
Revisiting Stacking Fault Energy of Steels

ARPAN DAS

The stacking fault energy plays an important role in the transition of deformation
microstructure. This energy is strongly dependent on the concentration of alloying elements
and the temperature under which the alloy is exposed. Extensive literature review has been
carried out and investigated that there are inconsistencies in findings on the influence of alloying
elements on stacking fault energy. This may be attributed to the differences in chemical
compositions, inaccuracy in measurements, and the methodology applied for evaluating the
stacking fault energy. In the present research, a Bayesian neural network model is created to
correlate the complex relationship between the extent of stacking fault energy with its
influencing parameters in different austenitic grade steels. The model has been applied to
confirm that the predictions are reasonable in the context of metallurgical principles and other
data published in the open literature. In addition, it has been possible to estimate the isolated
influence of particular variables such as nickel concentration, which exactly cannot in practice
be varied independently. This demonstrates the ability of the method to investigate a new
phenomenon in cases where the information cannot be accessed experimentally.
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I. INTRODUCTION

STACKING fault, two-dimensional planar defects, is
one of the most important crystal imperfections, which is
mainly introduced in the material by mechanical defor-
mation and this, in turn, plays a crucial role in the plastic
deformation behavior of face-centered cubic (fcc) alloys.
The differences in deformation behavior of fcc alloys are
strongly dependent due to differences in the stacking fault
behavior. However, the strengthening of fcc alloys is
strongly dependent on the stacking fault energy (SFE),
which generally influences splitting of screw disloca-
tions.[1] Splitting of screw dislocations must be pushed
back together before they can cross slip. The cross
slipping becomes more difficult as the split in the
dislocations increases.[1] The SFE for the Al is so large
that splitting is less than one Burgers vector, which is
defined as dislocation bands. The partial dislocations
separate the slipped and non-slipped areas, while in
between one another, they fix a partially slipped area as
the stacking fault. Due to stacking fault, dislocations are
connected to a certain slip plane so that screw dislocations
have a defined slip plane.[1] Metals with wide stacking
faults (i.e., low SFE) strain harden more rapidly, twin
easily on annealing, and show a different temperature
dependence of the flow stress than metals with narrow
stacking faults.Metals with high SFE have a deformation
substructures of banded, linear arrays of dislocations,
which has been reported in detail elsewhere.[2]

SFE is very sensitive to chemical composition of the
material and the temperature. According to Otte,[3]

faulting in austenite (fcc) is in all cases consistent with a
high work hardening capacity of the austenite. The SFE
in pure metals and alloys is very important for creep
deformation behavior.[2] The smaller the SFE, the
spacing between two partial dislocations is greater and
cross slipping is even more strongly restricted. Thus,
softening becomes more difficult and the stationary
creep rate is reduced. This explains the large creep
resistance of austenitic steels, which has been docu-
mented elsewhere.[1] Constrictions in stacking fault
ribbon permit cross slipping, but this requires energy.
The greater the width of the stacking faults, the more
difficult is to produce constrictions in the stacking faults.
This explains why the cross slip is quite prevalent in Al,
that has a very narrow stacking fault ribbon, while it is
not observed usually in Cu, which has a wide stacking
fault ribbon.[2]

There is good correlation between SFE and type of
texture. High SFE and high temperature deformation
favor the Cu-type structure 112f g 111h i.[2] The SFE
plays an important role in determination of critical
driving force, DGc for the deformation-induced
martensitic transformation.[4] A material with a low
SFE prefers to follow the mechanism: cðfccÞ !
�ðhcpÞ ! a=ðbccÞ. Thus, the �ðhcpÞ martensite is gener-
ated as a precursor during the first stage of phase
transformation and is subsequently transformed into

a=ðbccÞ martensite.[4] Present author has already dis-
cussed the formation and nucleation mechanisms of
deformation-induced martensitic transformation of
AISI 304LN stainless steels under different loading
conditions through many experimental evidences, which
are reported elsewhere.[5–16] There are few cases that
have traced this microstructural transformation on
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multiple scales, ranging from nanometres to several
micrometers, during deformation in various loading and
temperature environments. There are many techniques
available to measure SFE experimentally, i.e., X-ray
powder diffraction (XRD), weak-beam dark field
(WBDF), TEM etc. Different techniques used to mea-
sure the SFE in various metals and alloys are critically
reviewed and are listed in briefed in Table I since 1957 to
2015.[17–57]

Several empirical equations for calculating SFE in
austenitic stainless steels are also available in the
published domain, and the most frequently used equa-
tions are listed in Table II.[36,37,58–60] Many studies
modeling the SFE in different alloys are available in the
open literatures, which has been reviewed and summa-
rized in brief in Table III since 1964 to 2015.[61–101]

Different kinds of modeling techniques are extensively
developed by various eminent scientists.

There has been a consensus that different deformed
microstructural features observed in fcc alloys are
closely related to the SFE. Despite lots of investigations
(i.e., experimental, theoretical) on the effect of chemical

compositions on SFE of austenitic steels, there are
inconsistencies in the published literatures regarding the
influence of all alloying elements on SFE. It is conceiv-
able that the disagreements among previous researches
may arise from the differences in concentrations of
chemical composition and techniques employed for
evaluating SFE. Due to its practical engineering and
theoretical importance, considerable efforts, critical
review, analysis, and discussions have been made
available to revisit SFE in various grades of steels in
the present context.
The literatures related to estimation of SFE by using

neural network approach are limited/not available in the
published domain. In the present research, neural
network has been used to calculate the SFE of many
austenitic grade steels. Neural networks are having
enormous usefulness in these circumstances, not only to
estimate the SFE of the materials but wherever the
complexity of the problem is overwhelming from a
fundamental perspective and where simplification is
unacceptable.[102] Accordingly, the modeling of SFE has
to cover a range of concentration of alloying elements,

Table I. Review on Different Measurement Techniques of SFE (1957 to 2015)

Scientists Years Systems Techniques

Smallman et al.[17] 1957 FCC metals XRD
Whelan et al.[18,19] 1957, 1959 Cr-Ni steels XRD, TEM
Swann[20] 1963 austenitic steels TEM
Breedis[21] 1964 austenitic steels TEM
Douglass et al.[22] 1964 austenitic steels TEM
Dulieu et al.[23] 1964 austenitic steels TEM
Vingsbro et al.[24] 1964 austenitic steels TEM
Hirsch et al.[25] 1965 austenitic steels TEM
Silcock et al.[26] 1966 austenitic steels TEM
Clement et al.[27] 1967 austenitic steels TEM
Thomas et al.[28] 1967 austenitic steels TEM
Fawley et al.[29] 1968 stainless steels TEM
Latanision et al.[30,31] 1969, 1971 austenitic steels TEM
Murr[32] 1969 austenitic steels TEM
LeCroisey et al.[33] 1970 austenitic steels TEM
Gallagher[34] 1970 FCC metals XRD
Butakova et al.[35] 1973 austenitic steels XRD
Schramm et al.[36] 1975 austenitic steels XRD
Rhodes et al.[37] 1977 austenitic steels TEM
Remy[38] 1977 austenitic steels TEM
Bampton et al.[39] 1978 stainless steels TEM
Carr et al.[40] 1978 Fe-Ni-Cr-0.3C alloys TEM
Stoltz et al.[41] 1980 Fe-Ni-Cr-Mn steels TEM
Pontini et al.[42] 1997 stainless steels XRD
Rosolankova et al.[43] 2006 FCC alloys XRD
Sahu et al.[44] 2007 Fe-26Mn-0.14C cast steels XRD
Huang et al.[45] 2008 austenitic steels XRD
Tian[46] 2008 Fe-Mn-Al-C steels XRD
Huang et al.[47] 2008 TWinning Induced Plasticity (TWIP) steels XRD
Lee et al.[48] 2010 stainless steels Neutron diffraction
Idrissi et al.[49] 2010 TWIP steels TEM
Kim et al.[50,51] 2011 TWIP steels TEM
Jeong et al.[52] 2012 TWIP steels XRD
Jin et al.[53] 2012 TWIP steels XRD
Pierce et al.[54] 2014 TWIP steels TEM
Lee et al.[55] 2014 Fe-15Mn-2Cr-0.6C-xN steels TEM, XRD
Moallemi et al.[56] 2015 austenitic steels XRD
Mahato et al.[57] 2015 TWIP steels XRD
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and it is not so easy to predict the extent of SFE of an
unknown steel. In this research, in view of the complex-
ity of the phenomenon, neural network techniques
under Bayesian framework are applied in place of the

usual regression analysis, empirical equations, thermo-
dynamic models, first principal calculations, or physical
models. The problem of SFE of a material clearly
involves many variables and considerable complexity.

Table II. Different Equations for Calculating SFE in Stainless Steels (1975 to 2002)

Scientists Year Equation

Schramm et al.[36] 1975 SFE (mJ/m2) = �53 + 6.2Ni + 0.7Cr + 3.2Mn + 9.3Mo
Rhodes et al.[37] 1977 SFE (mJ/m2) = 1.2 + 1.4Ni + 0.6Cr + 7.7Mn � 44.7Si
Brofman et al.[58] 1978 SFE (mJ/m2) = 16.7 + 2.1Ni � 0.9Cr + 26C
Pickering[59] 1985 SFE (mJ/m2) = - 25.7 + 2Ni + 410C � 0.9Cr � 77N � 13Si � 1.2Mn
Dai et al.[60] 2002 c300 (mJ/m2) = c0 + 1.59Ni - 1.34Mn + 0.06Mn2 � 1.75Cr + 0.01Cr2

+ 15.12 Mo � 5.59Si � 60.69 (C + 1.2N)0.5 + 26.27 (C + 1.2N)
(Cr + Mn + Mo)0.5 + 0.61 [Ni(Cr + Mn)]0.5

(where c300 is the value of SFE at room temperature and c0 is the
value of SFE of pure austenitic iron at room temperature.)

Table III. Review on the Modeling of SFE of Different Alloys (1964 to 2015)

Scientists Years Systems Modeling type

Brown et al.[61] 1964 austenitic steels theoretical
Ruff et al.[62] 1967 austenitic steels theoretical
Dillamore et al.[63,64] 1964, 1970 FCC alloys empirical
Schramm et al.[36] 1975 stainless steels regression analysis
Olson et al.[65] 1976 austenitic steels thermodynamic
Ishida[66] 1977 Fe-Mn-C alloys thermodynamic
Brofman et al.[58] 1978 austenitic steels empirical
Konobeev et al.[67] 1983 stainless steels energy based equations
Sato et al.[68] 1989 austenitic steels thermodynamic
Yang et al.[69] 1990 Fe-Mn-Al-C alloys thermodynamics
Petrov et al.[70] 1990 Fe-18Cr-10Ni-xN alloys thermodynamic
Takaki et al.[71] 1993 Fe-Mn-C steels thermodynamic
Mullner et al.[72] 1996 austenitic steels thermodynamics
Jun et al.[73] 1998 austenitic steels thermodynamic
Ferreira et al.[74] 1998 Fe-Cr-Ni steels thermodynamic
Hermida et al.[75] 1998 stainless steels binding energy
Lee et al.[76] 2000 Fe-Mn steels thermodynamic
Mishin et al.[77] 2001 copper ab-initio
Lee et al.[78] 2001 austenitic steels thermodynamic
Vercammen et al.[79,80] 2003, 2004 austenitic steels empirical, thermodynamic
Allain et al.[81] 2004 austenitic steels thermodynamic
Rosolankova et al.[43] 2006 FCC alloys molecular dynamics
Vitos et al.[82,83] 2006, 2007 austenitic steels ab-initio
Kibey et al.[84] 2006 high nitrogen steels first-principles
Williams et al.[85] 2006 copper alloys molecular dynamics
Brandl et al.[86] 2007 FCC alloys ab-initio
Bracke et al.[87] 2007 austenitic steels empirical
Dumay et al.[88] 2008 austenitic steels thermodynamic
Tian et al.[46] 2008 Fe-Mn-Al-C steels thermodynamic
Hickel et al.[89] 2009 austenitic steels ab-initio
Yu et al.[90] 2009 zirconium molecular dynamics
Akbari et al.[91,92] 2009, 2012 austenitic steels thermodynamic
Nakano et al.[93,94] 2010, 2013 Fe-Mn-C steels thermodynamic
Wu et al.[95] 2010 FCC alloys ab-initio
Shang et al.[96] 2012 nickel first-principles
Mosecker et al.[97] 2013 stainless steels thermodynamic
Geissler et al.[98] 2014 austenitic steels thermodynamic
Xiong et al.[99] 2014 Fe-Mn-Si-C steels thermodynamic
Pierce et al.[54] 2014 TWIP steels thermodynamic
Huang et al.[100] 2015 Fe-Cr-Co-Ni-Mn alloys ab-initio
Limmer et al.[101] 2015 FCC Fe ab-initio
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The purpose of this research is not only to identify
parameters which control the deformation microstruc-
tures and the SFE of the steels but also to correlate the
complex relationship between the extent of SFE with its
influencing parameters.

In the present research, the influence of each individ-
ual parameters on SFE in austenitic grade steels has
been revisited. In the present context, the optimization
of SFE needs access to a quantitative relationship
between the concentration of alloying elements and the
ultimate value of SFE. A neural network method has
been developed to correlate those and applied exten-
sively for other steels within a Bayesian framework.

II. STACKING FAULT MECHANISMS

The atomic arrangement on 111f g plane of an fcc
structure and 0001f g plane of an hcp structure could be
obtained by the stacking of the closed packed planes of
spheres. For the fcc structure, the stacking sequence of
the planes of atoms is given by ABC ABC ABC. For hcp
structure, the stacking sequence is given by AB AB AB.
Errors, or faults, in the sequence can be produced in
most metals by plastic deformation.[2] Typical stack-
ing faults are shown in Figure 1 when AISI 304 LN
austenitic stainless steels are deformed monotonically at
strain rate of 0.10/s under tension at ambient temper-
ature. Stacking faults in stainless steels have been shown
to have a supplementary displacement, in addition to
the expected 1/3 111h i, which has the same sense and
direction as the change in interplanar spacing of the
close packed planes which occurs in the cðfccÞ ! �ðhcpÞ

transformation.[4] The formation of stacking faults has
been schematically represented and explained per exam-
ple of a fcc lattice in Figure 2. Thus, �ðhcpÞ martensite
nucleates from irregularly spaced bundles of stacking
faults which gradually become perfect hexagonal crys-
tals as it is energetically favorable to generate faults
which give rise to the required ABAB stacking.[103] There
are two different kinds of stacking faults formed in
many systems: intrinsic and extrinsic.
Intrinsic stacking faults form in fcc crystal lattice as a

consequence of the dissociation of a/2 110h i perfect
dislocations into two a/6 211h i partial dislocations,

Fig. 1—Transmission electron bright-field micrographs showing stacking faults in tensile deformed austenite at room temperature: (a, b) strain
rate = 0.10/s of AISI 304LN austenitic stainless steel.
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Fig. 2—Schematic diagram of the stacking arrangement of (111)
close packed plane. (a, b) the perfect fcc stacking configuration, and
(c, d) intrinsic stacking fault.

METALLURGICAL AND MATERIALS TRANSACTIONS A VOLUME 47A, FEBRUARY 2016—751



referred to as Shockley partial dislocations.[2] An intrinsic
stacking fault is formed between the partials, and conse-
quently, the stacking sequence of 111f g planes is changed
from regular ABCABCABC to, for instance, ABCA-
CABCA sequence. If two intrinsic stacking faults overlap
on successive 111f g planes, the resulting stacking
sequence will be ABCACBCAB, which has one excess
plane with theC stacking. Such a fault is referred to as an
extrinsic stacking fault or twins. Thus, stacking faults in
fcc metals can also be considered as sub-microscopic
twins of nearly atomic thickness. The reason why
mechanical twins of microscopically resolvable width
are not formed readily when fcc alloys are deformed is
that the formation of stacking faults is energetically
favorable.[2] Consequently, it is difficult to distinguish
between single stacking fault, bundle of overlapping
stacking faults, and faulted or perfect � (hcp) martensite.
Therefore, a collective term ‘‘shear band’’[104] has often
been used to designate the microstructural features
originating from the formation and overlapping of
stacking faults in austenitic stainless steels.

III. METHOD

The neural network is a simple regression method in
which a flexible non-linear function is fitted with the
experimentally measured data, the details of which have
been reviewed extensively by many eminent researchers
elsewhere.[102,105–107] It is nevertheless worth emphasiz-
ing some of the features of the particular method
applied in the present context, which is referred by
MacKay in his studies reported elsewhere.[108–111]

The Bayesian framework of the network used in the
present research is able to indicate two uncertainties. The
neural network is trained on a set of examples of inputs
and output data. The outcome of this training is a set of
coefficient and the specification of the functions which in
combinationwith theweights correlating the inputs to the
model output. The training process involves a search for
the best optimum non-linear relationship between the
inputs and output and is computer intensive. Once the
neural network is trained, estimation of model output for
any given inputs is rapid. The method recognizes that
there are many functions which can be fitted or extrap-
olated into uncertain regions of input space, without
excessively compromising the fit in adjacent regionswhich
are rich in accurate data. Instead of calculating a unique
set of weights, a probability distribution of sets of weights
is generally used to define the fitting uncertainty. The
error bars, therefore, become large when these data are
sparse or locally noisy.

This Bayesian framework for neural networks has two
further advantages. First, the significance of the input
variables is quantified automatically. Consequently, the
model perceived significance of each input variable can
be compared against established metallurgical theory.
Second, the network’s predictions are accompanied by
the error bars which strongly depend on the specific
position in the input space. This quantifies the model’s
certainty about their predictions.

The general form of the model is as follows, with y
representing the output variables and xj the set of
inputs:

y¼
X

i

w
ð2Þ
ij hi þ hð2Þ wherehi ¼ tanh

X

j

w
ð1Þ
ij xj þ hð1Þi

 !

½1�

The subscript i represents the hidden units (Figure 3),
the hi and wij terms are biases and weights, respectively.
The bias is designated hi and is analogous to the
constant that appears in linear regression analysis. The
strength of the transfer function is in each case
determined by the weight, wij. Thus, the statement of
Eq. [1] together with the weights and the coefficient
defines the function giving the output as a function of
inputs.
A potential difficulty with the use of powerful

regression technique is the possibility of the over fitting
data. To avoid over fitting, total experimental data can
be subdivided into two different sets, a training and a
testing dataset. The Bayesian neural network model is
produced by employing only training dataset. Later the
testing data are used to check whether the model
behaves itself when presented with previously unseen
data. Yescas et al.[112] have demonstrated a similar kind
of neural network analysis in their study for estimation
of retained austenite in austempered ductile irons.
Recently, Das et al.[113,114] have also used Bayesian
neural network technique to estimate the extent of
deformation-induced martensite in austenitic grade
stainless steels. Das et al.[115,116] also used the same
technique to estimate the damage accumulation under
tensile deformation through the Bayesian neural
network analysis.
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Fig. 3—A typical neural network employed in the present analysis.
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Bhadeshia[102] has clearly demonstrated in his elegant
research that a linear model is too simple and does not
capture the real complexity in data, an over complex
function accurately models the training data but gener-
alizes very badly. It is the minimum in the test error
which enables that model to be chosen which generalizes
best to the unseen data. This discussion related to the
over fitting is rather brief because the problem does not
simply involve the minimization of the test error. There
are other parameters which control the complexity,
which have been adjusted automatically to try to achieve
the right complexity of model that has been reported
elsewhere.[108–111]

IV. DATA

Extensive literature review has been done to under-
stand the stacking fault mechanisms, deformation
micro-mechanisms, and their interpretations while
explaining the mechanical performance of austenitic
steels under various operating conditions. It is indicated
that the input parameters are interactive with each other
during phase evolution in the microstructure. The
analysis is based on the published data and is, therefore,
limited to quantities that are readily measured and
frequently reported. For example, in order to estimate
the SFE, the quantity of all alloying elements has to
include as inputs. Therefore, a pragmatic set of variables
must be chosen which implicitly contain all information
needed to estimate the extent of SFE. The set of inputs
(Table IV), therefore, included the detailed test param-
eters (i.e., alloying elements) and the target is SFE.
Table IV represents the statistics of the whole database
constructing the model.

For the present model, inputs are chosen according to
the knowledge gained from the common published
literatures.[3–104] However, due to lack of appropriate
data, no explicit account can be taken of initial texture of
the material, temperature, stress, strain, etc., and their
extent while SFE calculations. Different austenitic grade
steels were chosen for this model. A total 75 experimental
data (i.e., 75 rows in excel sheet) were collected from
several and different published sources.[21,41,60,117–129]

It is emphasized that unlike the linear regression
analysis, the ranges stated in Table IV cannot be utilized

to define the range of applicability of neural network
model. This is because the inputs are in general expected
to interact with each other. It is the Bayesian framework
of neural network analysis which makes possible the
calculation of error bars whose magnitudes vary with
the position in input space, that define the range of
useful applicability of the trained network. A visual
impression of the spread of the data is shown in
Figures 4((a) through (h)).

V. ANALYSIS

In this present investigation, both the input and
output variables were first normalized within the range
±0.5 as obtained quantitatively by using following
Eq. [2]:

xN ¼ x� xmin

xmax � xmin
� 0:5 ; ½2�

where xN is the normalized value of x; xmin and xmax are,
respectively, the minimum and maximum values, respec-
tively, of x in the entire dataset (statistics of database,
Table IV). The normalization is not necessary for the
analysis but facilitates the subsequent comparison of the
significance of each of the inputs. The normalization is
straightforward for all quantitative variables utilized.
The database was randomized and then partitioned
equally into test and training datasets. The later was
used to create a large variety of models, whereas the test
data were used to see how the trained models general-
ized on unseen data. Figure 3 shows an example of
typical network. Each network consists of input nodes
(one for each variable x), a number hidden nodes, and
an output node. Linear functions of the inputs, xj, are
operated on by a hyperbolic tangent transfer function
(demonstrated in Eq. [1]) so that each input contributes
to every hidden unit. The transfer to the output y is
linear (see Eq. [1]).
The specification of the neural network, together with

the set of weights, is a complete description of the
formula correlated the inputs to the target. The weights
are generally determined by training the neural network.
The training is performed using a dataset

D ¼ xðmÞ; tðmÞ� �
by adjusting the weights, w, to minimize

an error function, e.g.,

Table IV. Statistics of the Database Used for Neural Network Analysis

Inputs Units Maximum Minimum Mean SD Example

C wt pct 0.40 0 0.08 0.11 0.02
Si wt pct 0.51 0 0.13 0.19 0
Mn wt pct 33.0 0 10.4 11.2 8.79
Cr wt pct 25.9 0 14.2 7.20 19.2
Ni wt pct 33.0 0 9.20 8.40 7.10
N wt pct 1.00 0 0.20 0.20 0.27
Mo wt pct 1.20 0 0.10 0.20 0
Al wt pct 4.20 0 0.20 0.80 0
Output units maximum minimum mean SD —
SFE mJ/m2 94.0 12.8 38.5 18.0 —

SD Standard deviation.
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Fig. 4—The whole database values (i.e., for creating the model) of each variable vs the extent of SFE in austenitic steels. (a) C, (b) Si, (c) Mn,
(d) Cr, (e) Ni, (f) N, (g) Mo, and (h) Al-concentrations. Compositions are in wt pct.
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The error function, EDðwÞ; is the sum squared error as
follows:

EDðwÞ ¼
1

2

X

m

X

i

ðyiðxm;wÞ � tmÞ2 ½3�

The objective function is a sum of terms, one for each
input-target pair x; tf g, measuring the degree of
correlation between the output y x;wf g and the target
t.[130] The parameter m denotes each input–output
pair.

The training for each network is started with a variety
of random seeds. The training involves a minimization
of the regularized sum of squared errors, rm. The term,
rm; used below is the framework estimate of noise level
of the data. The complexity of the model is controlled by
the number of hidden units (shown in Figure 5).
Figure 5 shows that the inferred noise level decreases
as the number of hidden units increases.

The complexity of the model increases with the
number of hidden units. The high degree of complexity
may not be justified, and in the extreme case, the model
runs in a meaningless way, attempting to fit the noise in
the measured data. MacKay[108–111,130,131] made a
detailed study of this problem and defined a quantity

‘‘evidence’’ which comments on the probability of a
model. In circumstances where two models give similar
kind of results over the known dataset, the more
probable model would be predicted to be that which is
simpler; this simple model would have a higher value of
‘‘evidence.’’ The ‘‘evidence’’ framework was used to
control the regularization constants and rm. The number
of hidden units is set by examining the performance of
the model on unseen data. A combination of Bayesian
and pragmatic statistical techniques was, therefore, used
to control the model complexity. Five hidden units were
found to give a reasonable level of complexity to
represent the variation in SFE as a function of the
input variables. Large number of hidden units did not
give significantly lower values of rm; indeed the test set
error goes through a minimum value. The test error
tends to go through a minimum at an optimum
complexity, which has been shown in Figure 6.
It is possible that a committee of models (represented

in Figure 7) can make a reliable and the reasonable
estimate than an individual model used which has been
discussed elsewhere.[108–111,130,131] Bayesian neural net-
work technique has been employed to solve the problem.
In the current formulation, the network architecture has
been given in Table V.

Table V. Bayesian Neural Network Architecture

Features Description

Model type Bayesian neural network
Dataset 75 different experiments for

creating the model
Input layer 8
Hidden layer 2
Seed 1
Transfer function hyperbolic tangent
Output layer 1
Random weight 0.3
Initial weight 0
Sigma noise 0.3
Validation 25 other different experiments
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The best models are ranked using the values of the test
errors. Committees are then formed by combining the
predictions of the best L models, where L ¼ 1; 2; 3 . . .;
the size of the committee is, therefore, given by the value
of L. A plot of the test error of the committee vs its size
L gives a minimum which defines the optimum size of
the committee as shown in Figure 7.

Test error, Te, is a measure of the deviation of the
predicted value from the experimental one in the test
data

Te ¼ 0:5
X

n

ðyn � tnÞ2 ; ½4�

where yn is the predicted amount of SFE and tn is the
corresponding measured value previously unseen by the
model.

It is popular to use the test error (sum squared error)
as the default performance measure whereby the model
with the lowest test error is considered to be the best.[130]

In many applications, there will be an opportunity to
make a prediction with error bars rather than a simple
scalar prediction, or may be carry out an even more
complex predictive procedure. It is then reasonable to
compare models in terms of their predictive perfor-
mance as measured by the log predictive probability of
the test data. Under the log predictive error (LPE), as
contrasted with the test error, the penalty for making a
‘‘wild’’ prediction is much less if the wild prediction is
accompanied by appropriately large error bars. Assum-
ing that for each example m, the model gives a

prediction with error yðmÞ; rðmÞ2
� �

, the LPE.

LPE ¼
X

n

0:5 tðmÞ � yðmÞ� �2

rðmÞ2
y

þ log
ffiffiffiffiffiffi
2p

p
rðmÞ
y

n o" #
½5�

When making the prediction, MacKay[130] has recom-
mended the use of multiple good models instead of
just one best model. This is termed ‘‘forming a com-
mittee.’’ The committee prediction y is obtained using
the following equation:

y ¼ 1

L

XL

i¼1

yi ; ½6�

where L is the size of the committee and yi is the estimate
of a particular model i. The test error of the predictions
made by a committee is calculated by replacing the yi in
Eq. [3] with y. In the present analysis, a committee of
models was used to make more reliable predictions. The
models were ranked according to their LPE. Figure 8
shows the variation of LPE as a function of number of
hiddenunits.Committeeswere then formedby combining
the predictions of best L models, where L gives the
number of members in a given committee model.

However, the committee with one model (i.e., mini-
mum test error = 0.5562) was found to have an
optimum membership with the smallest test error
(Figure 7). Once the optimum committee is chosen, it
is retrained on the entire dataset without changing the
complexity of each model, with the exception of the

inevitable and relatively small adjustments to the
weights. Figures 9 and 10 show the normalized pre-
dicted values vs experimental values of SFE for the best
model in the training and test datasets, respectively. The
predictions made using the optimum committee of
models are illustrated in Figure 11.
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VI. APPLICATION

The neural network can capture interactions between
the input variables because functions involved are
non-linear in nature. The nature of these interactions is
implicit in the values of the weights, but the weights are
not always easy to interpret. For example, there may
exist more than just pair-wise interactions, in which case
the problem becomes difficult to visualize from an
examination of the weights. A better method is to
actually use the network to make predictions and to see
how these interactions depend on various combinations
of inputs. It is the Bayesian framework of the present
method which resolves this problem because it allows
the calculation of error bars which defines the range of
useful applicability of the trained network. The model
can, therefore, be used in extrapolation given that it
indicates appropriately large uncertainties when the
knowledge is sparse. Figures 12 and 13 show the
application of the committee model for unseen and
reserved experimental data from other sources, respec-
tively. From these graphs, it is noted that the model is
robust enough to predict the total blind data. This
means that a good correlation between the measured
and calculated data has been obtained for these appli-
cations. These figures show that the used network could

be capable for prediction with a minimum error.
Figure 14 shows the comparison of the present model
with the existing empirical equations (given in Table II)
estimating SFE. It has been understood from this
figure that few data points are over predicting and few
are under estimating the perfect line of agreement, but
the present model shows better agreement. This may be
attributed to the differences in the chemical composi-
tions, their variability, incompleteness, inaccuracy in
their concentration, interaction with each other, and the
methodology employed for measuring SFE. It is also
true that many other variables also influence the SFE,
which will be discussed later.

VII. PREDICTION

The optimized committee model (Figure 11) has been
used to predict the influence of all individual input
parameters on SFE in many austenitic grade steels and
they are discussed in detail with respect to the huge
number of literature study in the following subsections.
Figures 15((a) through (h)) shows the prediction accord-
ing to the example shown in Table IV (i.e., last column).
When the influence of an alloying element on SFE is
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investigated, other parameters were kept unaltered to
investigate the variation of SFE. The isolated influence
of all the individual variables has been quantitatively
explained with the support of extensive literature study.
The minor changes in concentration of alloying elements
have significant effects on SFE. The error bars are not
constant for all data points in each graph except
Figure 15(a), which strongly depends on the position
in the input space, an inherent features of the neural
network technique used. The predictions are made
without any adjustment of the models, which did not
interrogate any SFE data during their creation. The
error bars in all graphs corresponds to ±1 r standard
deviation and give an indication of the uncertainty in the
experimental data as well as the uncertainty in inter-
preting those data. These error bars can be used to
identify regions of the input space where further
experiments would be useful.

A. Effect of C on SFE

Figure 15(a) demonstrates the effect of C concentra-
tion on the variation of SFE in austenitic grade steels
where other variables are kept unaltered. It has been
investigated from this figure that with the increase in C
content in the austenitic grade steels, the extent of SFE
remains constant. According to Brofman et al.,[58] the
SFE is relatively insensitive to the small changes in the C
concentration in austenitic stainless steels. This is in
agreement with the study of Otte.[3] According to him,
the influence of C on SFE is difficult to assess, it
probably acts as a slight inhibitor. The addition of
sufficient amount of C to an Fe-Mn alloy eventually
eliminates the formation of hcp phase which occurs in
the binary, so that at Hadfield’s composition, only
stacking faults can be detected.[3] In stainless steels, the
effect of C is similar in so far as it inhibits transforma-
tion, but up to about 0.10 pct C, the hcp structures may
still be obtained by mechanical deformation.[3] In
contrary, Dulieu et al.[23] investigated that the addition
of C caused an increase in the SFE in austenitic stainless
steels. Petrov et al.[70] had shown from their elegant
theoretical calculations and experimentally measured
data that C decreased the SFE of austenitic steels at low
concentrations but increased the SFE at high C con-
tents. Petrov[70] also investigated that C in austenitic
stainless steels increased the SFE but non-monotonous
dependence of C was observed in Fe-Mn-C alloys.
According to Dai et al.,[60] in cryogenic austenitic
stainless steels with a content of C plus N less than
0.10 pct, SFE becomes the dominant factor to affect the
type of martensitic transformation. By the investigation
of Prokoshkina et al.,[132] it has been realized that the

addition of C promotes the cðfccÞ ! a=ðbccÞ phase
transformations. The influence of C concentration on
SFE has already been investigated by many eminent
researchers during 1957 to 2014 and they are critically
reviewed in Table VI. Due to lack of experimental data,
however, further works on the effect of C on SFE in
other steels need to be carried out for the alloys with
wider range of C concentration.

B. Effect of Si on SFE

From Figure 15(b), it is realized that with the increase
in Si concentration, the calculated SFE decreases in
most of the austenitic grade steels, where other elements
were kept constant. According to Schramm et al.,[36] the
additions of Si concentration decrease the SFE of the
alloy and sustain the cðfccÞ ! �ðhcpÞ transformation
sequence during cooling and deformation. Hsu et al.[140]

also found that the SFE plays an important role in
determination of the critical driving force, DGc!� for the
cðfccÞ ! �ðhcpÞ transformation in the ternary Fe-Mn-Si
alloys. DGc!� decreases with the content of the substi-
tutional element Si. The effect of Si on SFE in different
grades of austenitic steels is reviewed and is listed in
Table VII.

C. Effect of Mn on SFE

It has been revisited that with the increase in Mn
content in austenitic grade steels, the extent of SFE
increases drastically (Figure 15(c)). According to Datta
et al.,[4] DGc!� increases with the content of the
substitutional element Mn. Kelly[129] in his pioneer
research investigated that as the Fe-Ni and Fe-Ni-C
alloys have a relatively high SFE, while alloys con-
taining appreciable amounts of Cr or Mn have low
SFE and form lath martensite associated with faulting
or the formation of �ðhcpÞ martensite. Mishra et al.[154]

investigated that high ductility even up to 90 pct
elongations has been observed in high Mn aus-
tenitic steels with TWIP effect, having SFE of about
20 mJ/m2. This is in accordance with the study of
Huang et al.[155] There are literatures available in the
open domain reporting that Mn increases SFE of
austenite and those reporting decreasing SFE with
increasing Mn content, which have been reviewed
systematically and are listed in brief in Table VIII.
Present investigation clearly reveals the fact.

D. Effect of Cr on SFE

Figure 15(d) shows the effect of Cr concentration on
SFE in austenitic grade steels, where the concentration
of other elements was kept constant. It has been seen
that variation in Cr concentration does not have any
influence on the SFE in most of the austenitic grade
steels. According to Prokoshkina et al.,[132] Cr alloying
in high N steels lowers the SFE that leads to higher
strain hardening and lower softening even at a certain
development of the dynamic recrystallization at large
strains. Bracke et al.[87] in their study reported that Cr
and N suppressed the deformation-induced martensitic
transformation in austenitic Fe-Mn-Cr-N alloy, and the
differences in transformation behavior were attributed
to the change in the intrinsic SFE. The influence of Cr
content on MS temperature cannot be used as a measure
of SFE.[39] Since Cr is a bcc stabilizer and the stability
(against martensitic transformation) will depend
strongly on the relative stability of the fcc and the hcp
phases only if the transformation to bcc martensite
involves the intermediate hcp phase. The complex effect
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Fig. 15—Predictions of SFE in austenitic grade steels as a function of (a) C, (b) Si, (c) Mn, (d) Cr, (e) Ni, (f) N, (g) Mo, and (h) Al-concentra-
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Table VI. Review on the Effect of C on SFE (1957 to 2014)

Scientists Years Systems Effect

Otte[3] 1957 Fe-Mn, Fe-Cr-C steels difficult to evaluate
Swann[20] 1963 austenitic steels little/no effect
Thomas[133] 1963 austenitic steels little/no effect
Dulieu et al.[23] 1964 austenitic steels increases
Fawley et al.[29] 1968 austenitic steels little/no effect
Schramm et al.[36] 1975 stainless steels raises
Volosevich et al.[134] 1976 Fe-Mn-C steels decreases
Charnock et al.[135] 1976 austenitic steels little effect up to 0.2 pct but raises beyond 0.8 pct
Brofman et al.[58] 1978 high Mn steels raises
Stoltz et al.[41] 1980 Fe-Ni-Cr-Mn steels no effect
Singh[136] 1985 stainless steels raises
Petrov et al.[70] 1990 Fe-18Cr-10Ni-xN alloys decreases-low C, raises-high C
Kaputkina et al.[137] 2001 austenitic steels raises
Petrov[138] 2003 stainless steels non-linear
Lee et al.[48] 2012 stainless steels raises
Medvedeva et al.[139] 2012 Transformation Induced

Plasticity (TRIP) steels
raises

Nakano et al.[94] 2013 Fe-Mn-C steels raises
Xiong et al.[99] 2014 Fe-Mn-Si-C steels raises

Table VII. Review on the Effect of Si on SFE (1964 to 2014)

Scientists Years Systems Effect

Lagneborg[141] 1964 stainless steels unknown
Thomas et al.[28] 1967 Fe-18Cr-14Ni alloys depresses
Thomas[142] 1969 Fe-18Cr-14Ni alloys depresses
Gallagher[143] 1970 Fe-Cr-Ni steels decreases
Schramm et al.[36] 1975 stainless steels decreases
Rhodes et al.[37] 1977 austenitic steels decreases
Stoltz et al.[41] 1980 Fe-Ni-Cr-Mn steels no effect
Singh[136] 1985 stainless steels decreases
Huang et al.[47] 2008 TWIP steels decreases
Huang et al.[45] 2008 austenitic steels decreases
Tian et al.[144] 2009 austenitic steels decreases
Koyama et al.[145] 2012 Fe-17Mn-xSi-0.3C alloys help � formation
Jeong et al.[146] 2013 austenitic steels decreases
Lehnhoff et al.[147] 2014 austenitic steels reduces
Xiong et al.[99] 2014 Fe-Mn-Si-C steels lowers

Table VIII. Review on the Effect of Mn on SFE (1957 to 2014)

Scientists Years Systems Effect

Otte[3] 1957 Fe-Mn and Fe-Cr-C steels lowers
Lagneborg[141] 1964 stainless steels lowers
Dooley et al.[148] 1969 Cr-Ni steels decreases
Schumann[149] 1974 austenitic steels decreases and then increases with Mn
Schramm et al.[36] 1975 stainless steels decreases
Volosevich et al.[134] 1976 austenitic steels decreases and then increases with Mn
Singh[136] 1985 stainless steels decreases
Zuidema et al.[150] 1987 C-Mn steels raises
Lee et al.[151] 1993 Fe-Mn-Al alloys initially minimum later increases
Lee et al.[76] 2000 Fe-Mn steels decreases and then increases with Mn
Kibey et al.[84] 2006 Fe-Mn-N steels hardly affects
Medvedeva et al.[139] 2012 TRIP steels raises
Jin et al.[152] 2012 C-Mn steels raises
Hong et al.[153] 2013 TWIP steels raises
Nakano et al.[94] 2013 Fe-Mn-C steels decreases and then increases with Mn
Xiong et al.[99] 2014 Fe-Mn-Si-C steels little effect
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of Cr on SFE will not then be reflected in the variation of
MS temperature.[39] The effect of Cr on SFE in different
grades of austenitic grade steels is reviewed from the open
domain literatures and is briefed in Table IX.

E. Effect of Ni on SFE

From Figure 15(e), it is to be noted that with the
increase in Ni concentration in austenitic grade steels,
the SFE increases drastically. According to Sim-
mons,[159] Ni and C tend to raise the SFE thereby
influencing dislocation cross slip, while Cr, Mn, Si, and
Ni tend to decrease the SFE of the austenite. In contrast,
high SFE fcc materials such as Ni (SFE = 128 mJ/m2)
generally exhibit cell-type dislocation structures pro-
duced by cross slip which occurs at much lower strains
than in low SFE materials.[159] Wang et al.[160] showed
that in the Ni-bearing steels, SFE increased with increase
of N concentration up to 0.40 pct, and then decreased at
higher N content. According to Otte,[3] it has been
investigated that Cr and Mn have a marked effect in
promoting the formation of stacking faults in the
austenite, whereas the influence of Ni is very less.
According to Datta et al.,[4] in high Ni austenite
stabilizing alloys, �ðhcpÞ martensite could be found. In
Fe-Ni binary alloys, no hcp structures appear, whereas
in Fe-Mn alloy, it happens. The addition of Cr to the
Fe-Ni alloys causes, however, a hcp phase structure to
appear in the stainless steel composition range. In the
similar way, the addition of sufficient amount of Cr to
straight Fe-C alloys will cause the appearance of
stacking faults on quenching, whereas the addition of
Ni in place of Cr produces faulting only after mechan-
ical deformation.[3] The effect of Ni addition on SFE of
austenitic grade steels is reviewed and is listed in
Table X.

F. Effect of N on SFE

It has been investigated from Figure 15(f) that with
the increase in N concentration in the austenitic grade
steels, the SFE increases slightly. According to Fayeulle
et al.,[166] the introduction of N causes the formation of
stacking faults in stainless steels. According to them,

their number becomes more and more important during
ion bombardment which creates an expansion of the
lattice and consequently an increase in the strains. When

the N quantity becomes significant, cðfccÞ ! a=ðbccÞ
transformation becomes enforced in the material. N also
promotes the �ðhcpÞ martensite formation in austenitic
stainless steels. Many earlier investigations (Table XI)
have provided the experimental measurements in sup-
port of the decreasing tendency of SFE with increasing
N content in the austenitic alloy. Fawley et al.,[29]

Swann,[20] and Dulieu and Nutting[23] experimentally
measured the SFE of many Fe-Cr-Ni alloys and
reported in their classical studies that the increase in
the N content led to the slight decrease in the SFE of
those alloys. It is to be noted that most of the previous
research have been performed on commercial grades of
Fe-Cr-Ni steels, and the N concentration of the steels
was in limited levels less than 0.10 pct. Hence, it is not
easy to assess the influence of N on SFE measurements
of the high N steels where the N concentration is in the
range of 0.3 to 1.0 pct, and main composition is the
Fe-Cr-Mn alloy system. Recent investigations on auste-
nitic high N steels have shown that N increases the
SFE[172] or, in some cases, a non-monotonous relation-
ship between SFE and the N content is also reported by
many pioneer researchers.[173] Gavriljuk et al.[173]

reported that the SFE of Fe-Cr-Mn alloys increased
with increasing N concentration, whereas the SFE of
Fe-C-Mn-Ni alloys showed a non-monotonous change
with the N content. There are literatures in published
domain reporting that N increases SFE of austenite and
those reporting decreasing SFE with increasing N
content, which have been reviewed systematically and
are listed in brief in Table XI.

G. Effect of Mo on SFE

Figure 15(g) represents that with the increase in Mo
concentration in austenitic grade steels, the calculated
SFE increases marginally where the concentration of
other elements was kept unaltered. In some of the
austenitic stainless steels (i.e., AISI 316L), the addition
of Mo content (~2.5 pct) is employed in order to
improve both the corrosion resistance and hot

Table IX. Review on the Effect of Cr on SFE (1957 to 2008)

Scientists Year Systems Effect

Otte[3] 1957 Fe-Mn and Fe-Cr-C steels lowers appreciably
Lagneborg[141] 1964 austenitic steels lowers
Gallagher[143] 1970 Fe-Cr-Ni steels increases
Williams[156] 1973 Fe-25Ni-C steels raises
Schramm et al.[36] 1975 stainless steels decreases
Bampton[39] 1978 austenitic steels complex effect
Singh[136] 1985 stainless steels decreases
Xu et al.[157] 1997 Fe-Mn steels increases
Ferreira et al.[74] 1998 Fe-Cr-Ni steels goes through a minimum
Vitos et al.[82] 2006 Fe-Cr-Ni alloys decreases when Ni: 14 to 16 pct
Bracke et al.[158] 2006 Fe-Cr-Ni steels increases
Huang et al.[45] 2008 austenitic steels increases
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deformation (creep) behavior. Mo in solid solution acts
as a favorable element in reducing dislocation mobility.
There is lower diffusion rate ofMo as compared to other
alloying elements in austenite.[128] Hence, Mo influences
the annealing behavior of the cold-rolled material.[174]

According to Singh,[136] in the 13.0 pct Ni steels
containing Mo such as AISI 316L, SFE is relatively
higher than that of the AISI 304 stainless steels in which
the martensitic transformation can occur. Ni and C tend
to raise the SFE thereby influencing dislocation cross
slip, while Cr, Mn, Si, and Ni tend to decrease the SFE
of the austenite.[70] According to Lagneborg,[141] the
effect of Si and Mo on SFE is unknown. According to
him, Cr and Mn lower the SFE, while Ni raises it. The
effect of Mo on SFE in different grades of austenitic
steels is reviewed from the published literatures and is
listed in brief in Table XII.

H. Effect of Al on SFE

It has been investigated from Figure 15(h) that with
the increase in Al content in austenitic grade steels,
calculated SFE decreases slightly. Stability of austenite
phase decreases with decreasing SFE, the tendency to
form the strain-induced features increases with decreas-
ing SFE. Austenitic steels with lower SFE have been
reported to form �ðhcpÞ martensite preferentially to
deformation twinning in Fe-Cr-Ni and Fe-Mn-Cr-C
alloys.[178,179] It is generally reported that the SFE
decreases with decreasing temperature and Al content in
Fe-Mn-Cr-C and Fe-Mn-Al alloys.[69,179] The tendency
to form �ðhcpÞ martensite increases, while the tendency
to form deformation twins decreases with decreasing
temperature and Al content.[180] According to Han
et al.,[180] the Al is an austenite stabilizer suppressing the

Table X. Review on the Effect of Ni on SFE (1959 to 2006)

Scientists Years Systems Effect

Otte[3] 1957 Fe-Mn and Fe-Cr-C steels less effect
Whelan[19] 1959 Fe-Cr-Ni alloys increases when Cr: 19 pct
Swann[20] 1963 austenitic steels raises linearly when Ni: 8 to 27 pct and Cr: 18 to 20 pct
Thomas et al.[161] 1963 Fe-Cr-Ni alloys increases when Cr: 17.6 pct
Douglass et al.[22] 1964 austenitic steels raises linearly when Ni: 8 to 27 pct and Cr: 18 to 20 pct
Dulieu et al.[23] 1964 austenitic steels raises linearly when Ni: 8 to 27 pct and Cr: 18 to 20 pct
Silcock et al.[26] 1966 Fe-Cr-Ni alloys increases when Cr: 15.7 pct
Coulomb et al.[162] 1966 Fe-Cr-Ni alloys increases when Cr: 16.6 pct
Gallagher et al.[163] 1968 Fe-Cr-Ni alloys increases when Cr: 18 pct
Fawley et al.[29] 1968 stainless steels raises when Cr: 20 pct and Ni: up to 20 pct, beyond that decreases
Gallagher[143] 1970 Fe-Cr-Ni steels increases
Schramm et al.[36] 1975 stainless steels raises
Bampton et al.[39] 1978 austenitic steels raises for fixed Cr
Stoltz et al.[41] 1980 austenitic steels decreases
Singh[136] 1985 stainless steels raises
Grujicic et al.[164] 1989 stainless steels raises
Sassen et al.[165] 1989 Fe-Ni-Cr alloys raises
Lee et al.[151] 1993 Fe-Mn-Al alloys raises
Ferreira et al.[74] 1998 Fe-Cr-Ni steels increases
Vitos et al.[82] 2006 Fe-Cr-Ni alloys increases when Cr: 17 to 19 pct

Table XI. Review on the Effect of N on SFE (1963 to 2014)

Scientists Years Systems Effect

Swann[20] 1963 austenitic steels lowers
Dulieu et al.[23] 1964 18Cr-10Ni steels decreases
Fawley et al.[29] 1968 austenitic steels decreases
Dooley et al.[148] 1969 Cr-Ni steels decreases
Fujikura et al.[167] 1975 Fe-18Cr-10Ni-8Mn-xMn steels raises
Schramm et al.[36] 1975 stainless steels decreases
Stoltz et al.[41] 1980 Cr-Ni-Mn steels initially decreases and further no effect
Taillard et al.[168] 1989 austenitic steels no influence
Afanasiev et al.[169] 1990 austenitic steels decreases
Yakubtsov et al.[170] 1999 steels initially increases and later decreases
Kaputkina et al.[137] 2001 austenitic steels decreases
Talonen et al.[171] 2004 stainless steels not understood
Bracke et al.[158] 2006 Fe-Cr-Ni steels raises
Kibey et al.[84] 2006 Fe-Mn-N steels pronounced effect
Huang et al.[47] 2008 TWIP steels raises
Wang et al.[160] 2008 Ni-bearing steels increases up to 0.4 pct, decreases at high N
Lee et al.[55] 2014 Fe-15Mn-2Cr-0.6C-xN steels raises
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formation of the strain-induced �ðhcpÞ martensite, while
it behaved as a d ferrite stabilizer when added to 3.0 pct
to Fe-32Mn-12Cr-xAl-0.4C cryogenic alloys. As the
SFE increases with increasing Al content, the elongation
peak shifted to lower temperature with increasing Al
content in the Fe-32Mn-12Cr-xAl-0.4C alloy.[180] The
influence of Al on SFE of different austenitic grade steels
is reviewed and is discussed in brief in Table XIII.

I. Effect of Other Elements on SFE

In the present research, it was not possible to
incorporate other alloying elements (which also influ-
ence the SFE) in the model as the quantitative infor-
mation was very limited in the published domain. It
would be worthwhile to discuss some of the important
findings of other alloying elements on SFE in austenitic
grades steels. According to Huang et al.,[47] the presence
of Ti lowers the SFE in AISI 321 stainless steels,
compared to AISI 304 stainless steels and thus produces
the deformation twins. The measurement of stacking
fault probability indicates that the addition of Nb
increases the SFE of the alloy, and thus retards the
cðfccÞ ! �ðhcpÞ transformation, which increases the
elongation of TWIP steels and decreases the tensile
strength.[47] The additions of Ti,Mo, and Nb at levels up
to 2.0 pct lower the SFE, although direct measurements
are reported only on Nb.[22] The � (hcp) martensite is
formed during H charging as a result of decreasing the
SFE.[75] The decrease of the SFE induced by H in
austenitic stainless steels was always involved to explain
the formation of �ðhcpÞ martensite at room temperature
during cathodic charging of H.[187] The SFE decrease in
austenitic stainless steels could be explained by H–H

pairs formation in faulted zone.[75,188] An increase of the
thermodynamic stability of the austenite by N can be a
reason for higher resistance to the H-induced
cðfccÞ ! �ðhcpÞ transformation, and at the same time,
the results obtained mean that decrease of SFE by H is
not of a segregation nature.[173] The effect of H on the
SFE of an austenitic stainless steel was also tested by
Ferreira et al.[189] Considerable further information on
the variation of SFE on alloying Ni with transition
elements was also provided by the rolling texture studies
of Beeston and France.[190]

J. Effect of Temperature on SFE

This parameter could not be included in the present
analysis as the quantitative information correlating SFE
was limited in the published domain. But it is an
important parameter for SFE. It would be worthwhile
to report some of the interesting findings by other
researchers in this present context.
Temperature influences the SFE of austenitic grade

steels. According to Byun,[191] deformation structures in
austenitic stainless steels can be classified by equivalent
stress, strain, defect density, and temperature. Few
researchers[191] reported in their studies that the SFE of
austenitic stainless steels increases with increasing tem-
perature. The influence of temperature and SFE on the
deformation characteristics of austenitic steels has been
schematically represented in Figure 16.[179] It has been
found that the twinning is an intermediate mode of
deformation between the formation of �(hcp) martensite
and dislocation cells, corresponding to the SFE of 10 to
40 mJ/m2. In the work of Hwan et al.,[192] the change in

the MS temperature of cðfccÞ ! a=ðbccÞ transformation

Table XIII. Review on the Effect of Al on SFE (1974 to 2014)

Scientists Years Systems Effect

Ishida et al.[181] 1974 Fe-Mn alloys increases
Yang et al.[69] 1990 Fe-30Mn-0.9C steels increases at 300 K (27 �C)
Lee et al.[151] 1990 Fe-Mn alloys increases
Grassel et al.[182] 1997 TWIP steels raises
Guo et al.[183] 1999 TWIP steels increases
Frommeyer et al.[184,185] 2003, 2006 TWIP steels raises
Dumay et al.[88] 2008 high Mn steels raises
Tian et al.[46] 2008 Fe-Mn-Al-C steels increases linearly
Huang et al.[47] 2008 TWIP steels raises
Akbari et al.[91] 2009 high Mn steels raises
Jin et al.[152] 2012 C-Mn steels raises
Mcgrath et al.[186] 2013 TRIP steels decreases when low Al
Hong et al.[153] 2013 TWIP steels raises
Lehnhoff et al.[147] 2014 austenitic steels raises

Table XII. Review on the Effect of Mo on SFE (1964 to 2013)

Scientists Years Systems Effect

Lagneborg[141] 1964 stainless steels unknown
Douglass[22] 1964 austenitic steels lowers
Abbasi[175] 2008 austenitic steels low Mo lowest SFE
Monajati[176] 2011 TRIP steels lowers
Razavi[177] 2013 TWIP steels lowers
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with austenite grain size (AGS) was investigated in
relation to the SFE in a Fe to 18 pctMn alloys. A good
linear relationship is established between the MS tem-
perature and the inverse of the SFE. According to Datta
et al.,[4] the variation in MS temperature with AGS
depends strongly on the change in SFE. The effect of
temperature on SFE in austenitic grade steels is reviewed
and is listed in brief in Table XIV.

According to Olson and Cohen,[207] the strain-induced
martensitic transformation mechanism assumes that
martensite nucleates only at micro-shear band intersec-
tions, and the implications are that because these
micro-shear bands are stacking fault-free energy depen-
dent as well as temperature (and strain rate) dependent,
the number of intersections will also vary with strain rate.
Assuming that the SFE decreases linearly with decreasing
temperature by the amount of 0.08 mJ/m2 per degree as
reported inFe-Mn-Cr-C alloy[180] andFe-Cr-Ni alloys,[180]

the SFE of Fe-32Mn-12Cr-xAl-0.4C alloys was calculated
at various temperatures. The SFE of 0-Al alloy was
calculated as 21.7 mJ/m2 at 77K (i.e.,�196 �C), while the
SFE of 1-Al alloys was calculated as 34.0 mJ/m2 at 77K
(i.e., �196 �C). These results are strongly in agreement
with the previous result that the formation of strain-in-
duced �(hcp)martensitewas predominantwhen theSFE is
below about 20 mJ/m2 in Fe-Mn-Cr-C alloys.[180]

K. Effect of Stress, Strain, Grain Size, and Texture on
SFE

Due to limited number of literatures available in the
published domain, the effect of these variables also on
SFE of austenitic steels could not be included in the
present analysis. In these circumstances, it would be
worthwhile to discuss and mention some of the impor-
tant findings by other researchers influencing these
variables on SFE. This would be helpful for other
scientists to carry out further researches in this field.
According to Goodchild et al.,[208] the effect of stress

on stacking fault width plays an important part in
determining the dislocation distribution in metals of low
SFE and in addition influences the formation of
extended stacking faults. They showed that in the
separation of Shockley partials, the contribution due
to an applied stress is of about the same magnitude as
that due to the SFE. Hsu[140] reported that the driving
force for solid-state phase transformation is primarily
concerned with the SFE of the material.
According to Breedis’s[21] investigation, the driving

force for the phase transformation increases monoton-
ically as the SFE increases. In low SFE materials like
austenitic stainless steels, the effect of applied stress on
the partial dislocation separation and dislocation sub-
structure is significant.[191] A quantitative estimate of the
magnitude of the effect of an applied stress on stacking
fault separation may be made by means of the equation

Table XIV. Review on the Effect of Temperature on SFE (1957 to 2008)

Scientists Years Systems Effect

Smallman et al.[17] 1957 FCC alloys lowering deformation T increases faulting probability
Thornton et al.[193] 1958 FCC metals decreases
Seeger et al.[194] 1959 FCC metals decreases
Berner et al.[195] 1960 FCC metals decreases
Haasen et al.[196] 1960 FCC metals decreases
Swann et al.[197] 1961 FCC metals increases
Ahlers et al.[198] 1962 FCC metals increases
Eriekson[199] 1966 FCC metals increases
LeCroisey et al.[33] 1970 Fe-Ni-Cr alloys increases
Gallagher[143] 1970 austenitic steels increases
Latanision et al.[31] 1971 stainless steels increases
Abrassart[200] 1973 austenitic steels SFE = 18 erg/cm2 at RT and increases steadily later
Georgieva[201] 1976 TRIP steels SFE = 18 erg/cm2 at RT & SFE = 0.10 erg/cm2 at high T
Remy[38,179] 1977 high Mn steels increases
Bampton et al.[39] 1978 Fe-Cr-Ni alloys increases
Malinov et al.[202] 1979 austenitic steels increases
Yang et al.[203] 1982 stainless steels increases
Kaneko et al.[204] 1995 stainless steels increases reversibly
Wan[205] 2001 high Mn steels increases
Wang et al.[206] 2008 TWIP steels increases when 293 K to 473 K (20 �C to 200 �C)

Dislocation cells

T iTwins

ε - Martensite

Temperature / K 

Stacking fault energy     / mJ/m2
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Fig. 16—Effect of temperature and SFE on the deformation
microstructures of austenitic Fe-Mn-Cr-C alloys.[179]
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due to Copley and Kear.[209] Later Kestenbach[210]

showed that the applied stress can make an average
contribution of ±17.0 pct to an effective SFE in a AISI
304 stainless steel. According to Copley and Kear,[209] if
a reasonable value of the SFE is assumed as 10 ergs/cm2,
then the contribution due to an applied stress is of about
the same magnitude as that due to the SFE. It therefore
seems probable that the effect of stress on the stacking
fault width plays an important role in estimating the
dislocation distribution in alloys of low SFE and in
addition influences the formation of extended stacking
faults and �ðhcpÞ martensite.

El-Danaf et al.[211] investigated that in low SFE
materials, the flow stress is approximately inversely
proportional to the homogeneous deformation zone size
(shear bands) in austenitic steels. Byun[191] had shown
the twinning stress as a function of SFE, from there
possible deformation microstructure can be predicted.
At a given strength and SFE, the possible dominant
deformation microstructure can be predicted. According
to Jun and Choi,[73] the change in the MS temperature of
cðfccÞ ! �ðhcpÞ martensitic transformation with AGS
was investigated in relation to the SFE in Fe-18 pctMn
alloys.[4] The effect of grain size on SFE in austenitic
grade steels is reviewed in Table XV.

Karaman et al.[212] studied the stress-strain behavior
of N containing AISI 316L stainless steels with different
crystallographic orientations; and suggested that the
overall mechanical response was strongly dependent on
the crystallographic orientation. The influence of N on
SFE of AISI 316L is non-monotonous; it first increases
with N, and thus, suppresses twinning, and then
decreases with the further addition of N, triggering
twinning at ambient temperature. According to Kara-
man et al.,[212] the orientation close to [111] experiences
a decrease in the effective SFE under tension of
austenitic stainless steels. According to Smallman
et al.,[213] the observed rolling textures of AISI 316L
stainless steels upto 40 pct reduction are relatively weak
in intensity and are consistent with the SFE level of this
material. According to Dillamore,[64] the texture method
of estimating SFE is purely empirical, and its principal
virtue and justification is that it works and is applicable
over the widest range of SFEs, provided that the
available thermal energy is adjusted appropriately.

VIII. SIGNIFICANCE

In the present model, it has been possible to show the
isolated influence of individual input parameters. The
Bayesian neural network modeling has an excellent
advantage to calculate the significance of the input
variables which has been clearly demonstrated by
MacKay[108–111] in his studies. Figure 17 shows the
model perceived significance of the input variables for
the best model (Committee model). The parameter is
rather like a partial correlation coefficient in linear
regression analysis in that it represents the amount of
variation in the output that can be attributed to any
particular input parameter and does not necessarily
represent the sensitivity of the output to each of the
input parameters. It should be noted that it does not
indicate the sensitivity of the output to the input. The
ranking number is indicated in Figure 17 for each
variable that has been perceived to have a significance or
rank of elements influencing SFE. It is clearly under-
stood that the effect of Ni and C concentrations is more
predominant than the rest. From this graph, the
importance of each input variables on revisiting SFE
of steels is drawn.
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Fig. 17—Bar chart showing a measure of the model perceived signifi-
cance of each of the input variables on influencing SFE. The number
denotes the rank.

Table XV. Review on the Effect of Grain Size on SFE (1976 to 2012)

Scientists Year Systems Effect

Volosevich et al.[134] 1976 Fe-Mn-C steels increases as GS decreases
Takaki et al.[71] 1993 Fe-Mn-C steels increases as GS decreases
Jun et al.[73] 1998 Fe-Mn steels SFE decreases rapidly with AGS up to 35 lm, over which lowered in

larger grains
Lee et al.[76] 2000 Fe-Mn steels with decreasing AGS below 30 lm, the SFE increases
Akbari et al.[91] 2009 Fe-Mn-C steels decreases with increasing GS
Koyama et al.[145] 2012 Fe-17Mn-0.6C TWIP steel the inverse GS dependence of critical strain for onset of serrations

are associated with GS effect on dislocation multiplication rates
with low SFE
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IX. CONCLUSIONS

A neural network model has been created to enable
the estimation of SFE in vast majority of austenitic
grade steels as a function of its alloying elements.
Nevertheless, it would have been better model if
temperature, stress, defect density, etc., could be
included. The model successfully reproduces experimen-
tally observed trends. It can be exploited in two ways,
first in the design of austenitic steels and their deforma-
tion microstructures, but also to identify whether
experiments are needed in the future. If the model
prediction is associated with a large uncertainty then an
experiment can be considered to be novel and useful.
The influence of all individual variables on SFE has
been convincingly revealed. C and Cr do not have any
contribution in SFE. Mn, Ni, N, Mo increase SFE of the
austenitic steels. Si and Al decrease the SFE of the alloy.
The present author’s experience of the neural network
technique suggests that it has considerable potential for
useful applications in materials science.

Nevertheless, the neural network can be created more
effectively in discovering better trends while ignoring the
noise in the data with sufficiently larger database.
Therefore, there is scope for further research to be done
in order to broaden the sensitivity analysis using a larger
and comprehensive database including other important
variables like temperature, stress, strain, grain size,
texture, etc., which could be generated by suitable ex-
perimentation and extensive literature reviews.
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