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A metric for quantifying the degree of solidification macrosegregation is proposed that
statistically fits compositional data from experiments and simulations to a three-parameter
Weibull distribution. The method for fitting such a distribution is described and examples are
presented. The new metrics are compared to existing macrosegregation measures and the
Weibull distribution is shown to be the best fit to data. The fitted three-parameter Weibull
distribution is generally found to have better agreement with the composition data than a
Gaussian distribution, upon which the macrosegregation number is based, because the Weibull
better accounts for asymmetry in the dataset. Trends in macrosegregation results are identified
using the new metrics, specifically the normalized Weibull deviation, and compared to the trends
identified by the macrosegregation number. A grid dependence study is performed using both
metrics as tests for convergence. The utility of the Weibull distribution is demonstrated by
comparing composition data with different degrees of asymmetry due to different solidification
cooling rates. The difference between the values of the two metrics is a measure of the
asymmetry in the compositional distribution.
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I. INTRODUCTION

MACROSEGREGATION in metallic alloys is a
complex casting defect that is a function of the transport
phenomena during processing and is affected by mate-
rial properties, cooling conditions, and system geome-
try. One difficulty with exploring the mechanisms
underlying the formation of macrosegregation patterns
is the quantification of the comparison of large compo-
sitional datasets, obtained either experimentally or
computationally. Commonly, either full composition
fields or specific profiles are reported (e.g., References 1
through 3). These data have been used to visualize
macrosegregation and explain the physical phenomena
responsible for it, but these visualizations are difficult to
compare quantitatively. To aid in such a comparison, a
single numerical metric that represents the composition
field is frequently calculated. A reliable metric is also
useful for quantifying uncertainty propagation, in which
the behavior of the metric can be used to understand the
probable range of the macrosegregation level as a
function of the variation of the process input.[4]

One metric that is commonly used for quantifying
compositional variation is themacrosegregation number,[5,6]
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where C0 is the nominal composition, Vtot is the total
volume of the domain, and C is the measured or pre-
dicted local composition field. The integral in Eq. [1] is
approximated as the summation
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where DVi is the control volume in which Ci represents
the local average composition and N is the number of
samples (or control volumes in numerical results). This
metric assumes that the composition field is normally
distributed about the mean or nominal composition.
However, it is quite common for this volume-averaged
composition distribution to be asymmetric about this
mean, depending on the process parameters and mate-
rial properties. It is also found that this distribution is
skewed to lower compositions for elemental partition
coefficients (k) greater than unity and to higher values
for k < 1 (Figure 1).[7] As a consequence of the
assumptions implicit in Eqs. [1] and [2], the commonly
used macrosegregation number is only an accurate
depiction of the overall compositional variation for the
limiting case of a symmetric, Gaussian distribution.
When fitting a Gaussian distribution to a skewed
dataset, the longer tail is truncated and the shorter tail
is artificially extended. Overall, the fitted distri-
bution tends to overpredict the total amount of
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macrosegregation and underpredict the volume of mate-
rial near the nominal composition.

Fezi et al.[7] analyzed the composition fields produced
by numerical simulations of the electroslag remelting
process by plotting the volume-averaged composition
distributions for different components in a superalloy
(alloy 625) for various process conditions. The compo-
sition distributions were all found to be asymmetric, and
the implications of the distribution shapes were dis-
cussed. Along with the macrosegregation number, the
ingot volume fraction outside of the alloy composition
specification range was used to characterize the degree
of macrosegregation. This latter metric is useful to
consider, especially for industrial processes and alloys,
but it fails to provide information about compositional
variations within the specification limits.

Voller and Vušanović[8] recently proposed that the
normalized compositional survival function be used for

verification, validation, and analysis of numerical
macrosegregation predictions. They applied their
method to experimental data given by Quillet et al.[9]

for a cast Sn-10 wt pct Bi ingot and to numerical results
for this system. The composition data was sorted in
descending order of the ratio C/C0, from j = 1 to j = n
= 120. Each sorted composition was given a value

determined by its survival plotting position, S ¼ j
nþ1,

forming the compositional survival function, S(C/C0)
(although it is erroneously referred to as the cumulative
distribution function in Reference 8). This survival
function was interpreted as the ingot volume fraction
corresponding to a macrosegregation level greater than
or equal to the corresponding value of S. The corre-
sponding CDF can be calculated easily from the survival
function as 1 � S. They found a linear relationship
between the composition and the survival function when
the positive segregation was plotted on log–log axes.
Also, the grid size did not affect the linear fit but did
change the maximum composition in the positive
segregation region. Fitting this positive portion of the
survival function with a power law function yields a
slope that may be used to quantify the level of
macrosegregation, and the survival functions themselves
may be useful for visualizing data. Such visualization
was used recently to investigate the effect of permeability
models[10] in segregation development. Voller and
Vušanović[8] also suggested using the slope of the power
law function as the shape factor for the Pareto power
law distribution, but never tested the Pareto distribution
for its validity. While these approaches succeed at
expressing the macrosegregation in a casting with a
single metric, they ignore all negative segregation and do
not accurately reflect the shape of the full composition
distribution. This shortcoming might be particularly
severe in cases where the macrosegregation strongly tails
toward the negative side of the distribution, or in alloys
with elements with partition coefficients greater than
unity, which tend to skew to lower compositions. The
linearity of the positive region of the survival function
does not extend throughout the positive segregation
region which further limits this metric. Also, as Voller
and Vušanović point out, this method is valid only when
the composition data are on a uniform grid, because
their survival function weights each composition mea-
surement the same.
In an effort to address these issues, and to properly

capture the entire skewed composition distribution, and
not just the positively segregated region, this study
develops and uses a three-parameter Weibull distribu-
tion to characterize macrosegregation. In particular, the
advantages over the macrosegregation number are
detailed and comparisons are made to the power law
function and Pareto distribution methods. (These were
proposed by Voller and Vušanović, although they only
demonstrate the former technique.[8]) While the present
analysis uses statistical functions as tools to describe
composition distributions, it should not be mistaken as a
rigorous statistical analysis. Statistical distributions are
useful because they fit composition distributions found
in solidified ingots well, but their use should not be read

Fig. 1—Composition distributions in an ingot of Ni alloy 625 pro-
duced through electroslag remelting showing the asymmetry in (a)
Nb with k< 1 and (b) Cr with k> 1 (data taken from[7]).
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as a suggestion that the composition is a random
variable, as the distribution of composition values is
controlled by specific, non-random physical processes.
The new method is first applied to experimental data
given by Quillet et al.,[9] and then used to describe the
influence of cooling conditions, grid size, and grid
uniformity in simulations of solidification of a simple
binary alloy (Al-4.5 wt pct Cu) and of a multicompo-
nent nickel-based superalloy (Inconel 625) with a
columnar, rigid dendritic structure. This method can
be applied without alteration to other segregation prone
alloys, solidification microstructures, and industrial
solidification processes, such as direct chill casting,
ingot casting of steel, and electroslag remelting.

II. MATHEMATICAL DESCRIPTION

The three-parameter Weibull probability distribution
function (PDF) of a random variable x (in this case, the
composition) is defined as

PDFWðxÞ ¼ a
b

x� c
b
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b
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where a is the shape parameter, also known as the
Weibull slope, b the scale parameter, and c the thresh-
old value. The shape and scale parameters control the
asymmetry and the size or range of the distribution,
respectively. The lower end of the distribution is lim-
ited by the threshold value such that all random vari-
ables x are greater than or equal to c. The PDF is the
derivative of the corresponding cumulative distribution
function:

CDFWðxÞ ¼ 1� exp � x� c
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The variance of the Weibull distribution is
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where C is the gamma function,
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and the deviation is defined as the square-root of the
variance:
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The full composition field of a cast alloy is continuous
but is sampled (measured or predicted) at discrete
spatial locations. Each sample is assumed to be the
average of a corresponding control volume. The control
volumes can be uniform in size, as in the case of Voller
and Vušanović,[8] or non-uniform, in which each com-
position measurement may characterize a different ingot

volume fraction. A cumulative volume distribution
function (CVDF) may be constructed which quantifies,
for each unique composition in the dataset, the ingot
volume fraction that has a composition less than or
equal to that unique composition measurement. This
cumulative volume function, using discrete composition
data, has a similar meaning to that of a CDF, with a
random variable x, and for simplicity is interpreted in
that way for this study. To construct this plot, a dataset
comprised of the composition field and corresponding
control volume sizes must first be ranked by composi-
tion from lowest to greatest. This dataset is taken over
the full composition range (both negative and positive
segregation regions) in this study. The CVDF value for
each ranked composition, Cj, is calculated as shown in
Eq. [8],

CVDFðCjÞ ¼
Pi¼j

i¼1 ViPi¼n
i¼1 Vi

; ½8�

in which the ingot is made up of n control volumes, each
occupying a volume Vi. The use of volume allows
non-uniform grids to be used to calculate the CVDF. If
all control volumes are equal in size, then Eq. [8] reduces
to a form similar to 1 � S as used by Voller and
Vušanović.[8] The result of this process is a CVDF of the
composition dataset that can be fit to a continuous
CDF.
It was found that the Weibull distribution fit the

compositional data best if the data and Weibull PDF
skewed toward higher compositions. For cases that
skew toward lower compositions (i.e., ðCi

0 � Ci
minÞ>

ðCi
max � Ci

0Þ, where Ci
min and Ci

max are minimum and
maximum compositions, respectively), the data were fit
to a Weibull distribution using ð1� CiÞ as the random
variable. The compositional CVDF datasets are lin-
earized using the following relationships, which can be
found by rearranging Eq. [3]:

xj ¼ lnðCj � cÞ; ½9�

and

yj ¼ ln � ln 1� CVDFðCjÞ
� �� 	

; ½10�

where Cj is the composition of data point j and is the
volume fraction of material with a composition less
than or equal to Cj, as defined in Eq. [8]. A least
squares fit of a straight line is made to the linearized
dataset, yj = f(xj), where the slope is the shape param-
eter, a, and the scale parameter, b, is related to the
y-intercept by:

b ¼ exp
�yint
a


 �
: ½11�

Selection of the threshold value, c, must be done
carefully in order to obtain the best fit. In this case, a c
value of zero was used as an initial guess and then
incremented up to the minimum composition found in
the domain. The best possible threshold value was
determined by comparing the fitted Weibull CDF and
the CVDF of the compositional data and minimizing
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the difference calculated using the root mean square
error (RMSE):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
n¼1

ðCVDF � CDFWÞ2

n
:
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Increments in c of 10�5 were found to be sufficiently
small for the cases examined. The three-parameter
Weibull distribution reduces to the two-parameter form
if the best fit is found with a threshold of zero.

The shape parameter (a) controls the location of the
peak value of the fitted PDFW, while the scale parameter
(b) controls the range of the distribution. Both of
these parameters are important in characterizing the
macrosegregation and one metric that combines the
effects of these two parameters is the Weibull deviation.
To compare this metric directly to the macrosegregation
number, the Weibull deviation is normalized by the
nominal composition of a given component, shown in
Eq. [12]. The raw data was converted into a volume
distribution function (VDF), similar to that of a PDF,
by binning the data and creating a histogram. The
height of each bin corresponds to the volume fraction of
ingot occupied in that composition range, divided by the
bin width. This way the total area occupied by the
histogram, or VDF, is equal to one.

W ¼ rW
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It is important to understand that by ordering the
dataset from least to greatest in terms of the composi-
tion to construct the CVDF, the information about
spatial distribution of the composition field is lost.
Further manipulations of the data by fitting a particular
distribution type and representing that distribution with
a single parameter necessarily reduce the amount of
information conveyed by the dataset. Therefore, while
these types of metrics are useful for comparisons of
otherwise unwieldy datasets, they do not contain all the
necessary information to understand the mechanisms by
which macrosegregation patterns develop. Instead,
trends in these metrics should be used to point toward
particular cases in which the spatial and temporal data
may be examined more closely to gain a deeper
understanding of the physics of the process.

III. RESULTS AND DISCUSSION

Use of the three-parameter Weibull distribution and
the normalized Weibull deviation is implemented in
several examples presented below. First, experimental
measurements of the composition profile of a Sn-10 wt
pct Bi ingot[9] are used to compare the present method to
the macrosegregation metrics proposed by Voller and
Vušanović and the macrosegregation number. Next,
numerical predictions of a static casting of Al-4.5 wt pct
Cu are used to show the versatility of the Weibull

distribution compared to the macrosegregation number.
The normalized Weibull deviation is also used to
conduct a grid dependence study for this alloy system.
Finally, a multicomponent superalloy is simulated to
show the relationship between the normalized Weibull
deviation and the elemental partitioning.

A. Measured Segregation in Sn-10 wt pct Bi Ingot

The proposed characterization metric for macroseg-
regation was first applied to experimental data from a
static casting of a Sn-10 wt pct Bi alloy (Quillet et al.[9]).
The ingot was 5 9 6 9 1 cm3 and cooled from one of the
5 9 1 cm2 vertical walls while the remaining walls were
insulated. Composition measurements were reported for
a uniform 10 9 12 grid from the 5 9 6 cm2 midplane of
the casting. Using these data, Voller and Vušanović
took the survival function in Figure 2(a) and plotted the
positive segregation region (C/C0 ‡ 1) on a log–log plot
and fitted it with a straight line (Figure 2(b)).
A least squares fit to positive portion of Figure 2(b)

yielded the following equation:

y ¼ 0:3823
C

C0

�5:059

: ½13�

(The exponent in Eq. [13] is not the value in,[8] where
m = �4.45 was picked as an estimate to indicate the
power law trend in the data.[11])
Voller and Vušanović also suggested that the negative

of m may be used as the shape factor in a Pareto
distribution, although they did not compare that distri-
bution to the measurements.[8] The Pareto survival
distribution for a random variable x is:

SP ¼ xmin

x


 �m

; ½14�

where xmin is the minimum value allowed for x, and
SP = 1 when x< xmin. Since the exponent was found
from a fit the positively segregated data, xmin was set
to the nominal composition. The Pareto PDF and
CDF for x ‡ xmin are defined as

CDFP ¼ 1� xmin

x


 �m

; ½15�

PDFP ¼ mxmmin

xmþ1
: ½16�

Equations [15] and [16] are plotted against the
composition dataset in Figure 3, using the exponent in
Eq. [13]. The Pareto distribution follows the slope of the
positively segregated region reasonably well; however, it
is offset from the dataset. Clearly this distribution fails
to adequately match the experimental results.
To construct the Weibull distribution, each composi-

tional measurement was assumed to be representative of
its 5 9 5 9 10 mm3 volume. Figures 3(a) and (b) show
the compositional probability and cumulative distribu-
tions functions. The compositional PDF is constructed
by first grouping the data into 30 compositional bins,
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where the height of each bin (or probability density) is
the volume fraction of the ingot that falls within each
bin divided by the width of the bin.

The experimental data are plotted in both VDF and
CVDF form in Figure 4 and overlaid with the corre-
sponding curves for the three-parameterWeibull, normal
distributions, and power law using the fitting parameter
given in Eq. [13]. The power law function fits the
measurement distribution well for the positive segrega-
tion. However, roughly half of the ingot is negatively
segregated and that part of the distribution, including the
compositions with the highest probability, is not
described by this method. It is also clear that the
experimental distribution is asymmetric and is skewed
in the direction of positive segregation. The normal
distribution assumed by the usual macrosegregation
number overpredicts the tail to the left and underpredicts
the likelihood of finding material near the nominal
composition, while the fit to the Weibull distribution
closely matches the asymmetry of the data. From these
observations, it is expected that the macrosegregation
number, being based on the assumption of normally
distributed data, would overpredict the level of

macrosegregation in the domain, as seen by comparing
the macrosegregation number for this ingot (M = 0.238)
to the normalized Weibull deviation (W = 0.195). To
further illustrate the effectiveness of the three-parameter
Weibull distribution, the RMSE of the fitted CDFW

(0.024) is compared to that of the normal distribution
(0.076). The fit to theWeibull distribution has roughly 1/3
the error than that of the normal distribution.

B. Predicted Segregation in Al-4.5 wt pct Cu Ingot

One important use of the macrosegregation metrics
described above is to compare the change in the
composition distribution as a function of process
variables or properties. Example data for this task were
produced by a series of two-dimensional numerical
simulations of the static casting of an Al-4.5 wt pct Cu
binary alloy. The model used was a standard continuum
mixture-based finite volume model for columnar solid-
ification based on the work of Bennon and Incropera,[12]

but including the temperature formulation of the energy
equation,[13] using Voller and Swaminathan’s[14] lin-
earization for the transient latent heat source term. The

Fig. 2—Compositional survival function with (a) linear and (b) log
scales. These experimental data are from the cast Sn-10 wt pct Bi in-
got reported by Quillet et al.[9]

Fig. 3—(a) VDF and PDF and (b) CVDF and CDF plots of the
Sn-10 wt pct Bi compositional data reported by Quillet et al.[9] over-
laid with corresponding Pareto distribution using the exponent in
Eq. [13].
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10 9 10 cm2 domain was Cartesian, with an 80 9 80
uniform, structured, and staggered grid. Alloy proper-
ties were taken from Vreeman and Incropera.[15] Three
of the domain walls were insulated, with a heat transfer
coefficient applied to one of the side walls. This active
boundary condition was varied to influence the heat
transfer and fluid flow, and subsequently, the macroseg-
regation development within the casting.

Cases were run with heat transfer coefficients ranging
from 500 to 4000 W/m2K. The normalized Weibull
deviations and macrosegregation numbers for each of
these cases are shown in Figure 5. The macrosegregation
number decreases monotonically with heat transfer
coefficient. However, the normalized Weibull deviation
has a minimum value near h = 1250 W/m2K, after
which this trend reverses at intermediate values until
the normalized Weibull deviation is equal to the
macrosegregation number, at which point, it begins

decreasing again. Above h = 2000 W/m2K, W begins to
decrease slightly faster than M.
The cause of the normalized Weibull deviation behav-

ior is the changing symmetry of the composition distri-
butions, which are shown (both PDF and CDF) for the
extreme cases, in Figure 6, plotted for data divided into
50 bins. For small heat transfer coefficients, the compo-
sition distribution skews strongly to higher composi-
tions, but has almost no tail to the left. The normal
distribution in this case greatly exaggerates the overall
macrosegregation since it overpredicts the negative
segregation, while the Weibull distribution much more
accurately represents the asymmetric shape of the data.
However, as the heat transfer coefficient increases, the
left tail lengthens and the right tail shrinks. Eventually,
the distribution is nearly symmetric (Figure 6(b)). Here,
both the Weibull and normal distributions represent the
shape of the data reasonably well.
The results in Figures 5 and 6 indicate several important

characteristics of these twometrics. First, the three-param-
eter Wiebull distribution appears to be a more comprehen-
sive method for describing the extent of macrosegregation
thananormaldistributionbecause it canfit both symmetric
and asymmetric composition distributions accurately. This
greater accuracy of the Weibull metric can also reveal
trends that may not be apparent in the macrosegregation
number, e.g., Figure 5.Also, because themacrosegregation
number is only accurate for symmetric distributions, the
difference between these two values may be taken as a
measure of the asymmetry of the composition distribution.
This trend is shown in Figure 7, normalized by the
macrosegregation number to account for changes in the
width of the distribution, along with four examples of the
corresponding fitted Weibull distributions, varying from
highly asymmetric (low h) to nearly symmetric (high h). As
the heat transfer coefficient increases, the right tail of the
distribution tends to shrink, while the left tail grows. This
gradual shift in the shape of the distribution explains how

Fig. 4—(a) CVDF and CDF and (b) VDF and PDF plots of the
Sn-10 wt pct Bi compositional data reported by Quillet et al.[9] over-
laid with corresponding three-parameter Weibull, normal, and power
law distributions fit to the data. The power law CDF is covered by
the experimental data, but is only plotted for the positively segre-
gated region. It is clear that the Wiebull distribution more accurately
represents the asymmetry of the experimental data.

Fig. 5—Normalized Weibull deviation (W) and macrosegregation
number (M) shown as functions of heat transfer coefficient for
Al-4.5 wt pct Cu solidification simulations.
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the Weibull deviation first decreases with heat transfer
coefficient, and then increases slightly before decreasing
again, as shown in Figure 5.

While fitting the composition field to a probability
distribution and calculating these simple metrics can
illuminate trends in the macrosegregation development,
these advantages come at the expense of spatial infor-
mation about the composition field. In order to gain a
deeper understanding of the development of macroseg-
regation, these metrics must be related to the behavior
during solidification. To this end, plots of the compo-
sition fields for the three PDFs shown in Figures 7 (a)
through (c) are given in Figure 8. The first solid
solidified on the left wall and was Cu poor (k < 1).
Thermal and solutal buoyancy drive the flow in the
liquid in a counterclockwise rotating cell that slightly
penetrates the mushy zone (Figure 9). This mushy zone
flow moves the Cu-enriched interdendritic liquid to the
bottom of the domain, where it pools until fully
solidified. This enriched liquid is replaced in the mushy
zone by liquid closer to the nominal composition,
leaving a depleted layer at the left wall. This process
continues as the solidification front progresses left to
right, until the average solid composition approaches
the nominal composition, and the top of the domain

becomes depleted. The last liquid to freeze is at the
bottom right corner of the domain, where the most
enriched fluid has collected. The center of the domain,
where the composition is near the nominal, corresponds
to the peak of the PDF. The enriched layer at the
bottom and right wall corresponds to the right tail of the
PDF, while the depleted regions at the left wall and top
of the domain correspond to the left tail of the PDF.
Differences in the distribution results for changes in

the heat transfer coefficient are caused by coincident
changes in the flow at the edge of the mush, where
macrosegregation is caused by the relative motion of
enriched liquid and depleted solid (k< 1). Because
copper is more dense than aluminum, the combined
thermosolutal driving force of the enriched liquid near
the liquidus temperature is downward, tending to collect
in a copper rich region at the bottom of the domain.
This natural convective flow is limited by the low
permeability in the mush. At the beginning of the
process, the thermal buoyancy is directly related to the
boundary condition. For high heat transfer coefficients,
a strong thermally driven convective flow carries
enriched liquid away from the first solid to form
towards the bottom of the domain, to be replaced by
relatively lean liquid at the top. Lower heat transfer

Fig. 6—Comparison of predicted composition data to fitted Weibull and normal PDFs and CDFs for Al-4.5 wt pct Cu with two different
boundary conditions (a) h = 500 W/m2K and (b) h = 2000 W/m2K. There is more symmetry in the distribution with higher h.
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coefficients cause weaker thermally driven flow that
advect less enriched liquid from the mush. The result is a
region of solid at the left wall that is more depleted with

stronger flows corresponding to higher cooling rates.
This initially lengthens the left tail of the composition
distribution with increasing heat transfer coefficient

Fig. 7—The difference between the macrosegregation number (M) and the normalized Weibull deviation (W) plotted for Al-4.5 wt pct Cu simu-
lating over a range of heat transfer coefficients (M–W) indicates the asymmetry of the Weibull PDFs, shown at right for three selected cases,
where the x-axes are Cu wt. fr. and the y-axes are probability density.

Fig. 8—Composition fields of fully solidified Al-4.5 wt pct Cu for 3 different heat transfer coefficients. (a) h = 500 W/m2K, (b) h = 1250
W/m2K, (c) h = 2000 W/m2K.
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(Figure 7). With even higher cooling rates, the amount
of time available for advection of the enriched liquid
become the dominant factor. Very high solidification
rates freeze the liquid in place before significant
macrosegregation can develop, eventually reducing the
length of the left tail of the distribution as shown in
Figure 7(d). This slightly increases the asymmetry of the
distribution, which explain the minimum, then increase
in the difference between the macrosegregation number
and the normalized Weibull deviation.

Later in the process, the level of macrosegregation is
controlled by the width of the mush and the time
available for the advection of solute. For low cooling
rates and therefore lower temperature gradients, the
fractions solid gradient is also lower, and the mush is
relatively wide, as shown in Figures 9(a) and (b). The

wider mush allows a larger region over which the
permeability is high enough that thermosolutal buoy-
ancy of the enriched liquid drives it out of the mush to
collect at the bottom of the domain. Additionally, the
slower solidification rate allows more time for advection
to occur. At higher cooling rates, the mush is thinner
(Figures 8(c) and (d)), and other than in a very narrow
region at the edge of the mush, the permeability is too
low to allow significant solute transport. The distance
over which solute is advected is also limited by the
increased solidification rate. These factors generally
result is more positive segregation at the bottom and
right wall of the ingot for low cooling rates, and less for
high cooling rates. Consequently, as shown in Figure 7,
the right tail of the distribution shrinks with increase
heat transfer coefficient.

Fig. 9—Composition field plots at various times during the solidification of Al-4.5 wt pct Cu with h = 500 W/m2K at (a) 200 s and (b) 1400 s
showing counterclockwise stream lines and the mushy zone extent. Results with h = 2000 W/m2K are shown (c) at 50 s and (d) at 200 s.
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Next, a grid refinement study was conducted to test
whether the normalized Weibull deviation was sensitive
to the grid spacing, and therefore may be used to
determine grid convergence. A previous study[8] showed
that, in many solidification processes, simulations grid
convergence was generally not achieved. The composi-
tion of the last liquid to freeze is averaged over its
control volume, so as the grid is refined, the maximum
composition tends to increase. It should be expected,
therefore, that the right tail of the composition distri-
bution will become larger, and the corresponding value
of the normalized Weibull deviation will also increase
similarly with the number of cells. The grid was varied
from 40 9 40 to 180 9 180 and the resulting normalized
Weibull deviation, macrosegregation number, and com-
position PDFs are shown in Figure 10. There is a
physical limitation to the grid refinement in that the
permeability model for the mushy zone assumes that the
control volume is much larger than the dendrite arm
spacing. Darcy’s Law, used to derive the permeability
terms in the momentum mixture equations, average out
the details of flow through a porous medium. For fine
grids, the continuum approximation breaks down and a
model that predicts the alloy microstructure must be
employed. As anticipated, both the macrosegregation
number and normalized Weibull deviation increase with
an increasing number of control volumes. This phe-
nomenon was also reported by Voller and Vušanović, in
which the composition that constituted a drop off of the
survival function from the power law tail occurred at

increasing values when the grid was refined.[8] Eventu-
ally the macrosegregation metrics will approach a
constant value, as the composition of last liquid to
freeze is limited by the eutectic point and further
increasing the spatial resolution will not cause the
highest solid composition to increase.
One of the disadvantages of the frequency analysis

described by Voller and Vušanović[8] is that it strictly
applies to a uniform grid. Here, the construction of
the Weibull distribution is done by weighting each
data point by its associated volume, so that results
using non-uniform grids may be analyzed. To demon-
strate the generality of the present method, simulations
with various non-uniform grids were performed. Con-
trol volume faces were located using a power law
scheme:

xiface ¼
i xtot
imax

� �n

; ½17�

where xiface is the location of control volume face i, xtot is
the size of the domain in the x-direction, imax is the total
number of control volumes in the x-direction, and n is
the power law exponent. Eq. [17] is only applied to the
x-direction (the direction of the solidification front
motion), and the y-direction is left uniform. The grid
was refined near the chill to have better resolution of the
temperature and velocity gradients where the heat
transfer and flow will be the strongest. Various values
of n were used to compare the effect of successive grid

Fig. 10—The grid dependence of the normalized Weibull deviation and macrosegregation number for the case with a heat transfer coefficient of
500 W/m2K. Plots at right show three examples of the fitted Weibull PDFs (x-axis is composition and y-axis is probability density), increasing in
asymmetry with the number of cells.
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refinement. Relatively small changes in the macrosegre-
gation levels are expected, since most of the segregation
occurs at the end of solidification where the grid

resolution is most similar for all n values. Results are
shown in Figure 11 for both the normalized Weibull
deviation and the macrosegregation number, as well as
an example of the power law grid refinement in Eq. [17]
with n = 1.5. Both macrosegregation metrics are unaf-
fected by the level of grid non-uniformity as expected,
which demonstrates that the Weibull deviation can be
used on irregular grids.

C. Predicted Segregation in Multicomponent Inconel 625
Ingot

The purpose of this final example is to discuss the
relationship among the macrosegregation levels of
different chemical species in a complex multicomponent
alloy. The model used for this study is the same as the
previous Al-4.5 wt pct Cu example, with a 15 9 15 cm2

Cartesian domain. Again, the effect of the cooling
condition is examined by varying the heat transfer
coefficient from 1000 to 10,000 W/m2K. The properties
and solidification path of IN625 are taken from Fezi
et al.[7] The nominal compositions and partition coeffi-
cients for the primary alloying elements are given in
Table I.
As discussed by Schneider and Beckermann,[5] the

macrosegregation number exhibits an interesting rela-
tionship for multicomponent alloys in which it is linear
with the elemental partition coefficients on either side of
k = 1. Considering that the normalized Weibull devi-
ation is equal to the macrosegregation for a symmetric
composition distribution, it is not unexpected that a
similar trend is seen with higher heat transfer coefficients
(more symmetry in composition distribution), but this
trend also holds for cases with less symmetric compo-
sition distributions (Figure 12). For the case with the
highest heat transfer coefficients, where the composition
distributions are most symmetric, W is very close to M,
and both metrics are linear with partition coefficient. At
lower heat transfer coefficients, the normalized Weibull
deviation is different from the macrosegregation num-
ber, indicating an asymmetric distribution, but retains
linearity with partition coefficient, with a slightly differ-
ent slope than the macrosegregation number. The linear
relationship between W and k can be used to simplify
numerical predictions of multicomponent solidification
by reducing the number of composition equations, as
discussed by Schneider and Beckermann.[5] They used
the M vs k relationship to reduce the number of
composition equations that must be solved in solidifi-
cation simulations of a ten component steel alloy.
However, when reducing the number of composition
equations the solutal contribution of all pertinent
alloying elements needs to be considered. Considering
that the normalized Weibull deviation is a better
representation of the composition field, using it to
simplify the model in such a way will yield more
accurate results than if the macrosegregation number
was used.

Table I. Nominal Composition and Partition Coefficients for

Simulation of IN625

Element Nom. Comp. (wt.fr.) k

Cr 0.215 1.04
Fe 0.025 1.31
Mo 0.09 0.83
Nb 0.0365 0.54

Fig. 11—The effect of a non-uniform grid on the normalized Weibull
deviation and macrosegregation number plotted in (a) for power law
grid spacing (in the x-direction) with various exponent values. An
example of the non-uniform grids is shown in (b) for n = 1.5.
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IV. CONCLUSION

The three-parameter Weibull distribution was pro-
posed as an improved metric for macrosegregation in
alloy solidification than the macrosegregation number,
Pareto distribution, or power law function. The process
of fitting the distribution to a compositional dataset
was described and implemented for both experimental
and numerical data from statically cast ingots with
columnar solidification structures. Different solidifica-
tion morphologies and casting processes will produce
different compositional fields; however, the process of
fitting the distribution remains the same. (Composition
distribution shapes similar to the static castings here are
found in predictions of electroslag remelting.[7]) The
utility of the Weibull distribution was demonstrated in
numerical simulations over a range of cooling rates
which changed the symmetry of the composition
distribution and was related to the associated transport
phenomena. The normalized Weibull deviation was
proposed as a new metric for quantifying macrosegre-
gation and was shown to illuminate trends which are
not found with the macrosegregation number. The
metric retains the property of being linear with parti-
tion coefficient for multicomponent alloys, which can be
used to reduce the number of composition equations
needed to model multicomponent solidification. The
grid dependence of the Weibull deviation was analyzed
and it was used to test for grid convergence. Addition-
ally, the Weibull distribution was also able to

characterize predicted segregation results using non-
uniform grids.
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