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The classical Johnson–Mehl–Avrami–Kolmogorov equation was modified to take into account
the normal local strain distribution in deformed samples. This new approach is not only able to
describe the influence of the local heterogeneity of recrystallization but also to produce an
average apparent Avrami exponent to characterize the entire recrystallization process. In
particular, it predicts that the apparent Avrami exponent should be within a narrow range of 1
to 2 and converges to 1 when the local strain varies greatly. Moreover, the apparent Avrami
exponent is predicted to be insensitive to temperature and deformation conditions. These
predictions are in excellent agreement with the experimental observations on static recrystal-
lization after hot deformation in different steels and other metallic alloys.
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I. INTRODUCTION

THE classical model for recrystallization kinetics is
based on the concepts originally formulated by Johnson
and Mehl,[1] Avrami[2] and Kolmogorov[3] in the 1930s,
and is now often called the JMAK model, in which a
random distribution of nucleation sites is assumed, and
then the fraction recrystallized XV can be derived as

XV ¼ 1� expð�ktnÞ: ½1�

This simple equation just includes two parameters: the
rate parameter k and the Avrami exponent n. This
exponent is usually determined by plotting the equation
in a double logarithmic form and taking n to be the
slope of a log(ln(1/(1 � XV)) vs log(t) plot, the latter also
called JMAK plot. In practice, Eq. [1] is widely used as
an empirical equation to analyze the measured kinetics
of recrystallization and other reactions involving both
nucleation and growth in steels and other alloys.[4–9] In
the classical JMAK theory, Eq. [1] is actually derived
from the concept of extended volume, Xvex, i.e., the
fraction of material that would have recrystallized if the
phantom nuclei were real.[4] In the case of nucleation
and growth kinetics in three dimensions are both
time-dependent, the fraction recrystallized is:

XV ¼ 1� expð�XVexÞ

¼ 1� exp �fs

Z t

s
Gðt0Þdt0

� �3Z s

0

Nðs0Þds0
( )

;
½2�

where G(t) and N(t) are growth and nucleation rates,
respectively; fs is the geometrical factor, for an exam-
ple, it is 4p/3 for the spherical nuclei. By the compar-
ison of Eqs. [1] and [2], it is known that the rate
parameter k could be influenced by many factors, such
as nucleation kinetics, growth kinetics, the geometrical
shape of nuclei and dimensions of growth. In contrast,
the Avrami exponent n only depends on the time
dependence of nucleation and growth rate, rather than
the rate itself; Therefore, n is a stable inherent physical
parameter related to the underlying mechanisms of
nucleation and growth. For the three-dimensional
growth, Eq. [2] indicates that n is equal to 3 in the case
of site saturation and a constant growth rate, 4 when
both the rates of nucleation and growth are constant.
However, such high values for n have only been mea-
sured for the recrystallization of the lightly deformed
fine-grained metals; for example, Gordon[10] studied
the recrystallization of copper and obtained an Avrami
exponent of approximately 4, identical to the value
predicted by the JMAK model. Surprisingly, the
majority of experimental studies on the recrystalliza-
tion kinetics of steels and alloys yielded Avrami expo-
nents lower than 2, without any microstructural
evidence that the nuclei grew in fewer than 3 dimen-
sions.[4–9] Moreover, n is in many cases not a constant
but decreases with proceeding recrystallization,[4–16]

which cannot be explained by Eq. [2] either. This is
because the recrystallizing grains gradually grow into
the regions with lower stored energy, leading to the
immigration velocity of the recrystallizing grain
boundaries decrease significantly with annealing time,
as revealed by Vandermeer and Gordon on
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aluminum[11] Vandermeer and Rath on iron[12] and
Rath et al. on titanium.[13] Such time-dependent
growth rate G is generally described by

G ¼ Ct�r; ½3�

where C and r are both constants, and r = 0.38
for the recrystallization of iron as investigated by
Vandermeer et al. This will change Eq. [2] to

XV ¼ 1� expð�XVexÞ ¼ 1� exp � fs �N0 � C3

ð1� rÞ3
� t3ð1�rÞ

( )

½4�

Therefore, in the case of recrystallization of iron with
varying growth rate, the Avrami exponent is given by
n = 3(1 � r) = 1.86, which is a typical value of Avrami
exponent and will be discussed later.

In order to explain the discrepancy between the simple
model predictions and experimental recrystallization
data, Humphreys et al.[4] suggested that the heterogene-
ity of recrystallization should be responsible for the
lower value of the Avrami exponent, which was con-
firmed more quantitatively by Chen and Van der Zwaag
in a number of single grain-based simulations taking
into account nucleus clustering and strain heterogene-
ity.[14–16] Assuming a random nucleation, Song et al.[17]

and Liu et al.[18] both studied the blocking effect arising
from the anisotropic growth on the deviation from
JMAK kinetics using Monte Carlo simulations com-
bined with an analytical approach, and indeed found
that anisotropic growth rate lead to a change of the
Avrami exponent n, the latter even changes as a function
of the transformed fraction. Juul Jensen and Godik-
sen[19,20] have recently reviewed experimental results on
recrystallization kinetics obtained by neutron and syn-
chrotron X-ray methods and concluded that ‘‘every
single grain has its own kinetics different from that of
the other grains’’, which is actually consistent with
Humphrey’s suggestion. By assuming nuclei to grow as
spheres with radii r ¼ At1�a, the influence of different
types of distributions of A and a on recrystallization
kinetics, i.e., the JMAK plots, was studied via geometric
simulations. It was found that distributions in A and a
may affect the microstructure and texture, but only a
distribution of a could change the JMAK plots and the
Avrami exponent.[20] Later, Rios and Villa[21] developed
analytical expressions which were derived from the
classical JMAK equation and able to take a distribution
of growth velocities into account. With their analytical
equations, they managed to produce the same results as
Godiksen et al.

The original JMAK theory requires a strictly random
distribution of nuclei whist nuclei actually often develop
at certain preferential sites in the deformed microstruc-
ture like triple junction, grain boundaries, and various
types of deformation-induced bands and hetero-
geneities. For example, the clustered nucleation is often
found during the recrystallization of Al alloys and steels.
With computer simulations, Storm and Juul Jensen
relatively recently studied the effects of an experimen-
tally determined 3D distribution of clustered nuclei on

recrystallization kinetics.[22] They found that the clus-
tering of nucleation could indeed affect recrystallization
kinetics. Next, Villa and Rios again presented a rigorous
mathematical approach to extend the classical JMAK
model to situations in which nuclei were not homoge-
neously located but located in clusters.[23] They managed
to derive an exact analytical solution by assuming that
nucleation sites could follow a Matèrn cluster process
and then produce quite similar results as Storm et al.
Moreover, they[24] used recent developments in stochas-
tic geometry to revisit the classical JMAK theory and
have developed a general analytical approach to situa-
tions in which nuclei are located in space in either
homogeneous or inhomogeneous fashion. Alternatively,
Rath and Pande[25] have also extended the JMAK
equation to situations where nuclei are not randomly
distributed by incorporating the measured time depen-
dence of the transformed volume, the area of migrating
interfaces and the size of the largest nucleus from a
systematic two-dimensional surface examination.
However, these modeling, either numerical or analyt-

ical, are only able to demonstrate the significant
influence of spatial distributions of nuclei or individual
growth velocities on recrystallization kinetics separately,
although in reality both could have a distribution.
Although these models make success in describing the
variation of the transient Avrami exponent during
recrystallization, they seldom produce a single value of
mean Avrami exponent to represent the entire recrys-
tallization so that it can be directly compared with a
large volume of existing experimental measurements in
references, in which the measurements are usually fitted
by the simple JMAK equation with a single value of
Avrami exponent. In addition, they also have difficulties
in explaining some relevant experimental observations.
For examples, the experimentally measured Avrami
exponent is not only smaller than that predicted by the
classical JMAK theory but also gradually decreases with
the proceeding recrystallization.[4,12] In particular, the
recent numerical and analytical models[20,21] predict that
the slope of JMAK plot should increase with the
proceeding recrystallization in the case of a distribution
of growth rate (see Figure 4 in Reference 20 and
Figure 1 in Reference 21). In the case of clustering of
nucleation, it was predicted that the slope of JMAK plot
should firstly decrease with time, and then turn to
increase to a constant in the end of recrystallization, see
Figure 3 in Reference 22 and Figure 4 Reference 23.
Finally, these models seem not able to explain why the
measured Avrami exponents often reach a value lower
than 2 and become insensitive to temperature and
deformation conditions in the case of recrystallization
after hot deformation or during annealing. For exam-
ples, Lü et al.[26] obtained the values of the Avrami
exponent ranged from 0.70 to 1.37 for the recrystalliza-
tion behavior of a 50 pct cold-rolled high-manganese
TWIP steels during annealing. Luton et al.[27] and
Ruibal et al.[28] found constant Avrami exponents
smaller than 2 for a range of copper and low-alloy
steels. Laasraoui and Jonas[7] have found that, over a
wide range of temperatures and strain rates, the Avrami
exponent is less than 1 for static recrystallization in low
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carbon steels containing various combinations of nio-
bium, boron, and copper, and concluded that this
exponent shows independence of temperature and
deformation. Sellars[29] also observed a similar indepen-
dence of temperature and strain rate for C-Mn and
stainless steels.

In this paper, we present a new analytical extension of
JMAK equation taking into account local variations in
deformation as present in real hot deformed samples.
Using a different approach, we have derived an average
Avrami exponent to characterize the entire recrystal-
lization process from start to final stages so that it can
be compared better with the reported values. This new
extension is capable of explaining all relevant experi-
mental observations.

II. THEORETIC MODEL FOR THE KINETICS OF
HETEROGENEOUS RECRYSTALLIZATION

The present model starts from the idea that was
originally put forward by Rollett et al.[30] The material
that is about to recrystallize can be divided into M
classes, with the recrystallization kinetics in each class,
labeled i, being described by the JMAK equation

Xi
V
¼ 1� expð�Xi

VexÞ ¼ 1� expð�kit
niÞ i ¼ 1 . . .M;

½5�

where Xi
Vex is known as the extended volume in the

classical JMAK theory, i.e., the fraction of material
which would have recrystallized if the phantom nuclei
were real.[4] In the case of nucleation and growth rates
both varying with time, the extended volume in the i
class is derived from Eq. [2] as:

Xi
Vex ¼ fis

Z t

s
Giðt0Þdt0

� �3Z s

0

Niðs0Þds0: ½6�

Obviously, ki depends on the local driving force for
that particular class, while ni is determined by the time
dependence of nucleation and growth rates during
recrystallization. Since the recrystallization mechanism
in each artificially divided class should be same, it can be
reasonably expected that the time dependence of nucle-
ation and growth rates in each class is equal or at least
similar, i.e., ni = n. This assumption is also in line with
the experimentally observed weak dependence of n on
temperature and deformation conditions.[7,29] Equa-
tions [5] and [6] can be solved only when the kinetics
of nucleation and growth are known. Sessa et al.[31] did
prove that JMAK equation is correct provided the
following two conditions are satisfied: one is that
distribution of nuclei should be random; the other is
that the extended volume must be computed by includ-
ing the so-called phantom nuclei. Even if the nucleation
in the bulk of recrystallizing material is not random, we
can apply Eq. [1] in a class in which the nucleation is
random. The class is not necessarily a continuous solid
segment in the material, but just a mathematically
required space that consists of several separated or

connected recrystallizing units, where the two require-
ments are satisfied. In this case, the overall recrystallized
fraction can be deduced by integration

XV ¼
Z kmax

kmin

ð1� expð�ktnÞÞfðkÞdk; ½7�

where f(k)is probability density of ki distribution in the
recrystallizing material.
To derive an analytical equation for the heteroge-

neous recrystallization kinetics, an expression for the
distribution of the rate parameter k should be available.
Our previous research[32] assumed a uniform distribu-
tion of k for ease of computation, which is obviously not
physically correct since the local strain distribution is
seldom uniform in a hot deformed material. Godiksen
et al. calculated the heterogeneous recrystallization
kinetics assuming that the time dependence of the
unimpinged radius of the individual grains is given by
r ¼ At1�a and A has a distribution of uniform, log-nor-
mal, or 1/A.[20] Therefore, it seems necessary to derive an
actual or at least approximate distribution of k from the
reliable experimental or computational data.
In the case of static recrystallization after hot defor-

mation, distribution of k should result from the hetero-
geneous plastic deformation; whilst the local strain
distribution could be investigated by both experimental
measurements and finite element simulation. For exam-
ples, Colas and Sellars measured the strain distribution
during plane strain compression testing firstly on alu-
minum alloy[33] and then austenitic stainless steel[34] by a
microgrid technique. Specimens were firstly split down
the middle, and lines 0.508 mm apart were scribed by
milling on the section plane. The coordinates of the
mesh were photographed and measured with a traveling
microscope before bolting the two haves together. After
compression to a certain strain, each specimen was
unbolted and the grid rephotographed. The most recent
quantitative investigation of the deformation of the grid
can be performed by some appropriate image analysis
on a direct comparison of two SEM digital images taken
at two different deformation states.[35]With this
approach, the equivalent strain contours over specimens
at a certain nominal strain can be mapped. It was found
that the local strain varied from 0.1 to 1.1, when
nominal strain was between 0.46 and 0.73. Moreover,
they found that the local strain variation in deformed
materials was considerable and increased with strain and
strain rate. Variation of local strain during deformation
can also be calculated using Finite Element Methods.
Shipway and Bhadeshia[36] calculated the strain distri-
bution for a cylindrical steel specimen (initial height
12 mm, radius 4 mm) compressed to a final length of
6 mm with an interfacial friction coefficient of 0.5. Their
calculations showed that the longitudinal true strain was
0.69, but the effective strains were not greater than 0.1 in
the dead zone, whereas in regions close to the center the
effective strain is close to 1.0. Both studies revealed that
the local strain distribution in the deformed metals
shows the characteristics of a normal distribution: the
strain close to the mean value is accommodated in a
large fraction of the bulk. In particular, Smith et al.[37]
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were even able to directly give distribution of local strain
in the sample after uniaxial compression using FEM,
which is close to an approximate normal distribution.
Since we are now still lack of enough knowledge on the
accurate distribution of local strain after deformation, a
simple assumption of normal distribution, which widely
exists in nature, may be a reasonable for establishing the
new model:

feðeÞ ¼ 1

r
ffiffiffiffiffiffi
2p

p � exp �ðe� leÞ2

2r2e

" #
; ½8�

where feðeÞ is the probability density function of the
local strain distribution, le and re are the mean value
and the standard deviation, respectively. Mathemati-
cally, e, as a scalar quantity like von Mises equivalent
strain, can vary from the minus infinity to the plus
infinity, but it is clearly not possible in a real material;
instead, the local strain varies between the symmetrically
lower and upper limit of emin ¼ l

e
�Nre and

emax ¼ l
e
þNre respectively. Physically, the lower limit

could be approaching 0 as in the so-called dead zone; in
order to be consistent with this physical constraint, the
value of N employed in the simulation should be larger
than 3 to make sure that le �Nre ! 0 andR leþNre
le�Nre

feðeÞde ! 1. The preliminary simulation indicate

that N = 3 has already given the integrated value of
99.74 pct.

Now we have to find relationship between the local
strain e and the rate parameter k. Equation [1] has
another form as well documented in literature,

XV ¼ 1� exp �0:693
t

t0:5

� �n� �
; ½9�

where t0:5 is the time for 50 pct accomplishment of
recrystallization, it can be easily derived that k is equal
to 0:69 � t�n

0:5 from Eqs. [1] and [9]. While t0.5 is a func-
tion of strain, strain rate (_e), initial grain size (D0) and
temperature (T) in the case of static recrystallization
and described by the following equation[7–9]

t0:5 ¼ C0D0e
�p _eq expð�Q=RTÞ; ½10�

where D0 is the initial grain size of matrix before
recrystallization; Q is activation energy for recrystal-
lization and C0, p, and q all constants. Equation [10]
can be inserted into k ¼ 0:69 � t�n

0:5, leading to

k ¼ C1 � ep�n; ½11�

where C1 is a constant with a value depending on the
initial grain size, the deformation condition, and tem-
perature. Thus, the rate parameter k shows an expo-
nential dependence on the local strain. Now we can
derive the cumulative distribution function of the rate
parameter k in a recrystallizing material, FkðkÞ from
the cumulative local strain distribution function, FeðeÞ,
as shown below:

FkðkÞ ¼ P kmin � xk � kf g ¼ P kmin � C1 � ep�n � kf g

¼ P
kmin

C1

� � 1
p�n

� e � k

C1

� � 1
p�n

( )

¼ Fe k

C1

� � 1
p�n

" #
� Fe kmin

C1

� � 1
p�n

" #

:

½12�

e follows a normal distribution between emin and emax;
moreover, kmin ¼ C1 � ep�nmin and emin ¼ l

e
�Nre; thus,

Eq. [12] can be changed to

FkðkÞ ¼ Fe k

C1

� � 1
p�n

" #
� Fe le �N � reð Þ: ½13�

By differentiating Eq. [13], the distribution density of
k, fkðkÞ, can be derived from the distribution of local
strain as follows:

fðkÞ ¼ d½FkðkÞ�
dk

¼
d Fe k

C1

� � 1
p�n

� �� �

de
de
dk

� d Fe le �N � reð Þ½ �
de

:
de
dk

½14�

This leads to

fkðkÞ ¼ 1

p � n � C
� 1

p�n
1 � k 1

p�n�1 � 1ffiffiffiffiffiffi
2p

p
� re

� exp

k
C1

� � 1
p�n�le

� �2

�2 � r2e

8>>><
>>>:

9>>>=
>>>;

� exp �N2

2

� �
8>>><
>>>:

9>>>=
>>>;
:

½15�

Equation [15] is then inserted into Eq. [7], leading to:

XV ¼
Z C1�ðleþN�reÞp�n

C1�ðle�N�reÞp�n
1

p �n �C
� 1

p�n
1 � 1ffiffiffiffiffiffi

2p
p

�re
�k 1

p�n�1�

ð1� expð�ktnÞÞ � exp

k
C1

� � 1
p�n�le

� �2

�2 �r2e

8>>><
>>>:

9>>>=
>>>;

� exp �N2

2

� �
8>>><
>>>:

9>>>=
>>>;
dk:

½16�

Equation [16] indicates that the recrystallized fraction
in the heterogeneously deformed bulk can be derived
from a distribution of local strain, the latter being
assumed as having a normal distribution. It, however, is
still not enough to calculate a value of Avrami exponent
that is directly comparable to experimental observations
given in the literature, since most of the experimental
data on recrystallization kinetics are analyzed by the
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simple JMAK equation and just one value of the
exponent is derived for the entire process. In order to
produce fraction dependent value for n, i.e., nt, Eq. [16]
has been differentiated yielding

nt ¼
d lnðlnð1=ð1� XVÞÞ

d lnðtÞ½ � ½17�

Next, we average the value of nt between XV = 0.05
and XV = 0.95, similar to what is common practice in
using the JMAK equation. Let the time for 5 pct
recrystallization be t1 and that for 95 pct recrystalliza-
tion t2, then the average exponent for the entire pro-
cess of recrystallization is given by

nav ¼
R t2
t1
ntdt

t2 � t1
: ½18�

This average value, nav, should be comparable to the
values of Avrami exponent reported in the literature for
relevant recrystallization experiments. When le and rein
Eq. [16] for the local strain distribution are known, the
recrystallized fraction can be calculated at the different
values of C1, p and n. In particular, the local exponent n
is chosen as 1.86, 3 or 4 in the case of site-saturated
nucleation with decreasing growth rate in pure iron,
constant growth rate with site-saturated nucleation and
constant rates of both nucleation and growth respectively.
P is between 3.55 and 3.81 for steels[7] and chosen as 3.33
here. These values are employed in the present calcula-
tions. In addition, the preliminary calculations showR leþNre
le�Nre

feðeÞde ¼ 0:997 and
RC1ðleþNreÞp�n

C1ðle�NreÞp�n f
kðkÞdk ¼ 0:971

in the case of N = 3. They are very close to 1, indicating
our approximate calculations have a satisfactory accuracy.

III. RESULTS AND DISCUSSION

A. A Decreasing Slope of JMAK Plots with the
Proceeding Recrystallization

A typical normal distribution of local strain within
the deformed bulk is shown in Figure 1(a), in which a
narrow peak with a smaller standard deviation means a

relatively uniform local strain distribution. In contrast,
a slightly wider normal distribution of local strain leads
to a very different curve for the distribution density of k
as calculated by Eq. [15] and shown in Figure 1(b). It
can be clearly seen that a larger standard deviation of
local strain causes k to distribute over a much larger
range.
Figure 2(a) shows the curves of recrystallized fraction

vs time calculated by Eq. [16] at the given values
of relevant parameters. Re-plotting the results of
Figure 2(a) using double logarithm scales gives the typical
JMAK plots whose slopes are the Avrami exponents, as
shown in Figure 2(b). It can be seen that the JMAK plots
have constant slopes at the beginning and then gradually
decrease with the proceeding recrystallization, which
successfully reproduces many experimental observations.
Recrystallization will take place in a shorter time in the
case of higher le or C1 or smaller re, since all such
conditions lead to a larger proportion of the bulk having
high values of ki, i.e., fast recrystallization kinetics. It
should be realized that an increasing n leads to a slowing
down of the recrystallization kinetics (Curves 4 and 5 in
Figure 2), which is different from the previous modeling
results based on a uniform distribution of ki.

[32] This is
because the probability density of k actually decreases
with increasing n according to Eq. [15]. By differentiating
the JMAKplots according to Eq. [17], onemay derive the
instantaneous slope at each point of these curves, i.e., the
transient exponent nt, which is shown in Figure 2(c).
During recrystallization, nt decreases with proceeding
recrystallization. It decreases faster in the case of smaller
le, larger re or higher n since they all result in either
decreased driving force for recrystallization or smaller
fraction of materials with high values of k; whilst it is
surprising to find that C1 has no influence on nt, an
observation which is to be discussed later.

B. Dependence of the Average Exponent on the Local
Strain Distribution

According to Eq. [18], the average Avrami exponents,
nav, can be derived by integrating nt between 5 and
95 pct recrystallized fractions. Figure 3(a) shows the
dependences of nav on re for given values of le. The
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Fig. 1—The normal distribution of local strain (a) according to Eq. [8] and the derived distribution of rate parameter k (b) according to Eq. [14]
using the values of l = 0.3, C1 = 400, p = 3.33 and n = 3.
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curves of nav vs re are calculated until Eqs. [17] and [18]
cannot produce convergent results in the case of
le � Nre approaching to 0. It is seen that both larger
le and smaller re lead to higher exponent nav. This is
within expectation since larger le means higher stored
energy and smaller re means larger proportion of bulk
with the stored energy close to the mean value. In
particular, nav decreases faster with increasing re when
le is smaller, i.e., the variation of local strain appears to
make a larger influence on nav in the case of smaller
nominal strain. When re is large enough, nav always
decreases to about 1 irrespective of the value of le. In
other word, no matter how much nominal strain is
applied, a heterogeneous enough distribution of local
strain will result in a barely varying low Avrami
exponent.

The local Avrami exponent, n, is an inherent physical
parameter that reveals the mechanism of nucleation and
growth. It may vary with the type or compositions of
materials. However, a very different choice of n also
makes little difference on the average exponent when the
local strain variation is large enough, as shown in
Figure 3(b). It can be seen that nav always decreases to 1
in Figures 3(a) and (b), strongly suggesting that signif-
icant heterogeneous recrystallization kinetics will result

in the experimental Avrami exponent in a very narrow
range. Since a varying n will not influence the average
exponent remarkably in the case of heterogeneous
enough distribution of local strain, ni „ n, i.e., the
assumption of ni = n in Eq. [5] is not valid, should not
significantly change the results of nav vs re as shown in
Figure 3b. In summary, a significant heterogeneity of
recrystallization may mask the influence of other factors
on the final average Avrami exponent.
Although C1 is actually influenced by the initial grain

size, deformation condition, and temperature according
to Eqs. [10] and [11], Figure 3(c) shows that C1 has no
influence on nav, at all, which is also consistent with
independence of nt on C1 Figure 2(c). This is because
that larger C1 may accelerate recrystallization at the
early stage but then decelerate it at the later stage, as
shown in Figures 2(a) and (b). Hence the observed
exponent should be insensitive to temperature and strain
rate.

C. Range of the Observed and Actual Avrami Exponent

The relation between the actual Avrami exponent n
for a very small and homogeneously deformed material
volume and the average exponent nav for real effectively

Fig. 2—Kinetics of heterogeneous recrystallization calculated with Eq. [16] at the given values of le, re, n, and C1 (a) The curves of recrystallized
fraction vs time. (b) The curves of ln(ln(1/(1 � Xv))) vs ln(t), derived from (a); (c) The curves of instantaneous Avrami exponent of the recrystal-
lizing material vs the recrystallized fraction, calculated by Eqs. [16] and [17].

Fig. 3—Dependence of average Avrami exponent, nav (derived by Eqs. [15] through [17]), on the standard deviation of local strain, re, at the dif-
ferent values of (a) mean strain le, (b) local exponent n and (c) constant C1.
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inhomogeneously deformed samples is shown in
Figure 4. Also the values for nav derived before for the
case of a uniform distribution of k, are indicated. It is
clear that the present approach predicts the narrowest
range of the average exponent. The actual exponent, i.e.,
the local exponent, only depends on the mechanism of
nucleation and growth as mentioned before. The clas-
sical JMAK theory suggest that the actual Avrami
exponent should be in the range of 1.86 to 4 for the
different kinetics of nucleation and growth; in addition,
the previous results based on the uniform distribution of
k suggested a lower and narrower range of 0.75 to 2.2;
while the present approach suggests the narrowest range
between 1 and 2, converging to 1 when the variation in
local strain is large enough, irrespective of the nucle-
ation and growth kinetics, temperature and deformation
condition, etc.

The above-derived average exponent nav is character-
istic for the entire recrystallization process so that it can
be directly compared with the experimentally deter-
mined value of the Avrami exponent. Although the real
value of re remains undefined, local strain may be
reasonably expected to vary significantly for the usual
deformation testing conditions on macroscopic samples.
For an example, Colas and Sellars[33–35] measured the
strain distribution during plane strain compression
testing on an austenitic stainless steel and found that
the local strain could vary from 0.1 to 1.1 when nominal
strain was between 0.46 and 0.73. Therefore, it could be
a common phenomenon that hot deformation usually
leads to a significant strain heterogeneity in the
deformed bulk. In this case, the predication that the
average exponent is between 1 and 2 and most often
around 1 is quite consistent with experimental observa-
tions, because the measured exponents are seldom more

than 2, mostly in the range of 1 to 1.5. For examples, the
experimentally observed exponent is 1 for C-Mn and Nb
microalloying steels by Laasraoui and Jonas,[7] 1.6 for a
low carbon steel by Karjalainen et al.,[5,6] in the range of
0.7 to 1.5 for 16 different steels as investigated by
Medina and Quispe,[9] 0.5 to 1.2 for very low carbon
rolled steel by Michalak and Hibbard[38] and 0.7 to 1.37
for high Mn TWIP steels by Lü et al.[26] It is noted that
the present approach predict that the lowest average
exponent is 1; whilst the observed values could be lower
than 1 sometimes. This is because the present model
actually assumes that each part of the deformed bulk
actually recrystallizes, i.e., k> 0 in Eq. [5]. It, however,
is not true in the case of low temperatures and small
deformations, which may lead to some dead zones not
recrystallizing at all. Consequently, the real average
exponent could be even lower than the predicted values
shown in Figures 3 and 4. In summary, Figure 4
explains why the observed Avrami exponents for the
recrystallization of various alloys under very different
test conditions necessarily are confined to a surprisingly
narrow range.
It is noted that the present results demonstrate that

the distribution of k influences the overall recrystalliza-
tion kinetics greatly, which is different from the predic-
tions by Godiksen and Juul Jensen et al.[20] using 2D
geometric computer simulations and those from Rios
et al.[21] using the analytical approach. They both have
studied the recrystallization kinetics in the case that
nuclei are site-saturated at the beginning and distribute
randomly and grow with the radii r ¼ At1�a until
impingement after assuming various distributions of A
and a. They found that the distribution of A has no
influence on the slope of JMAK plots but the distribu-
tion of a does, i.e., k should not affect the Avrami
exponent since the distribution of k is actually deter-
mined by that of A in this case. This difference results
from the presumption of their models that the classical
JMAK model can be actually applied in the entire
deformed bulk because of the random distribution of
nuclei; therefore, they have derived the expression of
recrystallized fraction with the same form of Eq. [1], see
Eq. [9] in Reference 21 so that variation of k does not
influence the slope of JMAK plots at all. In contrast, we
derived the overall recrystallization kinetics by averag-
ing the kinetics of all recrystallizing classes using
differentiation and integration as indicated by Eqs. [17]
and [18]. Our model suggest that the distribution of k
could influence the slope of JMAK plot even though
every nucleus grows with the same value of n, i.e., the
same time dependence. Moreover, their models produce
an upward curve in the JMAK plots whilst ours yield
the downward curved plots consistent with experimental
observation. In their very recent research on the
recrystallization behavior of nanocrystalline copper,[39]

they have actually developed a quite similar model to
deal with two-stage kinetics, in which two different
values of k but a single value of n are used. By using this
rather simple model, they have also shown that a
distribution of k could influence on the Avami exponent,
leading to the measured values of n less than 1.

0 

0.5

1 

1.5

2 

2.5

0 1 2 3 4 

Av
er

ag
e 

ex
po

ne
nt

,  
n a

v 

Local exponent, n 

σ=0.04

σ=0.06

σ=0.08

Range predicted by the 
classical JMAK equation

Range predicted 
by the modified 
JMAK equation 
considering the 
different 
distribution of k 

1 2 

Uniform distribution 
of k

Fig. 4—Relationship of local exponent n, predicted by the classical
JMAK equation, and the average exponent nav, which is predicted
by the present modified JMAK model to consider a normal distribu-
tion of local strain with the standard deviation of 0.04, 0.06, and
0.08, respectively. The arrows of ‘1’ and ‘2’ indicate the range of nav
when k distributes uniformly and according to Eq. [12] respectively.
The former’s data are from Ref. [31].
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IV. CONCLUSIONS

Distribution density of the rate parameter k in JMAK
equation is deduced from an assumed normal distribu-
tion of local strain values. Introduction of k distribution
density of into the classical JMAK equation leads to a
new analytical equation, by which the heterogeneous
recrystallization kinetics can be calculated quantita-
tively. This new approach is not only able to describe
influence of local strain heterogeneity on the overall
recrystallization kinetics, but also to produce an average
Avrami exponent to characterize the entire recrystal-
lization process so that it can be directly compared with
experimental measurements. In particular, it predicts
that the apparent Avrami exponent, be within a narrow
range of 1 to 2 converging to a value of 1 when the local
strain varies greatly; moreover, this exponent is insen-
sitive to temperature and deformation conditions. In
addition, the model yields the JMAK plots having a
constant slope at the beginning, and then the slope
decreases gradually with proceeding recrystallization.
These are in excellent agreement with the experimental
observations on static recrystallization after hot defor-
mation in different steels and other metallic alloys.
Although the present model was developed for heteroge-
neous recrystallization kinetics, the expressions derived
here may be applied to phase transformations involving
nucleation and growth reactions.
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