-di-

ameter (�d), and the normalized standard deviation of
both values (Sð‘=�‘Þ and Sðd=�dÞ) were calculated and
recorded for each of the 100 families of data. Normal-
ized standard deviations were determined by taking a set
of data, dividing each value by the mean of that dataset,
and then finding the standard deviation of the new set of
values. Finally, the multiplication factors for converting
between either �‘ or �d and D were calculated for every
dataset, giving jl and jd, respectively.

Fig. 1—A simulation used in this investigation is shown on the left, along with a single cross-sectional cut on the right. For each cross section,
all sphere sections were recorded to find the circle-equivalent diameters, whereas each column and row was also analyzed independently to
determine the linear intercepts.

Fig. 2—A lognormal probability plot showing the spherical volumes
for each analyzed dataset of different expected r from 0.0 to 0.99 in
steps of 0.01. Data conforming to a lognormal distribution will
follow a straight line and intercept the 50th percentile at el.
Coloring cycles from dark to light in groups of ten, such that 0.0,
0.1, 0.2, 0.3, and so on each correspond to a light set of points.

4426—VOLUME 49A, OCTOBER 2018 METALLURGICAL AND MATERIALS TRANSACTIONS A



The results of this work are summarized in Figure 3,
which plots jl against Sð‘=�‘Þ and jd against Sðd=�dÞ. The
area of the points at the center of each marker represent
the 99.99 pct confidence interval for values of both the
normalized standard deviation and the calculated mul-
tiplication factor. Since jl and jd are mean values, their
confidence intervals are determined using the standard
error of the mean, whereas Sð‘=�‘Þ and Sðd=�dÞ are
standard deviations, and therefore their confidence
intervals are determined using the Chi-squared
distribution.

It was found that a strong linear relationship exists
between the normalized 2D standard deviations Sð‘=�‘Þ
and Sðd=�dÞ and both jl and jd, as shown in Figure 3.
Both linear equations of fit have R2 values of 0.995 or
greater, and the data for jd in particular shows variation
of less than 1 pct for every point tested.

As a further verification of the validity of this
experiment, mathematical proofs can be used to show
that the distributions of spheres with r = 0 should have
jl and jd values of precisely 3/2 and 4/p respectively.
These proofs are provided in the Supplementary Mate-
rial. The simulated data adheres precisely to these
values, whereas the trendlines vary by 3 pct for jl and
0.14 pct for jd. This comparatively large error in jl is
due to the fitted data not actually being linear, but in
fact very slightly convexly curved away from the origin.
The true equation of fit for both equations would have
to be an exponential function of some form, and
deriving them from geometrical statistics is beyond the
scope of this paper. However, the linear equations
included here provide much higher accuracy than a

constant single-value multiplication factor, while also
retaining simplicity in application.
In addition to proving that the correct multiplication

factor is a strong function of particle size dispersion, this
work also demonstrates experimentally how both jl or
jd can fall below unity for broad distributions. This has
been previously suggested and subsequently observed by
Louis and Gokhale, and contradicts the logical lower
boundaries suggested by Mendelson.[7,8,11,19] Despite
this, the observed linearity must break down at very
broad particle size dispersions because it is physically
unreasonable for j to drop below zero. As such, it
would be expected that j must asymptotically approach
zero as rfi¥. Nevertheless, for any cross sectional
analysis where Sð‘=�‘Þ and Sðd=�dÞ are less than unity,
which includes all but the most extreme cases of
abnormal grain growth, the provided transfer functions
can provide a much higher degree of accuracy than a
constant multiplication factor.
It should be emphasized here that the volume of a

particle of the mean diameter does not have the same
meaning or value as the mean volume. The two values
would be calculated as follows:

V �D ¼ p
6

Pn
i¼1 Di

n

� �3

½5�

�V ¼
Pn

i¼1 Vi

n
½6�

and for lognormal dispersions of spherical particles,
are related by the following equation:

�V ¼ V �D � exp(3r2Þ ½7�

The importance of this distinction has been previously
noted for 2D section diameters by Coutinho et al.[20]

The mean particle volume cannot be calculated using
only the mean particle diameter, even if the particle
shape is also known. As with Mendelson’s equation,
some a priori knowledge must exist about r, or a new
method for determining r from the cross sectional data
must be established.
While the present work has only been concerned with

lognormal distributions of spherical particles, it is likely
that linear emperical equations could be fit to disper-
sions of other particle shapes, such as cubes or
tetrakaidecahedra. It is also possible that a similar
approach could be applied to any other particel size
distribution, such as Rayleigh or gamma distributions.
The origin of linearity in these emperical relationships,
the prediction of r from cross sectional data, the
expected distribution of the 3D particle volume, and
the effect of voxel resolution and sample size on the
accuracy of derived values will be explored in subse-
quent papers.
In summary, it has been found that 3D particle size

can be estimated to a high accuracy using a linear
function of normalized standard deviation of the 2D
measurement. The multiplication factor to convert mean

Fig. 3—Plot showing the linear relationship between j and the
normalized standard deviations.
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2D particle size to the mean 3D caliper diameter can be
calculated as:

jl ¼ 2:071� 1:697� S
‘
�‘

� �

½8�

jd ¼ 1:511� 0:83� S
d
�d

� �

½9�

These two transfer functions can be used to accurately
estimate the mean 3D diameter of any particle disper-
sion, assuming the following three conditions are met:

(1) The particles can be assumed to be spherical in
shape;

(2) The volumes of the particles can be assumed to
follow a lognormal distribution;

(3) The standard deviation of the stereological data is
less than its mean.

Under these conditions, Equations [8] and [9] provide
a substantial improvement over the previously men-
tioned scalar multiplier values for j, which either fail to
properly account for the effects of a dispersion of
particle sizes or require information that cannot be
obtained from cross sectional analysis.

ELECTRONIC SUPPLEMENTARY MATERIAL

The online version of this article (https://doi.org/10.
1007/s11661-018-4808-8) contains supplementary mate-
rial, which is available to authorized users.

REFERENCES
1. E.J. Payton, G. Wang, M.J. Mills, and Y. Wang: Acta Mater.,

2013, vol. 61, pp. 1316–26.
2. G. Wang, D.S. Xu, N. Ma, N. Zhou, E.J. Payton, R. Yang, and Y.

Wang: Acta Mater., 2009, vol. 57, pp. 316–25.
3. S.L. Semiatin, B.C. Kirby, and G.A. Salishchev:Metall. Trans. A.,

2004, vol. 35A, pp. 2809–19.
4. S.L. Semiatin, N.C. Levkulich, A.E. Saurber, D.W. Mahaffey, E.J.

Payton, and O.N. Senkov: Metall. Trans. A., 2017, vol. 48,
pp. 5567–78.

5. S.L. Semiatin, V. Seetharaman, D.M. Dimiduk, and K.H.G.
Ashbee: Metall. Trans. A., 1998, vol. 29, pp. 7–18.

6. A.L. Pilchak, G.A. Sargent, and S.L. Semiatin: Metall. Mater.
Trans. A., 2017, vol. 49A, pp. 908–919.

7. J.E. Hillard and L.R. Lawson: Stereology and Stochastic Geome-
try, Kluwer, Dordrecht, 2010.

8. E.E. Underwood: J. Microsc., 1969, vol. 89, pp. 161–80.
9. E.J. Payton: J. Miner. Mater. Charact. Eng., 2012, vol. 11 (3),

pp. 221–42.
10. T. Hatch and S.P. Choate: J. Franklin Inst., 1929, vol. 207,

pp. 369–97.
11. M.I. Mendelson: J. Am. Ceram. Soc, 1967, vol. 52 (8), pp. 443–46.
12. S.A. Saltikov: Stereology, ed. H. Elias, Springer, Berlin, Heidel-

berg, 1970.
13. P. Feltham: Acta Met., 1957, vol. 5, pp. 97–105.
14. M. Hillert: Acta Met., 1965, vol. 13, pp. 227–38.
15. ASTM Standard E112-2: ‘‘Standard Test Methods for Determin-

ing Average Grain Size’’, ASTM International, West Con-
shohocken, PA, 2002, https://doi.org/10.1520/e0112-12, www.
astm.org.

16. H.B. Aaron, R.D. Smith, and E.E Underwood: Proceedings from
the 1st International Congress on Stereology, Vienna, paper 16,
1963.

17. G. Liu and H. Yu: Image Anal. Stereol., 2000, vol. 19, pp. 91–97.
18. S.S. Shapiro and M.B. Wilk: Biometrika, 1965, vol. 52,

pp. 591–611.
19. P. Louis and A. Gokhale: Metall. Mater. Trans. A., 1995, vol.

26A, pp. 1741–44.
20. Y.A. Coutinho, S.C.K. Rooney, and E.J. Payton: Metall. Mater

Trans. A., 2017, vol. 48A, pp. 2375–95.

4428—VOLUME 49A, OCTOBER 2018 METALLURGICAL AND MATERIALS TRANSACTIONS A

https://doi.org/10.1007/s11661-018-4808-8
https://doi.org/10.1007/s11661-018-4808-8
https://doi.org/10.1520/e0112-12
http://www.astm.org
http://www.astm.org

	A Transfer Function for Relating Mean 2D Cross-Section Measurements to Mean 3D Particle Sizes
	Abstract




