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The transport of solid crystals in the liquid pool during solidification of large ingots is known to
have a significant effect on their final grain structure and macrosegregation. Numerical
modeling of the associated physics is challenging since complex and strong interactions between
heat and mass transfer at the microscopic and macroscopic scales must be taken into account.
The paper presents a finite element multi-scale solidification model coupling nucleation, growth,
and solute diffusion at the microscopic scale, represented by a single unique grain, while also
including transport of the liquid and solid phases at the macroscopic scale of the ingots. The
numerical resolution is based on a splitting method which sequentially describes the evolution
and interaction of quantities into a transport and a growth stage. This splitting method reduces
the non-linear complexity of the set of equations and is, for the first time, implemented using the
finite element method. This is possible due to the introduction of an artificial diffusion in all
conservation equations solved by the finite element method. Simulations with and without grain
transport are compared to demonstrate the impact of solid phase transport on the solidification
process as well as the formation of macrosegregation in a binary alloy (Sn-5 wt pct Pb). The
model is also applied to the solidification of the binary alloy Fe-0.36 wt pct C in a domain
representative of a 3.3-ton steel ingot.

https://doi.org/10.1007/s11661-018-4496-4
� The Minerals, Metals & Materials Society and ASM International 2018

I. INTRODUCTION

THE casting industry commonly faces difficulties in
the production of products free from macrosegrega-
tion.[1] Microsegregation naturally takes place during
solidification as a redistribution of the chemical species
at the solid–liquid interface occurs, the result of ther-
modynamic equilibrium. Various processes take place
which enhance segregation far from its interfacial origin
including long range diffusion, liquid flow due to
shrinkage, melt convection, solid deformation, and
transport of solid grains/fragments in the casting. The
later induce macrosegregation from both solid and
liquid transport over long distances. While these phe-
nomena are difficult to avoid during conventional
casting of metallic alloys, their magnitude needs to be

controlled. The local average composition defined in a
small representative volume must not deviate from the
nominal composition of the alloy by more than a few
percent, otherwise the properties could vary significantly
and subsequent thermomechanical heat treatments may
not be able to restore the desired properties everywhere
in the product. This is true for various classes of metallic
alloys, including large steel products.[2] Recently, efforts
have been made to provide detailed experimental
characterizations of macrosegregation in large steel
ingots.[3–5]

Numerical modeling of solidification accounting for
the transport of the equiaxed grains at the process scale
remains limited. Work was first done by Ni and
Beckermann who proposed a volume-averaged model
that consistently coupled microscopic phenomena with
macroscopic transport.[6,7] Other solidification models,
based on similar principles, have also been devel-
oped.[8–17] In volume-averaged models, the transport
of solid equiaxed grains is described by grain population
balances along with mass and solute mass conservation
equations for the solid phase. These equations consist of
contributions from advection at the macroscopic (pro-
cess) scale and grain growth governed by diffusion and
phase change phenomena at the microscopic (grain)
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MICHEL BELLET are with the MINES ParisTech, PSL Research
University, CEMEF, UMR CNRS 7635, 06904 Sophia Antipolis,
France. Contact e-mail: charles-andre.gandin@mines-paristech.fr
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scale. These are strongly coupled with the transport of
heat, mass, chemical species, and momentum in the
liquid and solid phases. Identifying the complexity in
solving the set of coupled equations, Založnik and
Combeau[8] proposed an operator splitting scheme as a
flexible method for integration of the macroscopic
transport terms and the local growth terms. This
method was successfully implemented to simulate large
ingot casting.[18] Modeling and simulation of steel ingots
are particularly demanding due to the size of the
castings and the complexity of the multiphase flow;
however, models and applications have been improving
in recent years.[19–23] These models are based on the
finite volume method (FVM), while the finite element
method (FEM) has not yet been considered for vol-
ume-averaged multi-scale modeling of solidification
with transport of equiaxed grains. An implementation
using FEM may be attractive for multiple reasons. First,
FEM generally offers more flexibility and versatility
than FVM in describing the boundaries of the domain
to be analyzed, and defining the boundary conditions
which prevail there. This is particularly true when
considering structured FVM where the ‘‘staircase’’ effect
along the boundaries is detrimental. FEM also offers
opportunities to more simply couple with stress/strain
structural analyses, e.g., to model the occurrence of
thermomechanical defects in solidified regions, as such
analyses are generally also conducted using FEM.[24,25]

In this paper, a numerical FEM solidification model is
presented, accounting for microscopic phenomena as
well as for the motion of solid and liquid phases. First,
the macroscopic conservation equations and the consti-
tutive relations describing interfacial interactions and
exchanges are summarized. The resolution method and
the numerical implementation for the set of non-linear
equations are then detailed. This implies introducing an
artificial diffusion which deals with the discontinuities at
the packing front by FEM. Numerical simulation using
the current model is then performed to validate the
numerical implementation. Results demonstrate an effi-
cient FEM resolution scheme implemented for the
purely convective transport problem, which is difficult
to solve numerically by FEM in the absence of diffusive
effects.

II. TWO-PHASE MODEL OF SOLIDIFICATION

This section summarizes the governing equations
taken into consideration in this case when modeling
solidification in the presence of solid transport. The full
nomenclature and a complete set of notations can be
found in Appendix A. Equations [1] through [4] repre-
sent the conservation of total mass, momentum, solute
mass and energy, respectively, for each phase a (a = s
for the solid or a = l for the liquid phase).[8] These
macroscopic conservation equations are obtained by
averaging the microscopic equations over a representa-
tive elementary volume (REV). A detailed derivation of
the governing equations can be found elsewhere.[6,26]

Mass
@

@t
ga qah iað Þ þ r � ga qah ia vah iað Þ ¼ Ca þ Ua ½1�

Momentum
@

@t
ga qah ia vah iað Þ þ r � ga qah ia vah ia� vah iað Þ

¼ �gar pah iaþr � ga sah iað Þ
þ ga bah iaþMC;a þMd;a þMU;a

½2�

Species
@

@t
ga qah ia wah iað Þ þ r � ga qah ia wah ia vah iað Þ

¼ �r � ga jah iað Þ þ JC;a þ Jj;a þ JU;a

½3�

Energy
@

@t
ga qah ia hah iað Þ þ r � ga qah ia hah ia vah iað Þ

¼ �r � ga qah iað Þ þQC;a þQq;a þQU;a

½4�

In the above Eqs. [1] through [4], the notation ah ia
indicates the intrinsic volume average in phase a; g the
volume fraction, q the density, v the velocity, p the
pressure, s the deviatoric part of the stress tensor, b the
body force per unit volume, w the solute mass concen-
tration, j the solute flux vector, h the specific enthalpy,
and q denotes the heat flux vector. The right-hand side
of the above equations gathers the exchange terms rising
from different microscopic processes: C denotes the
mass exchange rate due to phase change, U the mass
exchange rate due to grain nucleation, M the vector for
interfacial momentum exchange, J the solute exchange
rate, and Q denotes the heat exchange rate. The
contributions of nucleation (terms with superscript U)
can be neglected compared to other terms in theses
equations. The microscopic exchange contributions are
modeled as follows: more in detail can be found in
Appendix B.

due to phase change due to interfacial stresses or diffusion

MC;a ¼ �va�Ca Md;a ¼ qaRaSv �va� � vah iað Þ
JC;a ¼ �wa�Ca Jj;a ¼ qa Da

da Sv �wa� � wah iað Þ
QC;a ¼ �ha�Ca Qq;a ¼ ja

la Sv
�Ta� � Tah iað Þ

Here, �v�, �w�; �h�, �T� are the average values over the
interface; R is the momentum resistance coefficient; D is
the solute diffusion coefficient; d is the characteristic
solute diffusion length; j is the heat conductivity; l is the
characteristic heat conduction length; Sv = A/Ve is the
interfacial area concentration in the REV considered, of
volume Ve.
The model is closed by balances of mass, momentum,

solute, and heat at the solid–liquid interface:
X

a¼s;l

Ca þ Ua ¼ 0
X

a¼s;l

MC;a þMd;a þMU;a ¼ 0 ½5�
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X

a¼s;l

JC;a þ Jj;a þ JU;a ¼ 0
X

a¼s;l

QC;a þQq;a þQU;a ¼ 0

½6�

The population of grains is described by an average
density per unit volume, N. The population balance
equation writes

@N

@t
þr � N vsh isð Þ ¼ _N; ½7�

where the nucleation rate is defined as

_N ¼
N0

dt if T � Tnuclð Þ and N ¼ 0 or
R t
0
_Ndt ¼ 0

� �

0 otherwise

�

½8�

N0 is the nucleation density, dt the time step, and Tnucl is
the nucleation temperature. In Eq. [8], nucleation occurs
under two conditions: The first nucleation event occurs
when the local temperature drops below the nucleation
temperature for the first time. Further nucleation events
follow if the local grain density drops to zero (due to
grain transport or remelting) and the local temperature
is below the nucleation temperature. The latter criterion
is a heuristic treatment used to prevent unphysical
results.[11]

In order to resolve the coupled microscopic and
macroscopic phenomena, the microscopic exchange
terms can be considered as source terms in the governing
equations. The equations can then be integrated directly
in a coupled way. However, due to the stiffness of the
microscopic terms, such a solution scheme requires very
small time steps. This makes the computation time
realistically too long to simulate industrial-sized cast-
ings. In the present work, an operator splitting method
is applied to solve the entire system of equations.[8]

According to this method, the phase fractions and solute
compositions are considered to evolve in two subsequent
stages: the macroscopic transport stage and the micro-
scopic growth stage. When using this assumption, each
stage can be numerically integrated by operating on
different scales of time and space. Therefore, such a
splitting technique provides an efficient way to solve
multi-scale problems. This splitting method is used for
the solution of the mass conservation equation for the
solid, the conservation equation for the grain population
density, and the solute conservation equations for both
phases. The method is summarized as follows: first, in
the macroscopic transport stage, only variation due to
the macroscopic transport is integrated, which is deter-
mined by solving Eqs. [1] through [3] on the global finite
element mesh using a macro time step. This gives an
intermediate quantity with index tr:

@gstr
@t

þr � gstr v
sh is

� �
¼ 0 ½9�

@Ntr

@t
þr � Ntr v

sh isð Þ ¼ 0 ½10�

@ gatr w
ah iatr

� �

@t
þr � gatr w

ah iatr vah ia
� �

¼ 0: ½11�

Second, in the microscopic growth stage, the contribu-
tion of microscopic processes, nucleation and growth,
are integrated through Eqs. [4] through [6]. These
equations are solved, locally, at each node of the finite
element mesh, leading to quantity with index gr:

@gsgr
@t

¼ Cs þ Us

qs
½12�

@Ngr

@t
¼ _N ½13�

@ gagr w
ah iagr

� �

@t
¼ JC;a þ Jj;a þ JU;a

qa
: ½14�

A smaller time step (micro time step) must be used for
the microscopic growth stage. The solution of the
macroscopic transport stage is the initial condition for
the integration of the microscopic growth stage. The
sequence of both integration steps thus gives the
solution over a macroscopic time step. The whole
modeling algorithm, using this splitting approach, is
shown schematically in Figure 1.
Each iteration m begins with an implicit finite element

resolution for energy and transport conservation equa-
tions in the transport stage by using a macro time step.
This gives the solutions denoted with superscript m+1
and subscript tr when they are associated with the
transport stage. Then the nucleation-and-growth stage is
solved locally (i.e., at each node), with variables initial-
ized by values obtained from the transport stage at
m+1. This local resolution proceeds through micro time
steps, assuming that the average quantities for the solid
plus liquid mixture, composition hwi = glhwlil+ gshwsis
and enthalpy hhi = glhhlil+ gshhsis, no longer evolve
during the macro time step. Finally, the momentum
equations are solved with a semi-implicit solver on the
macro time step to compute the new estimation of
velocity fields of the liquid and the solid phases at
iteration m+1. A complete evolution of the different
quantities over the time step is evaluated by the final
results obtained from the growth stage, as these solu-
tions already include the change from the transport
stage. The splitting scheme is only used to solve the
evolution of phase fractions, grain density, and solute
concentrations since it involves very different scales of
time and space. The resolution of the energy and
momentum conservation equations do not require
operator splitting because the constitutive relations
coupling the micro- and macroscopic scales are simpler.
Regarding the transport stage, Eqs. [1] through [3] are

of pure convective nature, and notoriously difficult to
solve numerically in the absence of diffusive effects.
Moreover, another numerical difficulty arises from the
discontinuity of transport velocities due to the solid
packing phenomenon. Indeed, when forming a packed
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solid layer, solid grains suddenly change from a moving
state to a fixed state. Solving these issues in the
framework of FEM for solidification simulations
remains an open issue and will be addressed in the
following sections.

III. TREATMENT OF DISCONTINUITIES AT
THE PACKING FRONT BY THE FEM

The solution of convection-dominated equations by
FEM can encounter problems of unphysical oscillations,
especially in zones with steep gradients. Different
resolution techniques have been developed to overcome
such issues: e.g., discretizing by upwind methods,[27–29]

by stabilized methods such as Streamline Upwind
Petrov–Galerkin,[30] Galerkin Least-Squares,[31,32] Resi-
dual Free Bubbles,[33] or by using a corrected flux
approach.[34] A specific complexity in the resolution of
Eqs. [9] through [11] arises from discontinuities due to
the solid packing phenomenon taking place at the
interface between the liquid pool and the packed bed of
solid grains. On one side, small grains move freely in the
liquid phase, the solid fraction being smaller than a
characteristic packing fraction. On the other side, grains
accumulate and grow to form a steady and fixed packed
zone, the solid fraction being higher than the packing
limit. Discontinuities are then related to abrupt changes
in the velocity and fraction of the solid phase. Therefore,
an adaptive artificial diffusion is introduced to stabilize

Fig. 1—Schematic of the resolution algorithm using the splitting method.
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the finite element resolutions without unreasonably
smearing results. This added diffusion detects and
reduces discontinuities at locations where the solid
phase is being packed. The added diffusion is then not
present everywhere; it is restricted to critical zones of
packing. The diffusion coefficient, DM, as expressed
below, consists of the gradient of solid velocities, i.e., a
combination of the divergence of the average solid
velocity � Æ hvsi and the divergence of the intrinsic
average solid velocity � Æ (hvsis), which contain infor-
mation about the variation of the related quantities:
velocity and fraction of solid phase.

DM ¼ hv
s

e

� �2
a r � vsh ij j þ b r � vsh isj jð Þ ½15�

In this expression, hv
s

e denotes the characteristic size of
element e in the direction of the solid velocity v

s, as
proposed in Reference 24:

hv
s

e ¼ 2jvscenterjPNn
i vscenter � ruij j

; ½16�

where ui is the interpolation function associated with
node i; vcenter

s is the solid velocity at the center of the
element, and Nn is the number of nodes per element.
The coefficients a and b allow control over the
amount of diffusion in a direct way, thus offering
more flexibility than an implicit diffusion introduced
by the upwind method. An alternative option would
be to use the divergence of the intrinsic solid velocity,
� Æ hvsis, and the solid fraction gradient, �gs. How-
ever, the former expression is preferred because it does
not exist without solid transport. Hence, the model is
still valid in cases without solid motion. The formu-
lation of the coefficient DM is inspired by the work of
Cook and Cabot who developed an artificial non-lin-
ear diffusion using the entropy gradient to treat issues
associated with discontinuities of temperature and
mass fraction in supersonic reacting flows.[35] For the
aforementioned issues experienced when simulating
solidification, there has, as of yet, been no relevant
investigations.

It should be noted that it is necessary to use the same
artificial diffusion coefficient for all relevant transport
equations in order to ensure consistency between the
transport of related quantities and the conservation of
mass and energy. Consequently, the transport equations
for solid phase, grain density and solute, derived from
Eqs. [9] through [11], are modeled by Eqs. [1] through
[3]. These equations are solved in the finite element
framework using an implicit scheme in time and a
weighted residual approach with P1 linear elements
(triangles in 2D, tetrahedra in 3D) and SUPG stabiliza-
tion method.

@gstr
@t

þr � gstr v
sh is

� �
�r � DMrgstr

� �
¼ 0 ½17�

@Ntr

@t
þr � Ntr v

sh isð Þ � r � DMrNtrð Þ ¼ 0 ½18�

@ gatr w
ah iatr

� �

@t
þr � gatr w

ah iatr vah ia
� �

�r � DMr gatr w
ah iatr

� �� �
¼ 0:

½19�

A. Formulation of Energy Conservation

Regarding heat transfer, the equation for energy
conservation, Eq. [4], for the solid (a = s) and for the
liquid (a = l) phases, assuming thermal equilibrium
between both phases in the REV, and introducing the
added diffusion, the following mixture energy equation
can be established:

q
@ hh i
@t

þr � gstr h
sh is vsh isþgltr hl

� �l
vl
� �l� �	

�r � DMr gstr h
sh isþgltr hl

� �l� �� �i
�r � jh irTð Þ ¼ 0;

½20�

where the average enthalpy and thermal conductivity
are defined by

hh i ¼ gs hsh isþgl hl
� �l

and jh i ¼ gs jsh isþgl jl
� �l

: ½21�

Additional it is assumed that the densities of phases are
constant and equal and that the heat diffusion follows
the Fourier law. Using this method, the phase fractions
in the advection terms should be taken as those
calculated in the transport stage, so that mass conser-
vation is maintained.[8] In the present work, the enthalpy
formulation of the energy equation is used. Like the
preceding transport equations, the energy equation is
solved in the framework of the finite element formula-
tion with an implicit scheme for time integration as well
as a weighted residual approach with P1 linear elements
and SUPG stabilization method.

B. Formulation of Momentum Conservation

Several assumptions are made when solving the
momentum equations, including the following:

i. The phase densities are constant and equal,
except for the buoyancy forces for which the
liquid and solid densities are modeled as follows,
respectively.

qlB ¼ qref 1� bT T� Trefð Þ � bw wl
� �l�wref

� �h i
½22�

qsB ¼ qref
1� bshr

½23�

ii. The pressure is assumed to be identical in the
solid and liquid phases.

pl
� �l¼ psh is¼ p ½24�
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iii. The liquid behaves as a Newtonian fluid with a
constant viscosity. Neglecting the interfacial
momentum transfer due to phase change, the
divergence of the average deviatoric stress tensor
is modeled as follows:

r � hsli ¼ llr � r gl vl
� �l� �

þ Tr gl vl
� �l� �� �

½25�

iv. The momentum transfer due to nucleation and
growth is considered negligible relative to other
terms; the momentum balance at the solid–liquid
interface is thus described as follows:

Md;l þMd;s ¼ 0: ½26�

Using these assumptions, the liquid momentum equa-
tion is derived as Eq. [6] from the general formulation
for phase a, Eq. [2].

q
@

@t
gl vl
� �l� �

þr � gl vl
� �l� vl

� �l� �	 


¼ �glrpþ llr � r gl vl
� �l� �

þ Tr gl vl
� �l� �� �

þ glqlBg�M
d;s
regime; ½27�

where the momentum transfer due to the drag force is
described as

M
d;s
regime ¼ Mregime gl

� �2
vl
� �l� vsh is
� �

½28�

in which

Mregime

Mslurry ¼ 3gsllCdRe

4ðdgÞ2ðglÞ3
in the slurry regime gs<gsc

� �

Mpacked ¼ 180ð1�glÞ2ll
k22ðglÞ

3 in the packed - bed regime gs � gsc
� �

;

8
><

>:

½29�

where the solid-liquid interaction follows the model of
Agarwal and O’Neill.[36]

In the finite element context, solving the above
equation, Eq. [27], and distinguishing the two regimes
on a single discretized domain may cause numerical
difficulties because of the assembly of dissimilar and
irregular terms (i.e., slurry regime contributions and
packed-bed regime contributions). In order to overcome
this issue, a smoothing procedure was developed, similar
to the one introduced by Plotkowski and Krane.[15] It
consists in using a transition function, at, to switch the

momentum transfer, Md;s
regime, between the two regimes.

The following expression is proposed for this transition
function, which provides a compromise between having
a sufficiently sharp change of regimes while avoiding an
abrupt switch between them:

at ¼ 1� 0:5 1� tanh a0 gsc � gs
� �� �� �

; ½30�

where the value a0 = 100 is chosen, as plotted in
Figure 2.

The liquid momentum equation can then be expressed
as

q
@

@t
gl vl
� �l� �

þr � gl vl
� �l� vl

� �l� �	 


¼ �glrpþ llr � r gl vl
� �l� �

þ Tr gl vl
� �l� �� �

þ glqlBg

� atMslurry þ 1� atð ÞMpacked

� �
gl
� �2

vl
� �l� vsh is
� �

½31�

which is solved by a semi-implicit time integration and
a weighted residual method, precisely by the P1/P1
velocity-pressure formulation stabilized with the Varia-
tional Multi-Scale method.[37] In the equation for the
conservation of solid phase momentum, the inertial
and viscous terms are neglected.[8] Therefore, the solid
momentum equation, which is only considered in the
slurry regime, reduces to

�gsrpþ gsqsBgþMslurry gl
� �2

vl
� �l� vsh is
� �

¼ 0: ½32�

From this equation, the solid velocity can be calcu-
lated locally, at each node of the finite element mesh.
In order to avoid a sudden change of the velocity
when solid packing occurs, a gradual transition is
applied, by using the same switching function at intro-
duced in Eq. [30]. Therefore, the solid velocity is calcu-
lated at each node by:

vsh is¼ at vl
� �lþ

gs qsBg�rp
� �

Mslurry glð Þ2

 !
½33�

Furthermore, it is necessary to ensure that moving solid
grains do not penetrate the preexisting packed bed, to
avoid the solid fraction at the packing front exceeding
the packing fraction. The velocity of the grains is
therefore adjusted so that they land smoothly on the
packed bed, i.e., reaching hvsis = 0 at the packing limit.
The algorithm for this adjustment is presented in
Figure 3. It consists first of the calculation of the
distance that the grains would travel in the direction of
the solid fraction gradient, moving with their current
velocity during the time step. This settling distance is
hvsiprojs Dt, where hvsiprojs is the projected solid velocity
and Dt is the time step. Then the settling distance is
compared to the distance between the grains and the

Fig. 2—Transition function at vs solid fraction supposing a packing
solid fraction gc

s = 0.3.
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packing limit, dP-Limit, defined by the packing solid
fraction, gc

s. If the settling distance is higher, the velocity
is corrected by the factor a as shown in Figure 3. This
correction prevents the grains from traveling beyond the
packing limit.

IV. VERIFICATION OF THE ADAPTIVE
ARTIFICIAL DIFFUSION METHOD

FOR PARTICLE PACKING

The model described above is sophisticated as it
involves artificial diffusive terms in conservation equa-
tions, a smoothing procedure for the transition from a
slurry regime to a packed bed regime in the momentum
conservation, as well as an adjustment strategy for the
convection of solid in the vicinity of the packed bed.
Several studies are then needed to evaluate the numer-
ical parameters of the model. The first of which is
presented below for a 1D sedimentation configuration
where a simple analytical solution can be derived.

A. Test Case Description

In order to test these new parameters, the model is
first applied to simulate a one-dimensional (1D) sedi-
mentation process, considering only transport and
neglecting nucleation and growth processes. It consists
in the settling of a predefined number of globular grains
with equal and constant size at uniform and constant

velocity. A schematic of the test is presented in Figure 4
and the 1D analytical solution is derived in Appendix D.
The computational domain is two-dimensional (2D),
with a width and length of 1 mm 9 100 mm. There is no
heat exchange through the boundaries of the domain.
The velocities at the top and bottom faces as well as the
normal velocities along the vertical walls are set to zero
and a perfect slip condition is applied to the tangential
velocities on the vertical walls, i.e., returning to the 1D
configuration described in Appendix D. Initial condi-
tions are given in Figure 4. The binary alloy Sn-5 wt pct
Pb is considered; its thermophysical properties can be
found in Appendix C.[8] The enthalpy is evaluated
according to the solid fraction and the temperature.
The simulation parameters are given in Table I.
The present test case is defined to benefit from the

simple analytical solution as shown in Figures 5 and 6 at
several timeswith dashed lines. The downward velocity of
the settling grains is arbitrarily imposed to be a constant
value in the unpacked region, equal to 1 mm s�1 and
directed toward the y-axis. The corresponding upward
liquid velocity in the unpacked region was computed and
found to be constant, equal to 0.111 mm s�1, in agree-
ment with the total mass balance. When the fraction of
solid reaches 0.3 in the packed bed, the velocity of the
phases falls to zero. As there is no solidification, the
fraction of solid cannot increase further. Conservation of
the initial mass of solid thus defines the height of the
packed bed. It reaches 20 mm once settling is complete.
Also considering the adiabatic boundary conditions for

Fig. 3—Adjustment strategy for the velocity of convected grains in the vicinity of the packed bed.
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heat transfer as well as the absence of phase change by
solidification/remelting, the temperature is expected to
remain constant and uniform throughout the simulation

domain, equal to its initial value 498 K (224 �C) as shown
in Figures 5 and 6. Due to the formation of a packed bed
of grains with solid fraction 0.3 in a liquid with intrinsic
composition 5 wt pct Pb, the average composition
reaches 3.609 wt pct Pb. Consequently, total mass con-
servation leads to an average composition above the
packed bed in the initially two-phase region equal to
5.464 wt pct Pb.

B. Analysis of Simulation Results

The initial solid velocity is set to 1 mm s�1 for the
vertical component in the downward direction. The
liquid velocity is then determined by solving the
momentum equation, Eq. [31]. The results are presented
in Figures 5 and 6. Those obtained from the numerical
simulation are shown as solid lines while those calcu-
lated by the analytical solution are dashed lines. The
sedimentation process is illustrated in Figure 5(a) as
profiles of solid volume fraction at t = 0 second,
10 seconds (before grains reach the bottom of the
domain), 30 seconds (accumulation below the packing
limit), and 60 seconds (end of packing). From the initial
state, the solid grains fall downward while the liquid
moves upward in such a way that the continuity
equation is respected, as shown in Figures 5(b) and
(c). Since the solid fraction in the two-phase region is
0.1, the liquid velocity is ten times smaller than the solid
velocity. The first grains reach the bottom after 20 sec-
onds and begin to accumulate until the packing fraction
(chosen as 0.3) is reached. During the process, the
change of the solid phase from the moving to the packed
state has an impact on the liquid movement, which is
revealed by the peaks of liquid velocity at the packing
front. The sedimentation is complete after 60 seconds,
although the solid and liquid velocities remain non-zero
within a small layer where the gravitational force is
balanced with the diffusive effect. This phenomenon is
maintained due to the persistent gradient of the solid
fraction at the transition interface between the solid
packed bed and the solid-free region.
The analytical and numerical results show similar

trends; however, there exist differences between the two
solutions. The differences found within the transition
zones are due to diffusive effects. The simulation results
contain an inevitable numerical diffusion and in the
current case, at the boundary of the packed bed, an
additional artificial diffusion. Furthermore, it can be
observed that the solid fraction in the packed zone
exceeds the predefined packing value of 0.3. This over
accumulation is related to purely numerical issues when
packing the solid phase and it will be discussed further
in the next section.

Fig. 4—Schematics of the 1D sedimentation test showing the sample
geometry and initial distribution of solid grains. Additional
conditions and simulation parameters are given in Table I.

Table I. Simulation Parameters for the 1D Test Case
Presented in Fig. 4

Mesh size 0.5 (mm)
Macro time step 0.01 (s)
Macro/micro time ratio 10 (–)
a(DM) 20 (–)
b(DM) 1 (–)

Table II. Simulation Parameters for the 2D Test Case
Presented in Fig. 7

Mesh size 1 (mm)
Macro time step 0.01 (s)
Macro/micro time ratio 10 (–)
a(DM) 20 (–)
b(DM) 1 (–)

Table III. Simulation Parameters for the 3D Test Case
Presented in Fig. 11

Mesh size 1 (mm)
Macro time step 0.01 (s)
Macro/micro time ratio 5 (–)
a(DM) 20 (–)
b(DM) 1 (–)

Table IV. Simulation Parameters for the Ingot Case

Presented in Fig. 14

Mesh size 20 (mm)
Macro time step 0.01 (s)
Macro/micro time ratio 10 (–)
a(DM) 20 (–)
b(DM) 1 (–)
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As grain motion also involves the transport of solute
and heat, it is important to verify the consistency of all
transported quantities. The profiles of the average
composition in Figure 5(d) present consistent evolution
during the sedimentation process. When solid grains

settle (Figure 5(b)), the solute-rich liquid moves upward
(Figure 5(c)) and fills the region left by the grains,
leading to an increase of the average composition in the
upper zone. The average composition of 3.609 wt pct Pb
in the bottom zone corresponds to the final state where

Fig. 5—Vertical profiles at times 0, 10, 30, and 60 s for (a) solid fraction, (b) solid velocity, (c) liquid velocity, (d) average composition, and (e)
temperature with parameter a = 20; b = 1. The analytical solution (dashed curves) is derived in Appendix D.

Fig. 6—Vertical profiles at times 0, 10, 30, and 60 s for (a, d) the solid fraction, (b, e) the average composition and (c, f) the temperature with (a
to c) a = 1; b = 0 and (d to f) a = 0; b = 1. The analytical solution (dashed curves) is derived in Appendix D.
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there is about 30 pct solid at 0.364 wt pct Pb and 70 pct
liquid at 5 wt pct Pb. Furthermore, as expected for a
pure transport phenomenon, the temperature does not
change during this process. Only a slight deviation from
the initial temperature, smaller than 1 K, can be seen at
60 seconds, as shown in Figure 5(e). A good overall
conservation of all quantities is verified, the maximal
relative errors for the global solute mass and energy
being about 10�6 and 10�5, respectively.

C. Effects of Artificial Diffusion

Two simulations were performed in order to study the
impact of the artificial diffusion term, by separately
assessing the effect of the constant parameters intro-
duced with variable DM. In the first case, the coefficients
are a = 1 and b = 0 while in the second one, a ¼ 0 and
b = 1. Figures 6(a) through (c) present respectively the
vertical profiles of solid fraction, average composition
and temperature along the sample height for Case 1. In
this case, the solid accumulation cannot be simulated
since numerical problems occur when solid grains reach
the bottom boundary, consequently the temperature
does not remain constant and uniform throughout the
domain.

These problems are overcome in Case 2, the results of
which are shown in Figures 6(d) through (f). This
reveals that the term related to the variation of the
intrinsic velocity has a more important role in solving
numerical singularities than the average velocity. An
over-packing relative to the predefined fraction is also
stated with a higher excessive quantity than when
a = 20; b = 1. This observation further shows the role
of artificial diffusion in treating numerical issues related
to the packing of solid, since the higher the added
diffusion the better the simulation respects the prede-
fined packing critical solid fraction. However, using high
values of a and b leads to an excess of diffusion and
produces unphysical solutions.

This set of simulations confirms that numerical
concerns of finite element resolution in the presence of
sharp discontinuities of the transport velocity field in an
absence of diffusion in hyperbolic equations can be
solved by adding a supplementary diffusive component.
It is nevertheless important to adjust the amount of
additional diffusion to avoid unreasonably diffusing
quantities. It was found that b = 1 and a between 20
and 70 can provide a good compromise between
diffusion and instabilities. Values of a = 20 and
b = 1 were then chosen to be used in the following
simulations, where the entire solidification model is
performed.

V. MODELING APPLICATIONS:
MACROSEGREGATION SIMULATIONS

The following section presents test cases, first a
two-dimensional (2D) and then three-dimensional (3D)
applications for the solidification of a small Sn-Pb ingot.
The objective is to further test the model while main-
taining small geometries. Finally, the model being

validated, a simulation for a 3D steel ingot on the scale
of an industrial process will be given in order to discuss
the application to a real casting geometry and to identify
future possible improvements of the model.

A. Two-Dimensional Test Case

1. Description
The studied case, presented in Figure 7, is configured

according to the Hebditch–Hunt benchmark study
(Table II).[38] A 100 mm 9 60 mm cavity contains the
same Sn-5 wt pct Pb alloy as in the previous sections,
initially in the liquid state at 499.15 K (226 �C). Cooling
takes place from the left side, an environment at 25 K,
with a heat transfer coefficient of 300 W m�2 K�1. The
rest of the boundary is assumed adiabatic. The simula-
tion is performed with the complete model, which
accounts for nucleation and growth processes, and
transport phenomena, as shown schematically in
Figure 1. Nucleation happens at sites where the liquid
is cooled below the liquidus temperature and where
there are no existing grains. A homogenous grain
density of 109 grains m�3 is generated. The transport
of heat, mass, and solute is due to the motion of the
solid and liquid phases, which are controlled by both
thermo-solutal convection and sedimentation. It is
assumed that there is no phase movement on the sides
of the cavity (sticking contact with the boundary). The
two-dimensional computation is carried out on a
non-structured triangular mesh with a mean mesh size
of 1 mm (including 15 143 elements and 7 730 nodes)
and 10 micro time steps per a constant macro time step
of 0.01 second.

2. Results and discussion
Figure 8 presents the results at t = 10 seconds,

including (a) solid fraction map and solid velocity
vectors; (b) temperature map and liquid velocity vectors.
The three black iso-lines represent the solid fractions 0.1
(upper isoline), 0.2 (intermediate), and 0.3 (lower). It is
observed in Figure 8(a) that after nucleation along the
left cooled wall, solid grains settle to the bottom under
the combined effect of gravity and downward solutal
convection. Some of the grains that are still small are
directly transported towards the right wall; they then

Fig. 7—Schematic of the 2D cavity test for Sn-5 wt pct Pb alloy
solidification showing the geometry and initial values. Simulation
parameters are given in Table II.
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continue to be carried by the liquid and move upward to
about mid-height of the specimen. Due to the transport
and settling of solid grains, a layer of packed grains
begins building up along the bottom of the specimen.
Meanwhile, the coolest zone is observed on the left side
of the cavity, as illustrated by the temperature map in
Figure 8(b), clearly showing that the solid fraction
distribution is not directly related to the temperature
when accounting for solid transport. Moreover, the
similarity between the solid and liquid velocities shows a
strong interaction in the motion of the two phases.
These results can be compared with those obtained by
the finite volume model developed by Založnik and
Combeau[8] and implemented in the finite volume code
SOLID using the same average mesh size. The finite
element simulation (FE, Figures 8(a) and (b), left
column) and the finite volume simulation (FV, Fig-
ures 8(a) and (b), right column) produce very similar
distributions for the different variables. However, dif-
ferences between the FE and FV solutions can be
observed and will be discussed further.

Figure 9 displays the time evolution of the distribution
of the average solute composition.As forFigure 8, theFE
results are presented in the left column and the corre-
sponding FV solutions in the right column. After 10 sec-
onds of solidification, negative segregation forms at the
bottom, while a large area of the cavity still remains at the
initial composition of 5 wt pct. The rejection of Pb from
the solid phase during solidification enriches the liquid,
increasing its density. However, the bottom area is
occupied by the solid phase, composed of solute-depleted
grains, even denser than the solute-rich liquid. Accord-
ingly, a negative segregation layer progressively builds up
from the bottom side, observed from 10 to 20 seconds.

Additionally, it can be observed that the transition
between the slurry zone, which is at a solid fraction of
~ 0.1, and the packed layer at a solid fraction of around
0.3, is rather thin. Such a narrow layer also indicates a
prompt transition between the two flow regimes. While
the solid velocity in the stationary packed bed is zero, an
inter-granular liquid flow through the permeable packed
bed persists. This flow creates a semicircular anti-clock-
wise circulation that brings solute from the upper to the
lower regions of the packed bed in the left part of the
domain, and from the lower to the upper regions in the
right part. The resulting macrosegregation can be seen at
time 200 seconds in Figure 9(c): the average composition
map shows that a large area in the stationary mushy zone
has a negative segregation which results from accumula-
tion of solute-depleted grains. However, the average
composition is not uniform. At the very bottom of the
cavity, there is an accumulation of solute which results
from inter-granular melt flow localized along the bottom
wall and oriented in the direction of the temperature
gradient. In the left part of the packed layer, the negative
segregation is amplified by the flow of inter-granular
liquid, which is oriented against the temperature gradient
in this region. As the process advances, the channel
continues to extend along the bottom side.
When comparing FE and FV methods, the map

produced at the end of solidification shows a similar
tendency of segregation formation, including the nega-
tive segregation located in the left zone of the cavity and
the positive channel formed at the bottom. However, the
FE solution produces a less marked negative segrega-
tion, and a larger positive channel along the bottom
wall. Additionally, in the upper zone of the cavity, the
FE solution shows positive segregation near the

Fig. 8—Simulations for the 2D cavity test for Sn-5 wt pct Pb alloy solidification showing snapshots at time 10 s with the present finite element
model (left column, FE) and with a reference finite volume model[8] (right column, FV): (a) solid fraction, gs, and intrinsic solid velocity vectors,
hvsis, (b) temperature, T, and intrinsic liquid velocity vectors, hvlil. Black curves are iso-lines of solid fraction (0.1; 0.2; 0.3). The simulation case
is defined in Fig. 7 and Table II.
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upper-left corner and a slightly negative segregation
nearby. In this region, the FV computation produces
positively segregated channels with higher solute con-
tent, distributed horizontally and alternating with neg-
atively segregated zones. Differences between these two
results can be partly explained by the influence of
numerical factors. Because of the extremely high
non-linearity of the problem, any differences in the
numerical solution methods can lead to noticeable
differences between the solutions. The artificial diffusion
used in the FE method inevitably leads to smoothing of
the macroscopic fields and thus to a smaller degree of

segregation than in the FV solution. In addition, many
other factors, including discretization schemes, iteration
procedures, etc., can be the cause of the differences
between the FE and the FV results. The reader
interested in such aspects can refer to literature in the
context of simulations with a fixed solid phase.[39,40]

When considering the distribution of solid grains, it is
useful to look at the distribution of grain density in
Figure 10 at different instants. At 10, 20, and 200 sec-
onds, it can be first observed that a large number of
grains are gathered in the packed layer. It can also be
seen that the transport of crystals by liquid advection

Fig. 9—Simulations for the 2D cavity test for Sn-5 wt pct Pb alloy solidification showing maps of average Pb composition (wt pct) at (a) 10 s,
(b) 20 s, (c) 200 s, and (d) the end of solidification for the finite element (FE) and the finite volume (FV) simulations. Black curves are iso-lines
of solid fraction (0.1; 0.2; 0.3). The simulation case is defined in Fig. 7 and Table II.
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induces several zones of significant grain density in the
slurry region. As solid grains are transported, such a
heterogeneous distribution is expected. Although the
results obtained from the FE and FV methods are still
very similar at t = 10 seconds, larger differences
between the two solutions are perceived later on.
Compared to the FV results, a higher grain density in
the right region is predicted by the FE simulation. It
is known that the number of grains is governed and
influenced by different coupled processes, consisting of
nucleation, transport, remelting and re-nucleation
mechanisms. Although the physical parameters and

the numerical procedure for nucleation are identical in
both simulations, the larger quantity of grains in the
FE solution might be caused by a higher frequency of
nucleation events at nodes that were emptied of grains
because of transport or remelting. Nevertheless, fur-
ther investigations should be carried out, as the
sources of those differences still remain unconfirmed.
Despite these differences, clear similarities between
both results can be observed, including a high grain
density in the lower-right corner and a low grain
density in the upper-left corner at the end of
solidification.

Fig. 10—Simulations for the 2D cavity test for Sn-5 wt pct Pb alloy solidification showing maps of grain density (m�3) at (a) 10 s, (b) 20 s, (c)
200 s, and (d) end of solidification for (FE) the finite element simulation and (FV) the finite volume simulation. The simulation case is defined in
Fig. 7 and Table II.
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B. Three-Dimensional Test Case

1. Description
A case was developed to simulate macrosegregation in

three dimensions. The case considered is an extension of
the previous 2D case, giving the cavity a thickness of
10 mm in the third dimension. Due to symmetry, the
computational domain occupies one-half of the thick-
ness of the specimen, as shown in Figure 11(a)
(Table III). The two largest surfaces are the median
plane with symmetry conditions (numbered 6 in the
figure, further denoted P6), and the front wall with a
no-slip condition (plane numbered 3 in the figure,
further denoted P3). Heat is extracted from the left
wall, others being assumed adiabatic. The calculation is
performed on a non-structured mesh with a uniform
mesh size of 1 mm, (294 935 elements and 57 626 nodes)
and using a constant macro time step of 0.01 second and
five micro increments per macro time step.

2. Results and discussion
Figure 12 presents the different fields along three

horizontal planes and the vertical median plane at time
10 second. Comparison is possible with 2D simulations
presented in Figure 8(a) (Figures 12(a) and (f)),
Figure 8(b) (Figures 12(c) and (e)), Figure 9(a)
(Figure 12(b)), and Figure 10(a) (Figure 12(d)). Results
show very similar trends. However, it can be observed
that the distributions of variables are non-uniform
within the thickness of the 3D geometry. In the solid
fraction maps (Figure 12(a)), across the horizontal
planes, it can be seen that the solid zone advances
further along the specimen walls (plane P3) than in the
interior. Thus, the iso-surface of solid fraction exhibits a
concave shape in the central zone of the cavity. This
phenomenon can be explained by considering the
distributions of other quantities since all relevant
variables are closely related. First, as seen on the maps
of velocities (Figures 12(e) and (f)), there is no motion of
neither solid nor liquid along the walls due to the no-slip
boundary conditions. Because the grains remain
attached to the cavity walls and do not settle, the solid
fraction is higher than in the interior of the cavity (plane
P6). The solid and liquid phases are not constrained in
the immediate vicinity of the external surfaces. With a
high quantity of mobile solid grains, the settling velocity

is thus stronger there than that in the central zone as
observed on the solid velocity map (Figure 12(f)). This
solid motion then enhances the downward movement of
the solute-enriched liquid phase. Comparison of the
maximum velocities at 10 seconds is possible, showing
(2D, solid phase) 40.4 mm s�1 vs (3D, solid phase)
41.0 mm s�1 and (2D, liquid phase) 39.6 mm s�1 vs
(3D, solid phase) 31.5 mm s�1. In both cases, the
location of the highest velocities for the solid and liquid
phases are very close. The solid velocity being directly
computed from Eq. [33] by neglecting the inertial and
viscous terms, i.e., only accounting for the solid–liquid
interaction through the transferred momentum due to
interfacial stresses, maximum values are almost equal in
the 2D and 3D simulations. However, a lower value is
found in the 3D simulation for the maximum velocity of
the liquid phase. This is due to the interaction of the
liquid flow with the two largest cavity walls (plane P3
and its symmetric), not accounted for in the 2D
approximation. Thus, the transport of the liquid phase
by the solid phase, while being obviously present, plays
a less important role in comparison to the 2D
approximation.
It is also interesting to observe the distribution of the

flow in the horizontal cross sections. The maximum
velocities for both phases are not observed at the
symmetry plane of the cavity. Instead they are localized
at about 1/3 of the half-cavity thickness from the cavity
surfaces. This uneven distribution is enhanced when
successively considering the cross sections from top
(height 57 mm) to bottom (height 17 mm). Figure 12(d)
shows that grains are present far ahead the vertical solid
front shown in Figure 12(a) as nucleation is taking place
at the liquidus temperature 498.72 K (225.57 �C). Note
that, the map of the presence of grain in Figure 12(d) is
coherent with the temperature map given in Figure 12(c)
and the position of the liquidus iso-surface. The solid
fraction thus remains very low in a large undercooled
zone, as shown when comparing Figure 12(a) with the
liquidus position—or the nucleation front in
Figure 12(d). This is due to the very low driving force
for growth at low undercooling. Consequently, liquid
flow is possible in this undercooled region, and is
stronger in the vicinity of the symmetry plane. Trans-
port of Pb solute that segregates between the grains is
also preferentially taking place in the vicinity of the
symmetry plane, explaining the isocontour drawn in
Figure 12(b), concave along the vertical growth front
and convex in the bottom right region of the cavity.
Close to the cavity walls, the sedimentation of the grains
is the main cause for the liquid flow, leading to liquid
velocity higher than at the center of the cavity.
Figure 13 displays the evolution upon solidification of

the iso-surfaces of the average composition. The forma-
tion of a segregated channel at the bottom of the cavity
is revealed. It forms first around the central zone of the
cavity where the movements of the solid and liquid
phases are not limited, unlike those restricted on the
external surfaces. Inside the cavity, there always exists,
until the end of the solidification process, some liquid
flow that circulates through the packed bed and trans-
ports the solute from the upper to the lower regions,

Fig. 11—Schematic of the 3D cavity test for Sn-5 wt pct Pb alloy
solidification showing the geometry and initial values. Simulation
parameters are given in Table III.
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although its intensity is significantly reduced in com-
parison with the slurry zone. Consequently, the free
recirculation of inter-granular flow enriched in the heavy
element Pb leads to the formation of a positively
segregated channel with a high solute content in the
interior domain. When the process advances, this
channel becomes a preferential path for the liquid phase
and continues to expand along the width of the cavity
(following the direction of inter-granular flow) as well as
to develop in the thickness of the cavity with a content
decreasing progressively when approaching the lateral
surface. The various distributions of solute composition,
in turn, induce different rates of solidification in the

cavity, resulting in subsequent heterogeneities of quan-
tities in all three dimensions.

C. Three-Dimensional Simulation of an Industrial Steel
Ingot

1. Description
The numerical model is now applied to predict

macrosegregation in an industrially cast steel ingot as
produced by the company Aubert & Duval. Physical
features and alloying components of the casting are
detailed in Reference 18, while its schematic is illustrated
in Figure 14(a) (Table IV). The bottom and lower

Fig. 12—Simulations for the 3D cavity test for Sn-5 wt pct Pb alloy solidification showing snapshots at 10 s in the vertical symmetry plane and
in 3 horizontal transversal planes at heights 17, 37, and 57 mm from the bottom. Variables drawn are (a) solid fraction, (b) average composition,
(c) temperature, (d) grain density, (e) liquid velocity, and (f) solid velocity. Black iso-lines in the planar representations are (a) gs ¼ 0:02; 0:03f g,
(b) wh i ¼ 5:04; 5:06; 5:08f g wt pct Pb, (c) T ¼ 494:15; 495:15; 497:15f gK ðf 221; 222; 224g 	C) and (d) N ¼ f2; 3g108 grains m�3. Iso-surfaces in
the four top views are defined by (a) gs = 0.01, (b) w ¼ 5:02wt pct Pb, (c) T ¼ 496:15K ð223	CÞ, and (d) N ¼ 107grains m�3. Velocity vectors in
the bottom views are only displayed in the symmetry plane. The simulation case is defined in Fig. 11 and Table III.
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regions of the steel ingot are cooled via a mold while the
upper region is surrounded by an insulating refractory
material. The top surface is covered by a layer of
exothermal powder. The mold outer surface thermally
exchanges with the environment by convection and
radiation.

For the current study, the steel is considered as a
binary alloy composed of an iron base and a 0.36 wt pct
nominal carbon content, which plays a dominant role in
determining buoyancy force compared to other chemical
elements.[18] A simulation is performed on one quarter
of a cylinder (0.3 m radius and 1.8 m height), an
approximation of the octagonal cross section of the real
ingot, which is bounded by two symmetric planes (P2
and P3 in Figure 14(b)). The heat exchange through the
mold and the refractory—not represented in the simu-
lation—is modeled by applying Fourier type boundary
conditions to the cylindrical surface and bottom region
of ingot (P5 and P4 in Figure 14(b)). Two different
convective heat transfer coefficients are used:
hext sup ¼ 700 W m�2 K�1 in the upper zone of the
cylindrical part (0.4 m depth from the top) representing
a limited heat extraction through refractory and
hext inf ¼ 1000 W m�2 K�1 in both the lower zone
(1.4 m height from the bottom) and the bottom surface,
representing faster cooling via the gray iron mold. The
top surface (P1 in Figure 14(b)) is assumed to be
adiabatic as the thermal cooling is restrained by use of

the exothermal powder layer. At the beginning of the
simulation, the ingot is assumed to be already filled by
the liquid alloy at 1776.15 K (1503 �C). The exterior
temperature is modeled to be gradually changed during
the process: beginning at 900 K (626.85 �C) until
2000 seconds, then imposed to be 300 K (26.85 �C)
when the cooling time is over 4000 seconds, and
decreased linearly with time during the intermediate
period. Grain nucleation is modeled following an
instantaneous nucleation law with an initial density of
109 grains m�3 and a nucleation undercooling of
10�3 K. Crystals are assumed to be blocked when the
solid fraction reaches a packing value of 0.4. In this
investigation, only equiaxed spherical crystals are con-
sidered. The simulation is carried out with a uniform
mesh size of 20 mm and a constant time step of
0.01 second.

2. Results and discussion
Figure 15 presents the velocities of liquid and solid

phases in a vertical cross section, for which the vectors
indicate the velocity direction and the color reflects the
velocity magnitude. The three upper sub-figures (a to c)
are for the liquid phase and the lower (d to f) for the
solid phase. The pink surface displays the packing limit
interface at a solid fraction of 0.4, below which solid
grains are blocked and piled up from the bottom to this
interface. Additionally, the tangential component of

Fig. 13—Simulations for the 3D cavity test for Sn-5 wt pct Pb alloy solidification showing snapshots of the average composition at times (a)
150 s, (b) 200 s, (c) 250 s, and (d) 300 s. Iso-surfaces are displayed for 3, 4, 7, 9, and 10 wt pct Pb. Iso-lines on the plane at height 20 mm from
the bottom are from 3 to 4.2 wt pct Pb with equi-interval of 0.1 wt pct Pb). The simulation case is defined in Fig. 11 and Table III.
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velocities is also illustrated in four transversal cross
sections at 0.4, 0.8, 1.2, and 1.6 m from the ingot’s
bottom.

As it can be observed in these figures, the flow
descends along the cooled side and ascends along the
centerline, resulting in a global circulation loop in the
shape of an elongated torus. The maximum velocity is
around 150 mm s�1 along the cooled wall. The persis-
tence of this circulation loop is remarkable and its flow
direction is the reverse of the direction observed when
solid transport is not taken into account. If the solid is
assumed to be fixed to the mold, the flow is driven only
by natural convection induced by density differences in
the liquid. The density of the liquid depends on the
temperature and on the chemical composition; the
concentration of carbon is most important when com-
pared to all solutes in the multicomponent steel.[18] In
the mushy zone, the liquid density decreases with
decreasing temperature because the liquid is enriched
in carbon as solidification progresses. This creates a
lateral liquid density gradient from the cooled walls
towards the core of the casting, which drives the
thermo-solutal natural convection. If the solid is fixed,

lighter liquid ascends along the walls and heavier liquid
descends in the core. When solid grains move, the flow is
completely modified. Solid crystals, heavier than the
liquid, sediment along the cooled walls and entrain the
liquid, thus inducing a downward flow. This phe-
nomenon leads to an overall flow loop descending at
the solidification front and ascending in the ingot core.
This clearly shows that besides the thermo-solutal effect
the solid transport plays a significant role in the
formation of the natural convective flow during solid-
ification. Moreover, the motion of solid and liquid are
strongly coupled; the moving phases can entrain one
another via drag forces.
The predicted flow structure is clearly three-dimen-

sional and is not axisymmetric, although a fourfold
symmetry is implicitly assumed by the choice of the
computational domain. The 3D structure of the flow is
indicated in the horizontal slices of Figure 15, showing
the tangential velocity component for both phases. It is
around one order of magnitude smaller than that of the
vertical velocities. The 3D structure is even more clearly
observable on the shape of the packing front (pink surface
in Figure 15) and in the distribution ofmacrosegregation,

Fig. 14—Schematics of the 3.3 ton steel ingot cast by Aubert & Duval[18] presenting (a) dimensions and materials and (b) simulated settings.
Simulation parameters are given in Table IV.
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Fig. 15—3D FEM simulation of the solidification of a binary Fe-0.36 wt pct C alloy. Calculated velocities of (a to c) the liquid phase and (d to f) the
solid phase at process times (a, d) 10 s, (b, e) 100 s and (c, f) 200 s. In the vertical longitudinal cross-section, vectors indicate the velocity direction,
while their color reflects the velocity magnitude. In the four horizontal transverse sections, the maps present the distribution of tangential velocities.
The pink surface represents the packing surface at the characteristic solid fraction 0.4. The simulation case is defined in Fig. 14 and Table IV.
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Fig. 16—3D FEM simulation of the solidification of a binary Fe-0.36 wt pct C alloy. Calculated solid fractions (a to c) and average solute
composition (d to f) at process times (a, d) 10 s, (b, e) 100 s, and (c, f) 200 s. The pink surface represents the packing surface at solid fraction
0.4. The simulation case is defined in Fig. 14 and Table IV.

METALLURGICAL AND MATERIALS TRANSACTIONS A VOLUME 49A, MAY 2018—1743



as shown in Figures 16 through 17. It is possible that a
certain degree of destabilization is induced by the numer-
ics due to the use of a relatively coarse mesh size (20 mm).

Figure 16 presents the distribution of solid fraction (a
to c) and of average composition (d to f) at different
instants (10, 100, and 200 seconds). It can be seen that in
the beginning of the process (at time 10 seconds) the
whole population of grains are transported and sediment
at quite high speed (about 150 mm s�1) along the cooled
wall. Despite a higher solid fraction near the wall (which
can be seen in the transverse cross sections), there is no
permanent solid layer attached to this cooled wall.
Additionally, in the velocity maps in Figure 15, it can be
seen that after sinking to the bottomalong the cooled side,
the mobile solid phase is transported towards the center
zone by liquid flow. In this way, solid grains coming from
the outer solidified region first accumulate at the center
area and then extend to the side wall, resulting in a packed
solid built up from the bottom side. Since solute-depleted
grains settle and occupy the lower zone, the liquid
enriched in solute is ejected upwards. This gives rise to
the formation of a negative segregation cone in the lower
zone of the ingot, as shown in Figure 17(a). This is a
typical phenomenon experimentally found in steel ingots.
Figure 17(b) shows the segregation profiles at the ingot
center. The blue curve is obtained from the present

numerical solution and can reproduce the general trend
measured experimentally and represented by red points:
negative segregation in the lower zone and positive
segregation in the upper zone. Nevertheless, the numer-
ically calculated segregations are more severe than those
measured: it can be noted that the simulation predicts a
negative segregation which is more pronounced than that
of the one measured, whereas the calculated positive
segregation is less intense than measured. The discrep-
ancy between numerical and experimental results may be
caused by different factors. It should be noted first that
approximated boundary conditions were used in the
absence ofmold and refractory. In addition, other factors
were neglected, such as the dendritic morphology of solid
grains, the simultaneous presence of columnar and
equiaxed grain structures, and the shrinkage phe-
nomenon. As an illustration, the investigation accounting
for (orange curve in Figure 17(b)) globular grain mor-
phology with a 2D-FVM[18] is shown in Figure 17(b). It
reveals larger deviation from the measurements com-
pared to the present 3D-FEMsimulation.However, when
compared with (green curve in Figure 17(b)) dendritic
morphology of solid crystals performed with a 2D-FVM
implementation,[18] clear improvement is seen and the
prediction of segregation comes closer to experimental
data.

Fig. 17—3D FEM simulation of the solidification of a binary Fe-0.36 wt pct C alloy with (a) the final macrosegregation map and (b) segregation
profiles along the center line with (red points) measurements, (blue curve) present 3D FEM simulation and (orange curve) 2D cylindrical FVM
considering a spherical globular solid grains and (green curve) 2D cylindrical FVM simulation accounting for a dendritic morphology of the
solid phase.[18] The simulation case is defined in Fig. 14 and Table IV (Color figure online).
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VI. CONCLUSIONS

In this study, a finite element solidification model
which takes into account the transport of equiaxed
grains is presented. This model consists of


 the resolution of a set of highly non-linear and
strongly coupled equations over multiple scales in
time and space, including those of energy, phase
movement, phase transport, grain density transport,
solute transport, nucleation and solid growth,


 the coupling of the equations based on the operator
splitting algorithm, previously developed by Založ-
nik and Combeau,[8] demonstrated as an effective
way for the numerical resolution of the evolution of
solidification structures in the growth stage and the
transport stage.

Different issues make the finite element implementa-
tion challenging:


 solution of pure transport equations by the finite
element method,


 sharp discontinuities in the velocity fields due to the
packing of solid grains.

Propositions were introduced to overcome these
difficulties:


 addition of an adaptive artificial diffusion to the
transport equations,


 implementation of a specific treatment to deal with
the packing issue, consisting in using a transition
function and adjusting the solid velocity.

A careful investigation was conducted to ensure the
consistency between related quantities during the pro-
cess as well as to guarantee the conservation of mass and
energy. It progressively consisted of:


 a 1D pure transport simulation of sedimentation to
evaluate its effects and to propose appropriate
values for the adaptive artificial diffusion,


 application of the complete transport-growth model
to simulate macrosegregation in a 2D
configuration,[11]


 extension of the above simulation in 3D, resulting in
a heterogeneous distribution of variables in the third
direction which could not be captured by 2D
simulations,


 3D simulation of the solidification of a 3.3 ton
Fe-0.36 wt pct C steel ingot, representative of a real
ingot,[18] showing macrosegregation prediction in
reasonable agreement with experimental
measurements.

To our knowledge, the present development is orig-
inal in the context of the finite element method. It
should be noted that the computational time reached
35 days for the simulation of the binary Fe-0.36 wt pct
C alloy. Improvements are expected when using a
combination of adaptive techniques for the macroscopic
time step and the FE mesh. The present finite element
model could then become a promising tool to simulate
solidification, especially for industrial applications such

as ingots of complex geometries and large size. It also
has potential for coupling with segregation due to
thermomechanical deformation while accounting for the
grain structure formed during casting.
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APPENDIX A: NOMENCLATURE
AND NOTATIONS

b Body force
Cd Drag coefficient
cp Specific heat
D Diffusion coefficient
dg Grain diameter
DM Artificial diffusion coefficient
g Gravity vector
g Phase fraction
gsc Packing solid fraction
h Enthalpy per unit mass
hv

s

e Characteristic mesh size of an
element e in
direction of velocity vs

j Solute flux vector
JC Interfacial solute transfer due

to phase change
Jj Interfacial solute transfer due

to diffusion
JU Interfacial solute transfer due

to nucleation
kp Partition coefficient
l Heat conduction length
Lf Latent heat of fusion
Md Interfacial momentum transfer

due to interfacial stress
MC Interfacial momentum transfer

due to phase change
MU Interfacial momentum transfer

due to nucleation
n Number of micro-time steps

over a macro-time step
n Unit vector normal to the liq-

uid–solid interface
N Grain density
_N Generation rate of grain

density
p Pressure
q Heat flux vector
QC Interfacial heat transfer due to

phase change
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Qj Interfacial heat transfer due to
diffusion

QU Interfacial heat transfer due to
nucleation

R Resistance coefficient
Rg Grain radius
Sv Interfacial area concentration
T Temperature
t Time
dt Micro time step
Dt Macro time step
Text Exterior temperature
v Growth velocity of grains
v Velocity vector
vcenter Velocity at the center of an

element
w Solute mass concentration
a First constant parameter of the

artificial diffusion coefficient
at Transition function
b Second constant parameter of

the artificial diffusion coefficient
bshr Shrinkage coefficient
bT Thermal expansion coefficient
bw Solutal expansion coefficient
d Solute diffusion length
C Rate of exchanged mass due to

phase change
j Thermal conductivity
k2 Characteristic length for

permeability
l Dynamic viscosity
ui Interpolation function associ

ated with node i
q Mass density
s Deviatoric stress tensor
U Rate of transferred mass due

to grain nucleation
m Iteration
Subscripts
gr Growth
i; j Indexes of nodes
nucl Nucleation
packed Packed-bed regime
regime Flux regime
ref Reference
slurry Slurry regime
tr Transport
proj Projection
modif Modification
0 Initial state
Superscripts
* Interface
B Buoyancy
T Transpose
l Liquid phase
m Mixture
s Solid phase
a Phase a
m Iteration
Supplementary symbols
hi Volume average over all phases
ah i Volume average in phase a
ah ia Intrinsic volume average in

phase a

� Tensor product
� Gradient operator
� Æ Divergence operator

Averaging operator
Nn Number of nodes
Re Reynolds number
tanh hyperbolic tangent
kk Magnitude of a vector

APPENDIX B: SOLUTE DIFFUSION LENGTHS
AND AREA CONCENTRATION

The solute diffusion lengths are taken from the work
of Tveito et al.,[41] as the following formulations.

Solute Diffusion Length in the Liquid Phase

dl ¼ wl� � hwlil

�@wl

@n



� ½B1�

¼ d

d
Rg

� f Rg;Dð Þþg Rf;Rg;Dð Þ
d Rgþd� RgþDþdð Þe�D=d½ ��f Rg;Dð Þþg Rf;Rg;Dð Þ e�D=d�1ð Þ

;

½B2�

where

d ¼ Dl

v
f Rg;D
� �

¼
Rg þ D
� �2�R2

g

2
½B3�

g Rf;Rg;D
� �

¼
R3

f � Rg þ D
� �3

3 Rg þ D
� � D ¼ min Rf � Rg;

2Rg

Shconv

� �

½B4�

Shconv ¼
2

3gl
Sc1=3Ren Reð Þ Sc ¼ ll

qlDl
½B5�

Re ¼
gl2Rg vl

� �l� vsh is
���

���
m

n Reð Þ ¼ 2Re0:28 þ 4:65

3 Re0:28 þ 4:65
� � :

½B6�

Solute Diffusion Length in the Solid Phase

ds ¼ Rg

5
½B7�

The area concentration is calculated as follows:

Sv ¼ 4p Rg

� �2
N: ½B8�
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APPENDIX C: THERMOPHYSICAL DATA

See Table C1.

APPENDIX D: ANALYTICAL SOLUTION FOR
THE 1D TEST CASE

The 1D Test Case consists in pure sedimentation of a
column of preexisting globular grains with fixed size in a
uniform temperature domain. Considering constant and
equal densities of the solid and liquid phases, as well as
no phase change and no nucleation, the average total

mass conservation simplifies to gs vsh isþgl vl
� �l¼ 0. For

the sake of simplicity, a constant settling value of the
solid velocity is imposed, set to vsh is0¼ �1mm s�1. The
1D domain height and the initial conditions are defined
in Figure 4: a continuous and uniform 60-mm mushy
zone region is initially present between heights 20 mm
and 80 mm, with a uniform average grain density per
unit volume, N0 ¼ 109 grainsm3, and volume fraction of
solid, gs0 ¼ 0:1. One can easily derive the value

for the liquid velocity in the mushy zone, vl
� �l¼

�gs0 vsh is0= 1� gs0
� �

¼ 0:11mm s�1. Similarly, the radius
of the grains, Rg,0, is simply given by using the definition
of the fraction of solid, gs0 ¼ N0 4=3ð ÞpR3

g;0, leading to

the value Rg,0 = 0.288 mm. Considering the fixed
settling velocity and the packing limit at which the
grain stop, gc

s = 0.3, the time evolution of the distribu-
tion of the mushy zone is simply derived by considering
that the total fraction of the solid phase is unchanged
over the entire domain, while not exceeding gc

s in the
packed bed. Values are reported in Table D1. The
temperature is fixed to 498 K (224.856 �C), i.e., below
the liquidus temperature of the Sn-5 wt pct Pb alloy,
that is 498.72 K (225.57 �C) according to the

thermophysical properties listed in Table C1 of Appen-
dix C.[8] The average solute mass composition is defined

by w ¼ gs wsh isþgl wl
� �l

. At any time, as the system is
closed with respect to mass transfer, integration over the
entire domain must retrieve the nominal composition of
the alloy, w0 ¼ 5wt pct Pb. The initial composition
profile assumes no macrosegregation. This means that
the average composition is equal to w0 at any position
along the domain. However, assuming complete mixing
in both liquid and solid phases, the lever rule holds and
one can derive the equilibrium intrinsic composition of

the liquid and solid phases, wl
� �l¼ 5:556wt pct Pb and

wsh is¼ 0:364 wt pct Pb, respectively. Knowing the dis-
tribution of solid and liquid and their initial and
intrinsic compositions, one can directly compute the
average compositions by tracking the change of phases
due to sedimentation. Computed values are reported in
Table D1.
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