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Applying the regular solution model, the Gibbs free energy of mixing for substitutional binary
alloy system was constructed. Then, thermodynamic and kinetic parameters, e.g., driving force
and solute drag force, controlling nanoscale grain growth of substitutional binary alloy systems
were derived and compared to their generally accepted definitions and interpretations. It is
suggested that for an actual grain growth process, the classical driving force P = c/D (c the
grain boundary (GB) energy, D the grain size) should be replaced by a new expression, i.e.,
P0 ¼ c=D� DP. DP represents the energy required to adjust nonequilibrium solute distribution
to equilibrium solute distribution, which is equivalent to the generally accepted solute drag force
impeding GB migration. By incorporating the derived new driving force for grain growth into
the classical grain growth model, the reported grain growth behaviors of nanocrystalline Fe-4at.
pct Zr and Pd-19at. pct Zr alloys were analyzed. On this basis, the effect of thermodynamic and
kinetic parameters (i.e., P, DP and the GB mobility (MGB)) on nanoscale grain growth, were
investigated. Upon grain growth, the decrease of P is caused by the reduction of c as a result of
solute segregation in GBs; the decrease of DP is, however, due to the decrease of grain growth
velocity; whereas the decrease of MGB is attributed to the enhanced difference of solute molar
fractions between the bulk and the GBs as well as the increased activation energy for GB
diffusion.
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I. INTRODUCTION

NANOCRYSTALLINE materials exhibit many
unique properties which are normally superior to their
coarse-grained counterparts, and therefore have great
potentials in a variety of applications.[1–5] However, due
to a high volume fraction of grain boundaries (GBs), the
driving force for grain coarsening of the nanocrystalline
materials is rather high, and the thermal stability of this
kind of materials is poor. Many pure nanocrystalline
metals, e.g., Sn, Pb, Al, Mg, Cu, and Pd, etc.,[6–9] are
subjected to apparent grain coarsening even at room
temperature. This strongly hinders the applications of
these materials. Therefore, enhancing thermal stability
of nanocrystalline materials is a fundamentally impor-
tant issue regarding the applications of nanocrystalline
materials.

According to the classical grain growth theory,[10,11]

the velocity of grain growth (dD/dt) is expressed by the
product of driving force (P = c/D) and GB mobility
(MGB),

dD

dt
¼ MGB � P ¼ MGB � c

D
½1�

Accordingly, the enhanced thermal stability of
nanocrystalline materials can be achieved by either
reducing the driving force or reducing the GB mobility.
It has been demonstrated widely that both of the above
two strategies can be achieved by alloying foreign
elements.[11–13] Therefore, understanding the alloying
effects on grain growth of nanocrystalline materials will
be essentially important for enhancing their thermal
stability. So far, plenty of efforts and progresses[12–26]

have been reported in evaluating the alloying effects
both thermodynamically and kinetically. However, sev-
eral issues are still required to be clarified, which are
summarized briefly below.

A. Thermodynamic Description for Grain Growth of
Nanocrystalline Alloy System

Thermodynamic descriptions of a nanocrystalline
alloy system have been carried out by Weissmüller,[12,27]

and other authors,[13–19,28–33] yielding a conclusion that
the minimum of Gibbs energy of a system corresponds
to a zero GB energy caused by solute segregation.
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Basically, the reported models assume an equilibrium
solute distribution* in the bulk and GB phases, and thus

follow the equilibrium GB segregation equation, e.g.,
Mclean’s model.[34] This means, at a given state, namely,
a given D, the solute molar fractions in the bulk (Xb)
and GBs (XGB) are determined by the equilibrium GB
segregation equation. However, for an actual grain
growth process, the nonequilibrium system prevails, and
in turn, the solute distribution will no longer follow the
equilibrium GB segregation equation, thus leading to
deviations of Xb and XGB from their equilibrium
values.[20,35] As a consequence, the above-mentioned
thermodynamic descriptions will not be suitable for the
actual grain growth. Hence, how the nonequilibrium
solute distribution affects the thermodynamics of an
actual grain growth process will need a detailed analysis.

B. Solute Drag in an Actual Grain Growth Process

It is generally accepted that, kinetically, for an actual
grain growth process, the asymmetric distribution of
solute in the vicinity of GBs causes the solute drag effect
on migration of GBs.[20,21] By incorporation of the
solute drag force Psolute into Eq. [1], the grain growth
equation considering the solute drag effect can be
expressed as[22,24,36]

dD

dt
¼ MGB � P� Psoluteð Þ ½2�

However, this kind of approaches incorporates arbi-
trarily the kinetic effect (solute drag force) into the
thermodynamic term (driving force). Whether this
treatment is physically meaningful deserves a further
analysis.

A widely accepted form of solute drag force was
defined by Cahn[20] as

Psolute ¼ �Nv

Zþ1

�1

XGB � Xb
� � dE

dy
dy ½3�

where Nv, dE/dy, X
GB, Xb, and y are the number of

atoms in the GB phase, the interaction energy between
solute and GB, the compositional profile of solute at
GB, an constant solute molar fraction, and the distance
of an atom from GB, respectively. Since it is difficult to
solve analytically the compositional profile at the GB,
Eq. [3] is hardly used to describe quantitatively the
solute drag effect on grain growth. Although some
simplified solute drag models are subsequently proposed
by assuming the difference between solute molar frac-
tions in the bulk and GB phases is proportional to D,

and then used to describe the solute drag effect on the
nanoscale grain growth.[23,24] However, this assumption
actually lacks of theoretical supports and on the other
hand, brings unclear constants to the models.[22,23]

C. Evolution of Thermodynamic and Kinetic Parameters
upon an Actual Grain Growth

For an ideal parabolic grain growth of pure poly-
crystalline metals, the thermodynamic and kinetic
parameters involved in grain growth equation, i.e.,
the GB energy and the GB mobility, are constant.
When solute elements are introduced, solute distribu-
tions in the system will be changing during grain
growth. In this case, interactions between the solute
and the GB are bound to change these thermodynamic
and kinetic parameters. This has been modeled exten-
sively both thermodynamically[12–15] and kineti-
cally.[20–23] However, early investigations on the
thermodynamic and kinetic effects are more or less
independent, without considering the interplay in
between. This may limit the understanding of the
effects of the thermodynamic and kinetic parameters
on the grain growth of nanocrystalline materials. As
stated by Borisov,[37] upon grain growth, GB mobility
is related to GB energy, which implies that during
grain growth thermodynamics and kinetics of a system
may actually be linked. Recently, Chen et al.[26] estab-
lished a thermokinetic model for the grain growth in
nanocrystalline alloy systems and linked the GB energy
with the activation energy. On this basis, the authors
found that upon grain growth a decrease of GB energy
is accompanied with an increase of activation energy.
However, Chen et al.’s work does not consider the
effect of the difference between the solute molar
fractions in bulk and GB (i.e., XGB � Xb). As sug-
gested by Molodov et al.,[38] the change of XGB � Xb

also plays a role in determining the GB mobility. A
further quantitative analysis on the evolution of
thermodynamic and kinetic parameters during an
actual grain growth is, therefore, essential for under-
standing the effects of these parameters on the grain
growth behaviors.
In order to clarify the above-mentioned issues, the

thermodynamic and kinetic effects of alloying on the
nanoscale grain growth of substitutional binary alloy
systems will be analyzed in this work. First, adopting a
regular solution model proposed by Trelewicz[17] and
Saber,[18,19] the molar Gibbs free energy of mixing for an
actual grain growth process is constructed in Section II.
Then, the driving force for grain growth considering
nonequilibrium solute distribution is derived in Section
III. On this basis, a new grain growth equation in
combination with the changed GB mobility is obtained
in Section III. In Section IV, applying the derived
model, the grain growth behaviors of two nanocrys-
talline substitutional alloys, i.e., Fe-4at. pct Zr and
Pd-19at. pct Zr, are analyzed and the effects of the
thermodynamic and kinetic parameters on the grain
growth are illuminated.

*The equilibrium solute distribution referred in the context is not
equivalent to the equilibrium state of the system but only means the
solute distribution in bulk and GB follows the equilibrium GB segre-
gation equation.
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II. GIBBS FREE ENERGY OF MIXING

According to References 17 and 18, for nanocrys-
talline alloy systems, the Gibbs free energy of mixing
depends on three variables, i.e., XGB, Xb, and D. Upon
grain growth, the evolutions of these parameters deter-
mine the change of the Gibbs free energy of mixing. In
order to illuminate the difference between the equilib-
rium solute distribution and the nonequilibrium solute
distribution upon grain growth, we define two kinds of
kinetic grain growth processes.

1. Grain growth assuming equilibrium solute distribu-
tion. In this process, the solute distribution in the
bulk and GB phases is determined by the equilib-
rium GB segregation equation.

2. Grain growth considering nonequilibrium solute dis-
tribution. In this process, the solute distribution in
the bulk and GB phases does not follow the
equilibrium GB segregation equation. Solute molar
fractions in the bulk and GB phases deviate from
their equilibrium values.

A. Constructions of Gibbs Free Energy of Mixing

1. Gibbs free energy of mixing assuming equilibrium
solute distribution

In order to construct the total Gibbs free energy of
the system, the regular solution model proposed by
Trelewicz[17] and Saber[18,19] is adopted. Following the
approaches of Hillert[39] and Saber,[18] molar Gibbs free
energy of mixing (MGFEM) for a polycrystalline alloy
system (Gmix) is derived as (see Appendix A)

Gmix ¼ xzXb 1� Xb
� �

1� fð Þ þ axzXGB 1� XGB
� �

f

þ XGBrAcA þ 1� XGB
� �

rBcB
� �

fþHelasX
GBf

þ RT 1� fð Þ Xb lnXb þ 1� Xb
� �

ln 1� Xb
� �� ��

þf XGB lnXGB þ 1� XGB
� �

ln 1� XGB
� �� ��

½4�

where x, z, a, rA, rB, cA, cB, Helas, and f are the inter-
action energy, the coordination number, the scale factor
of bond energy between the bulk and GB, the molar
GB areas of solute (A) and solvent (B) atoms, the GB
energies of solute (A) and solvent (B) atoms, the elastic
energy due to atomic size mismatch, and the volume
fraction of GBs, respectively. The terms xzXb 1� Xb

� �
1� fð Þþ xazXGB 1� XGB

� �
f; XGB
�

cArA þ 1� XGB
� �

cBrBÞf;HelasX
GBf and RT 1� fð Þ XblnXbþ

��
1� Xb
� �

ln

1� Xb
� �

� þ f XGBlnXGB þ 1� XGB
� �

ln 1�ð
�

XGBÞ�g cor-
respond to the contributions of enthalpy of mixing of
bulk and GB, the energy penalty required to form GB,
the elastic energy induced by atomic size mismatch, and
the contributions of entropy of mixing of bulk and GB,
respectively. Separating these terms and restructuring
them according to their contributions, the MGFEM of
bulk (Gb

mix) and GB (GGB
mix) are expressed as

Gb
mix ¼xzXb 1�Xb

� �
þRT Xb lnXbþ 1�Xb

� �
ln 1�Xb
� �� �

½5a�

GGB
mix ¼ axzXGB 1�XGB

� �
þ XGBrAcAþ 1�XGB

� �
rBcB

� �
þHelasX

GB þRT XGB lnXGBþ 1�XGB
� �

ln 1�XGB
� �� �

½5b�

Comparing Eq. [4] to Eq. [5], Gmix (Eq. [4]) can be
rewritten as

Gmix ¼ 1� fð ÞGb
mix þ fGGB

mix ½6�

2. Gibbs free energy of mixing considering nonequilib-
rium solute distribution
For an actual grain growth process, the solute diffusion

is slower than the GB motion, so that an asymmetric
solute distribution along the GB is always expected.[20,40]

In this case, the average solute molar fraction in the bulk
and GB phases will deviate from their equilibrium
values.[20,35] By introducing two increments of deviations
DXGB and DXb, XGB and Xb in the case of nonequilib-
rium solute distribution will be replaced by XGB+DXGB

and Xb+DXb, respectively. Following Eq. [5], MGFEM
in the actual grain growth process is then modified as

G0b
mix ¼ Gb

mix þ DGb
mix ½7a�

G0GB
mix ¼ GGB

mix þ DGGB
mix ½7b�

where DGb
mix and DGGB

mix represent the additional energy
contributions to MGFEM due to DXb and DXGB, respec-
tively. By comparing Eq. [7] to Eq. [5], DGb

mix and DGGB
mix

are derived as**

DGb
mix ¼ xzDXb 1� 2Xb

� �
þ RTDXb ln

Xb þ DXb

1� Xb � DXb

½8a�

DGGB
mix ¼ axzDXGB 1� XGB

� �
þ DXGB rAcA � rBcBð Þ

þHelasDX
GB þ RTDXGB ln

XGB þ DXGB

1� XGB � DXGB

½8b�

Similar to Eq. [6], the MGFEM G0
mix can be given as

G0
mix ¼ 1� fð ÞG0b

mix þ fG0GB
mix ½9�

**It should be noted the second term of Taylor expansion was
omitted in the current derivation, since it was concluded (not shown
here) that omitting this term leads only to rather small changes in the
values of Gb

mix and GGB
mix related parameters, and to significant predi-

gestion of the current model.
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By substituting Eq. [7] into Eq. [9] and assuming
DGmix ¼ 1� fð ÞDGb

mix þ fDGGB
mix, Eq. [9] is then rewritten

as

G0
mix ¼ Gmix þ DGmix ½10�

B. Evolution of Gibbs Free Energy of Mixing upon Grain
Growth

Upon grain growth, GB area decreases continuously,
leading to the redistribution of solute in the bulk and
GB phases, and thus the change of the MGFEM. The
solute redistribution in the bulk and GB phases should
follow two constraint conditions: (1) mass conservation
law, and (2) solute segregation equation.

The mass conservation equation for solute distribu-
tion in the bulk and GB phases can be written as

Xb 1� fð Þ þ XGBf ¼ X0 ½11�

where X0 is the total solute molar fraction. For a con-
stant GB thickness 2d, f can be expressed as a function
of D:

f ¼ 1� D� d
D

� 	3

½12�

At a given state (D), Xb and XGB can be correlated by
the following solute segregation equation:

XGB

1� XGB
¼ Xb

1� Xb
exp

Hseg

RT

� 	
½13�

In the general treatments, e.g., Mclean’s segregation
model,[41] the segregation enthalpy Hseg is assumed as a
constant. This is practical for a relatively low XGB,
where the solute–solute interaction is negligible. How-
ever, for a high XGB, the solute–solute interaction may
influence Hseg, which will no longer be a constant.[41] In
Appendix B, an expression of Hseg considering the
solute–solute interaction is derived as

Hseg ¼ H0 � C1X
GB þ C2X

b ½14�

with H0 ¼ xz� axz� rAcA � rBcBð Þ �Helas, C1 =
�2axz and C2 = �2xz. In the following model deriva-
tion, Xb and XGB will follow Eq. [13] with the new
expression of Hseg (Eq. [14]).

On this basis, applying the above two constraint
conditions, Xb and XGB can be expressed as functions of
D by solving Eqs. [11] through [13]. Then, for the grain
growth assuming the equilibrium solute distribution,
substituting Eq. [12] into Eq. [6], the evolution of
MGFEM upon grain growth can be expressed as a
function of D:

Gmix Dð Þ ¼ D� d
D

� 	3

Gb
mix þ 1� D� d

D

� 	3
 !

GGB
mix:

½15�

While for the grain growth considering the nonequi-
librium solute distribution, Eq. [15] will be replaced by

Gmix Dð Þ ¼ D� d
D

� 	3

G0b
mix þ 1� D� d

D

� 	3
 !

G0GB
mix

½16�

III. DRIVING FORCE FOR GRAIN GROWTH
AND A NEW GRAIN GROWTH EQUATION

Driving force for grain growth corresponds to the
reduction of Gibbs free energy of the system against
volumetric change of the system (dV), which can be
given as

dV ¼ VD
Vm

VD
� Vm

VDþdD

� 	
¼ 3Vm

dD

D
½17�

where VD and VD+dD denote the volume of spherical
grain with grain size D and D+dD, respectively. Then
the driving force for grain growth assuming the equi-
librium solute distribution (P) can be given by

P ¼ � dGmix Dð Þ
dV

¼ � D

3Vm

dGmix Dð Þ
dD

½18�

For grain growth considering the nonequilibrium

solute distribution, the driving force (P
0
) can be

expressed as

P0 ¼ � dG0
mix Dð Þ
dV

¼ � D

3Vm

dGmix Dð Þ þ dDGmix Dð Þ
dD

½19�

A. Driving Force Assuming Equilibrium Solute
Distribution

Before proceeding with the following derivations, it is
necessary to clarify two different definitions of the
chemical potential of solute in GB (lGB

A ) and bulk (lbA)
in the literature.[12,15,39] When solute distribution
between GB and bulk reaches equilibrium state, accord-
ing to References 15 and 39, lGB

A and lbA follow the
following relationship:

lGB
A � lbA ¼ cAGB ½20�

with AGB as the molar GB area.
By solving Eq. [18] mathematically (see Appendix C),

the driving force for grain growth can be obtained as

P ¼ d
Vm

@Gmix Dð Þ
@f

� k XGB � Xb
� �� 	

1

D
½21�

where k is the Lagrangian multiplier (see Appendix B).
Following the approaches of Hillert[39] and Krill,[15]

the Gibbs free energy of bulk and GB for a binary
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polycrystalline alloy system is illustrated in Figure 1,
where two identical slopes of tangents at XGB and Xb for

GB and bulk, i.e., @GGB

@XGB and @Gb

@Xb, correspond to the

Lagrangian multipliers as defined in Appendix B (see
Eq. [B3]). Then, lbA and lGB

A can be written as

lbA ¼Gbþ@Gb

@Xb
1�Xb
� �

; lGB
A ¼GGBþ@GGB

@XGB
1�XGB
� �

½22�

Substituting Eqs. [22] and [B3] into Eq. [20], one can
obtain

c ¼ 1

AGB

@G

@f
� k XGB � Xb
� �� 	

½23�

where G (=fGGB+ (1 � f)Gb) denotes the Gibbs free
energy of system. According to References 17 and 18,
G and Gmix follow the energy conservation equation,
i.e., �Gmix+G = Gtotal, where Gtotal represents the
total Gibbs free energy of system before mixing. Dif-

ferentiating this equation yields @G
@f ¼

@Gmix

@f . Accord-

ingly, Eq. [23] can be rewritten as

c ¼ 1

AGB

@Gmix Dð Þ
@f

� k XGB � Xb
� �� 	

½24�

Since AGB = Vm/d, by comparing Eq. [24] to Eq. [21],
the driving force for grain growth in the case of equi-
librium solute distribution can be obtained as

P ¼ c
D

½25�

Equation [25] has the similar form to the classical
definition of driving force for grain growth. However,
the classical grain growth equation (Eq. [1]) is developed
for pure polycrystalline metals, where c is a constant; in
alloy system, c becomes no longer a constant, but a
function of D, cf. Eq. [24].

B. Driving Force Considering Nonequilibrium Solute
Distribution

Equation [25] is obtained by assuming the equilibrium
solute distribution during grain growth, and therefore
cannot represent the driving force for an actual grain
growth where the nonequilibrium solute distribution
prevails. Substituting Eq. [18] into Eq. [19], the driving
force for grain growth considering the nonequilibrium
solute distribution can be expressed as

P0 ¼ @Gmix Dð Þ
@f

� k XGB � Xb
� �
 �

d
Vm

1

D
� D

3Vm

dDGmix Dð Þ
dD

¼ c
D
� D

3Vm

dDGmix Dð Þ
dD

½26�

Compared to Eq. [25], one additional term
D

3Vm

dDGmix Dð Þ
dD

appears in Eq. [26]. This term is defined as

DP, which is totally due to the existence of DXGB and
DXb in the case of nonequilibrium solute distribution.
Therefore, this additional term actually corresponds to
the energy required to adjust the nonequilibrium solute
distribution to the equilibrium one. Since the nonequi-
librium solute distribution is always expected in an
actual grain growth process, the driving force for the
actual grain growth should not conform its classical
definition, i.e., P = c/D, but be separated into the part
to drive GB migration and the part to adjust solute
molar fractions from their nonequilibrium values to the
equilibrium ones. The additional term DP can thus be
considered as the force impeding GB migration, in other
words, the solute drag force. This is compatible with the
combination of driving force and drag force as Eq. [2].
So far, it becomes clear that the incorporation of solute
drag force into driving force in the grain growth
equation (Eq. [2]) is physically meaningful.

C. A New Grain Growth Equation

By incorporating the driving force for grain growth
considering the nonequilibrium solute distribution
(Eq. [26]) into Eq. [1], the grain growth equation can
be presented as

dD

dt
¼ MGBP0 ¼ MGB c

D
� DP

� 

; ½27�

where the effect of solute segregation on MGB has been
well accounted for using a model established by Molodov
et al.,[38] viz.,

MGB ¼ VmD
GB

dRT XGB � Xbð Þ ½28�

where DGB (=DGB
0 exp � QGB

RT

� 

) represents the solute

diffusion coefficient in the GB phase. As referred to in
Chen’s work,[26] the activation energy for GB diffusion
QGB is not a constant but related to the activation

Fig. 1—Gibbs free energy diagram for a binary polycrystalline alloy
system. Gb and GGB represent the molar Gibbs free energies of bulk
and GB, respectively. lbA, l

GB
A , lbB, and lGB

B are chemical potentials.
The superscripts A and B, and the subscripts b and GB represent so-
lute and solvent, bulk, and grain boundary, respectively.
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energy for bulk diffusion Qb and GB energy c by the
following equation:

QGB ¼ Qb � cAGB ½29�

Combining Eqs. [27] through [29] thus gives an
improved grain growth equation:

dD

dt
¼

DGB
0 exp � Qb�cAGB

RT

� 


RT XGB � Xbð Þ
Vm

d
c
D
� DP

� 

½30�

Compared to the classical grain growth equation
(Eq. [1]), this new equation considers the concurrent
changes of GB energy, solute drag force, and GB
mobility, as well as the nonequilibrium solute distribu-
tion during grain growth, and therefore, will be more
appropriate to describe the actual grain growth behav-
iors of nanocrystalline alloy systems.

IV. ANALYSES OF ACTUAL GRAIN GROWTH
BEHAVIORS OF NANOCRYSTALLINE SUBSTI-

TUTIONAL BINARY ALLOYS

In this section, the present model will be used to
describe the experimental results obtained in nanocrys-

talline Fe-4at. pct Zr[42] and Pd-19at. pct Zr[15] alloys,
where Zr is substitutional solute element. Evolution of
three controlling parameters, i.e., the driving force, the
solute drag force, and the GB mobility, upon grain
growth will be evaluated and discussed.

A. Comparison of Model Calculations with Experimental
Results

The values of the physical parameters are listed in
Table I. Due to lack of reference sources, two fitting
parameters, i.e., Qb and a are taken. By using
d = 0.4 nm,[18] the D-t curves for nanocrystalline
Fe-4at. pct Zr and Pd-19at. pct Zr alloys were calculated
by solving Eq. [30] numerically, Figures 2(a) and (b). It
is shown that the calculated D-t curves (the solid lines)
exhibit fairly good agreements with the experimental
data for both alloys. For the two alloys, the grain size
increases rapidly in the early stage of grain growth; as
the annealing time increases further, the grain grows
slowly; in the late stage of grain growth, the grain size
approaches a saturated value (marked by the dash lines
in Figures 2(a) and (b)).
For Fe-4at. pct Zr alloy, Qb is fitted as 242 kJ/mol

which is similar to the activation energy for bulk
self-diffusion of Fe (251-282 kJ/mol[48]). The slight
deviation between the two values may be caused by

Fig. 2—Evolution of grain size (D) as a function of annealing time (t) for (a) Fe-4at. pct Zr alloy at 1073 K and (b) Pd-19at. pct Zr alloy at
873 K. The solid lines were calculated by Eq. [30]. The closed squares are experimental data cited from Refs. [15, 42]. The dash lines mark the
calculated saturated grain sizes.

Table I. The Values of the Physical Parameters of Fe-4at. Pct Zr and Pd-19at. Pct Zr Alloys (A = Solute and B = Solvent)

Parameters

Alloys

Fe-4at. Pct Zr Pd-19at. Pct Zr

z 8 12
rA (rA ¼ Vm:A=d, m

2/mol) (Ref. [17]) 34,979 34,979
rB (rB ¼ Vm:B=d, m

2/mol) (Ref. [17]) 17,769 22,135
cA (J/m2) (Refs. [43, 44]) 0.636 0.636
cB (J/m2) (Refs. [15, 43, 44]) 0.805 0.7
Helas (kJ/mol) (Refs. [45, 46]) �109.3 �174
x (kJ/mol) (x = 4Hmix/z, Ref. [47]) �12.5 �30.333
Qb (kJ/mol) (fitted) 242 225
a (fitted) 0.758 0.616
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the promotion of Fe diffusion by Zr.[48,49] For Pd-19at.
pct Zr alloy, the fitted Qb (225 kJ/mol) is again close to
the activation energy for bulk self-diffusion of Pd
(266 kJ/mol),[48] and the small deviation can be ascribed
to the same reason for Fe-4at. pct Zr alloy. In addition,
a is fitted as 0.758 for Fe-4at. pct Zr and 0.616 for
Pd-19 at. pct Zr alloys, which are in a reasonable scale
of agreement with 0.33-1 suggested in Reference 18.

B. Evolution of Driving Force upon Grain Growth

1. Driving force assuming equilibrium solute distribu-
tion

Assuming the equilibrium solute distribution, the
driving force for grain growth corresponds to P(=c/D),
where, using Eqs. [24] and [25], c and P were calculated
and are shown in Figures 3 and 4, respectively. With the
increasing D, both c and P decrease continuously and
approach zero in the late stage of grain growth.

The approach of P to zero upon grain growth can be
ascribed to the reduction of GB energy, which has been
discussed extensively and is attributed to the solute
segregation in GBs.[14,15,50–52] The kinetic reduction of

GB energy during grain growth has been less studied.
The only relevant research was reported in Reference 26,
wherein the evolution of GB energy with time was
performed but involved an assumption that XGB � Xb is
proportional to D. This assumption is to some extent
arbitrary and may not be suitable for true cases. This
defect has been overcome in the present model, because
XGB and Xb can be obtained directly by solving Eqs. [11]
through [13] numerically. As shown in Figures 5(a) and
(b), XGB and Xb, as well as XGB � Xb increase contin-
uously with the increasing D, indicating that the solute
segregation in GBs is enhanced during grain growth.
Along with the increases of XGB, Xb, and XGB � Xb, the
GB energies of the two alloys decrease continuously,
Figure 3. Once D reaches the calculated saturated grain
size marked in Figures 2(a) and (b), the GB energy
drops to zero. This suggests that the stagnation of grain
growth can be attributed to the vanished GB
energy/driving force. Apparently, during grain growth,
the continuous increase of XGB � Xb enhances the
solute segregation in GBs, and, in turn, leads to the
continuous reduction of GB energy and final attainment
of zero GB energy. It is further noted from Figures 5(a)
and (b) that the evolution of XGB with D does not follow
a linear law shown by Krill et al.,[15] This is probably
caused by the solute–solute interaction which reduces
the GB segregation enthalpy and leads to a smaller XGB

compared with the case of linear law.

2. Driving force considering nonequilibrium solute
distribution
Considering the nonequilibrium solute distribution

during grain growth, the driving force for grain growth
corresponds to P¢(=c/D � DP). Using Eq. [26], P¢ as a
function of D for the two alloys was calculated and is
shown in Figures 4(a) and (b). In contrast to P, P¢
increases first, then decreases continuously, and
approaches zero in the late stage of grain growth. Once
grain growth starts, P¢ is only about 35 pct of P for
Fe-4at. pct Zr and about 45 pct of P for Pd-19at. pct Zr.
As grain growth proceeds, the difference between P and
P¢ decreases and vanishes finally.

Fig. 4—Evolution of P, P¢, and DP as functions of D for (a) Fe-4at. pct Zr and (b) Pd-19at. pct Zr alloys. The dash, solid, and dot lines were
calculated using Eqs. [25], [26], and [31], respectively. The calculated parameters are listed in Table I.

Fig. 3—Evolution of c as a function of D for Fe-4at. pct Zr and
Pd-19at. pct Zr alloys calculated using Eq. [24]. The physical param-
eters adopted in the calculations are listed in Table I.
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Since P¢ consists of two parts, P and DP, the deviation
of P from P¢ is certainly caused by DP. As mentioned
before, DP stands for the energy required to adjust the
nonequilibrium solute distribution to the equilibrium
solute distribution. Therefore, the magnitude of DP
depends on the degree of deviation from the nonequi-
librium to the equilibrium solute distribution. At a
higher grain growth velocity, this deviation becomes
more significant, and thus, a higher energy (i.e., DP) will
be predicted. From Figures 2(a) and (b), in the begin-
ning of grain growth, the grain growth velocity is rather
high, which results in a high DP and, in turn, a small P¢,
Figures 4(a) and (b). With the time being, the velocity
reduces rapidly. As a consequence, DP decreases fast,
and its impact on P¢ becomes weak and vanishes finally
in the late stage of grain growth. Consequently, the
difference between P and P¢ reduces continuously and
vanishes in the end.

The above analyses clearly show that in the early stage
of an actual grain growth, owing to the pronounced
nonequilibrium solute distribution, a large fraction of
energy will be spent on adjusting the solute distribution
from its nonequilibrium state to its equilibrium state.
Therefore, for an actual grain growth, P¢ is more
practical to stand for the driving force for grain growth
rather than P.

C. Effects of Solute Drag on Grain Growth

It has been mentioned in Section III that the differ-
ence between P and P¢, i.e., DP, can be considered as a
force impeding the GB migration, namely, the solute
drag force. Also, in Section IV–B–2, it was shown that
DP is strongly related to the grain growth velocity; a
higher velocity results in a larger DP. Then, in this
section, it is proposed to correlate DP to the grain
growth velocity tð Þ, to study its impact on the grain
growth, and accordingly, demonstrate its kinetic
character.

1. Kinetic character of solute drag force
DP can be formulated by solving dDGmix Dð Þ

dD
(see

Appendix D) as

DP ¼ � 2axzVm

3R2T2

c
D

2fþ 3d D� dð Þ2

D3

 !
c
D
þ 2f

dc
dD

" #

½31�

Differentiating c over D using Eq. [24], we will have

DP ¼ � 2axzVm

3R2T2

c
D

2fþ 3d D� dð Þ2

D3

 !
c
D

"

þ 2f �2axzþ RT

XGB 1� XGBð Þ

� 	

�
d XGB � Xb
� �

Vm

@XGB

@D

�
½32�

Combining Eqs. [1] and [28], c can be given as

c ¼
dRT XGB � Xb

� �
VmDGB

Dt ½33�

Substituting Eq. [33] into Eq. [32], DP will be corre-
lated with t by the following equation:

DP¼�
2axzd XGB�Xb

� �
3DGBRT

�
2f �2axzþ RT

XGB 1�XGBð Þ

� 	
d XGB�Xb
� �

Vm

@XGB

@D

þ 2fþ3d D�dð Þ2

D3

 !
dRT XGB�Xb

� �
VmDGB

t

2
66664

3
77775t

½34�

It is suggested from Eq. [34] that DP, thermodynam-
ically originating from DXGB and DXb, is related to t in
nature. Since DXGB and DXb fulfill the mass conserva-
tion law (i.e., DXGBf = �DXb(1 � f)), the change of
DXGB and DXb should be responsible for the evolution
of DP. Figures 6(a) and (b) display the calculated DXGB

and DP as functions of t for the two alloys, wherein,

Fig. 5—Evolution of XGB, Xb, and XGB � Xb as functions of D for (a) Fe-4at. pct Zr and (b) Pd-19at. pct Zr alloys. The curves were calculated
by solving Eqs. [11] through [13]. The physical parameters adopted in the calculations are listed in Table I.
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apparently, the enhanced DXGB with the increasing t
leads to the increase of DP, because higher DXGB

corresponds to larger energy required to adjust the
solute distribution as addressed above. This is compat-
ible with the general statement that upon grain growth,
the increase of velocity enhances the solute drag
force.[20] Therefore, DP exhibits its kinetic character.

2. Effect due to solute drag
From the analyses above, the solute drag force occurs

in the actual grain growth process where the nonequi-
librium solute distribution prevails; no solute drag force
occurs for the equilibrium solute distribution. The effect
of solute drag on the actual grain growth can be
illuminated by comparing the case considering the solute
drag effect to the case neglecting the effect.

Neglecting DP in Eq. [30], a grain growth equation
without considering solute drag effect can be obtained as

dD

dt
¼

DGB
0 exp � Qb�cAGB

RT

� 


RT XGB � Xbð Þ
Vm

d
c
D

½35�

Using Eq. [35], the evolutions ofD with t for Fe-4at. pct
Zr andPd-19at. pct Zr alloyswere calculated and are shown

in Figures 7(a) and (b), respectively, where the curves
calculated by Eq. [30] (including solute drag effect) are also
plotted for comparison. It is shown that when the solute
drag effect is involved, the grain coarsening is slowed down.
In the early stage of grain growth, the difference of grain
sizes between the two cases is relatively large, indicating a
relatively strong solute drag effect.While in the late stage of
grain growth, such a difference becomes rather small,
suggesting a rather weak, even negligible solute drag effect.
The solute drag effect on grain growth behaviors is

closely related to DP. That is to say, a high grain growth
velocity corresponds to a large DP and a strong solute
drag effect in the early stage of grain growth, Figures
6(a) and (b). As the grain growth proceeds, DP is
becoming small due to a continuous decrease of t, which
will certainly lead to the weakening of solute drag effect.
The calculations further show the same saturated grain
sizes predicted by Eqs. [30] and [35]. As the grain growth
becomes saturated, the grain growth velocity
approaches zero, and thus the solute drag force vanishes
(Figures 6(a) and (b)), which will, then, lead to the
convergence of the saturated grain sizes in the two cases
(Figures 7(a) and (b)). One may note further from
Figures 7(a) and (b) that the differences between the
grain size evolutions considering the solute drag force

Fig. 6—Evolution of DXGB and DP as functions of t for (a) Fe-4at. pct Zr and (b) Pd-19at. pct Zr alloys. The solid lines (DXGB) and dash lines
(DP) were calculated by Eqs. [D7] and [34], respectively. The values of the physical parameters used in the calculations are listed in Table I.

Fig. 7—Comparison of the D-t curves calculated by Eq. [30] (including solute drag effect) and Eq. [35] (neglecting solute drag effect) for (a)
Fe-4at. pct Zr alloy and (b) Pd-19at. pct Zr alloy. The values of physical parameters used in the calculations are listed in Table I.
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and the case neglecting the solute drag force are
sufficiently small, suggesting that DP plays only a minor
role in grain growth of the two alloys. This is in
accordance with the conclusion in Reference 24.

D. Grain Boundary Mobility

In general, upon modeling real grain growth, MGB in
the grain growth equation was taken as a fitting
parameter and assumed as a constant, cf. References
24 and 25. Following Eqs. [28] and [29], however, MGB

is correlated with several parameters which are changing
upon grain growth, e.g., XGB, Xb, and QGB. Therefore,
for an actual grain growth process, MGB would be taken
as a variable rather than a constant. Substituting the
calculated XGB, Xb, and c, as well as the values of the
essential physical parameters listed in Table I, into
Eqs. [28] and [29], the evolutions of MGB with D for
Fe-4at. pct Zr and Pd-19at. pct Zr alloys were calcu-
lated, Figures 8(a) and (b), respectively. It is shown that
MGB decreases continuously upon grain growth. Differ-
ent from the driving force, a zero MGB is never attained
during the whole grain growth process, implying that
the inhibition of grain growth should not be ascribed to
the zero MGB as stated in References 22,53 through 55.

Following Eq. [28], the change of MGB upon grain
growth is related to XGB � Xb andQGB. The influence of
QGB onMGB has been discussed preciously,[26,56,57] where
it was demonstrated that during grain growth, the
increase of QGB will reduce MGB. Due to the negligible
change ofQb upon grain growth, the increase ofQGB can
be ascribed to the reduction of c caused by solute
segregation in GBs,[26,56,57] cf. Eq. [29]. The effect of
XGB � Xb on MGB was neglected in previous mod-
els,[26,56,57] although the factor of XGB � Xb reflects the
number of atoms required to adjust their positions to suit
the migration of GB.[38,58] However, the calculations
performed in this work indicate that during grain growth,
XGB � Xb increases continuously (Figures 5(a) and (b)),
which, according to Eq. [28], will surely reduceMGB. For
a higherXGB � Xb, more atoms will be required to adjust

their positions to suit GB migration. This kinetic process
will retard the GBmigration and, therefore, reduceMGB.
Figures 8(a) and (b) display the calculated MGB values
with varied and constant XGB � Xb, where it is shown
that the change of XGB � Xb during grain growth
influences MGB significantly. With the increasing D,
XGB � Xb is enhanced (Figures 5(a) and (b)); therefore,
the resulting reduction of MGB becomes more and more
significant comparedwith the case of constantXGB � Xb.

V. CONCLUSIONS

Based on the regular solution model proposed by of
Trelewicz and Schuh[17] and Saber,[18] the Gibbs free energy
of mixing for substitutional binary alloy systems consider-
ing nonequilibrium solute distribution was established.
Accordingly, the relevant thermodynamic and kinetic
parameters, i.e., the driving force and the solute drag,
influencing the grain growth in substitutional binary alloy
systems were derived and compared with their generally
accepted definitions and interpretations. The improved
model was used to analyze the grain growth behaviors of
nanocrystalline Fe-4at. pct Zr[42] and Pd-19at. pct Zr[15]

alloys. Evolutions of these thermodynamic and kinetic
parameters influencing grain growth were evaluated and
discussed. Themain conclusions are summarized as follows:

1. For grain growth occurring in substitutional binary
alloy system, assuming equilibrium solute distribu-
tion, the driving force for grain growth is in
accordance with its classical definition, i.e.,
P = c/D. While for an actual grain growth, where
nonequilibrium solute distribution prevails, the
driving force should be replaced by P = c/D � DP.

2. DP represents the energy required to adjust
nonequilibrium solute distribution to equilibrium
solute distribution in the system. This parameter is
equivalent to the generally accepted solute drag
force impeding the GB migration. Since DP is
correlated to t, this quantity possesses kinetic
character and can be enhanced by increasing t.

Fig. 8—Evolutions of GB mobility (MGB) as a function of grain size (D) for (a) Fe-4at. pct Zr. (b) Pd-19at. pct Zr alloys. The curves were calcu-
lated by Eq. [28]. The solid lines correspond to a changed XGB � Xb upon grain growth, while the dash lines were calculated by assuming a con-
stant XGB � Xb (the initial values of XGB � Xb in Figs. 5(a) and (b)). The values of physical parameters used in the calculations are listed in
Table I.
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3. For nanocrystalline Fe-4at. pct Zr and Pd-19at. pct
Zr alloys, both the thermodynamic and kinetic
parameters, i.e., P, DP, and MGB, are changing
upon grain growth. With the increasing D, P and
DP decrease and approach zero at the late stage of
grain growth, and meanwhile, MGB decreases as
well; however, it does not reach zero in the whole
grain growth process.
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APPENDIX A: GIBBS FREE ENERGY OF MIXING

According to Saber et al.,[18] the MGFEM in
nanocrystalline system is expressed as

where m denotes the effective bond coordination con-
tributing to transitional region. In Saber’s calcula-
tions,[18] m was taken as 1/2, which implies the
nanocrystalline materials consist of the bulk and tran-
sitional regions. However, this is inconsistent with the
generally accepted concept that nanocrystalline is con-
stituted by the bulk and GB phases,[39] where m
corresponds to 0. In this work, we follow Hillert’s
model[39] and set m = 0 in Eq. [A1]; the expression of
Gmix will then be simplified as

Gmix ¼ xzXb 1� Xb
� �

1� fð Þ þ axzXGB 1� XGB
� �

f

þ XGBrAcA þ 1� XGB
� �

rBcB
� �

fþHelasX
GBf

þ RT 1� fð Þ Xb lnXb þ 1� Xb
� �

ln 1� Xb
� �� ��

þf XGB lnXGB þ 1� XGB
� �

ln 1� XGB
� �� ��

½A2�

APPENDIX B: DERIVATION OF GRAIN BOUND-
ARY SEGREGATION ENTHALPY Hseg

For a closed system, solute distribution follows the
mass conservation equation, i.e., Xb(1 � f)+
XGBf = X0. MGFEM (Gmix) tends to reach its mini-
mum determined by conditional extremum. Basically,
Lagrangian L is defined as

L ¼ Gmix þ k Xb 1� fð Þ þ XGBf� X0
� �

½B1�

where k is the Lagrangian multiplier. The conditional
extremum equations are given by

@L

@XGB
¼ @Gmix

@XGB
� kf ¼ 0 ½B2a�

@L

@Xb
¼ @Gmix

@Xb
� k 1� fð Þ ¼ 0 ½B2b�

Substituting Eq. [6] into Eq. [B2] and arranging
Eq. [B2], one can obtain

@GGB
mix

@XGB
¼ @Gb

mix

@Xb
¼ k ½B3�

Solving the left-hand side of Eq. [B3], the GB
segregation equation will be achieved as

XGB

1� XGB
¼ Xb

1� Xb
exp

Hseg

RT

� 	
½B4�

where H0 ¼ xz� axz� rAcA � rBcBð Þ �Helas, C1 =
�2axz and C2 = �2xz. The term H0 � C1X

GB+C2X
b

corresponds to the segregation enthalpy Hseg, i.e.,

Hseg ¼ H0 � C1X
GB þ C2X

b ½B5�

APPENDIX C: SOLVING OF
dGmix Dð Þ

dD

Differentiating Gmix(D) (Eq. [15]) over D yields

dGmix Dð Þ
dD

¼ @Gmix

@Xb

@Xb

@D
þ @Gmix

@XGB

@XGB

@D
þ @Gmix

@f

@f

@D
½C1�

Substituting the solved @Gmix

@Xb and @Gmix

@XGB by Eqs. [6] and
[B3] into Eq. [C1] gives

Gmix ¼ xzXb 1� Xb
� �

1� fð Þ þ axmz Xb 1� XGB
� �

þ XGB 1� Xb
� �� �

f

þ m XGB þ Xb
� �

rAcA þ 1� Xb þ 1� XGB
� �

rBcB
� �

fþ ax 1� 2mð ÞzXGB 1� XGB
� �

f

þ 1� 2mð Þ XGBrAcA þ 1� XGB
� �

rBcB
� �

fþHelasX
GBf

þ RT 1� fð Þ Xb lnXb þ 1� Xb
� �

ln 1� Xb
� �� �

þ f XGB lnXGB þ 1� XGB
� �

ln 1� XGB
� �� �� �

½A1�
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dGmix Dð Þ
dD

¼ k
@Xb

@D
1� fð Þ þ @XGB

@D
f


 �
þ @Gmix

@f

@f

@D
½C2�

Differentiating Eq. [11] over D, we have

@Xb

@D
1� fð Þ þ @XGB

@D
f ¼ @f

@D
Xb � XGB
� �

½C3�

Comparing Eq. [C2] with Eq. [C3], dGmix Dð Þ
dD will be

solved as

dGmix Dð Þ
dD

¼ @Gmix Dð Þ
@f

� k XGB � Xb
� �
 �

df

dD
½C4�

APPENDIX D: SOLVING OF
dDGmix Dð Þ

dD

Substituting XGB+xXGB and Xb+DXb into
Eq. [11], we will have DXb(1 � f) = �DXGBf. Substi-
tuting this relation into DGmix ¼ 1� fð ÞDGb

mix þ fDGGB
mix,

DGmix is expressed as

DGmix ¼�DXGBf

xz� axz� rAcA�rBcBð Þ�Helas� 2xzXbþ 2axzXGB

�RT ln XGBþDXGB

1�XGB�DXGB � ln XbþDDXb

1�Xb�DXb

� 

8<
:

9=
;

½D1�

The term xz� axz� rAcA � rBcBð Þ �Helas � 2xzXb

þ2axzXGB in Eq. [D1] is the segregation enthalpy, cf.
Eq. [14]. Using Eq. [14], this term can be converted
into a function of Xb and XGB. Then, Eq. [D1] is
changed as

DGmix ¼ �DXGBf

�
H0 � C1X

GB þ C2X
b

�RT ln
XGB þ DXGB

1� XGB � DXGB
� ln

Xb þ DXb

1� Xb � DXb

� 	� ½D2�

Changing Eq. [13] into its logarithmic form, we have

RT ln
XGB

1� XGB
� ln

Xb

1� Xb

� 	
¼ Hseg ½D3�

Since segregation enthalpy represents the difference in
energy of solute atoms between the bulk and the GB,[24, 34]

and is a function of solute molar fraction (see Eq. [14]);
therefore, we will have

RT ln
XGB þ DXGB

1� XGB � DXGB
� ln

Xb þ DXb

1� Xb � DXb

� 	

¼ H0 � C1 XGB þ DXGB
� �

þ C2 Xb þ DXb
� � ½D4�

On this basis, Eq. [D2] will be changed as

DGmix ¼ �DXGBf C1DX
GB � C2DX

b
� �

½D5�

DXb and DXGB in Eq. [D5] obey the mass conservation
law, namely, DXb(1 � f) = �DXGBf. For nanocrys-
talline materials with a grain size in the range of
6-30 nm, assuming the thickness of GB to be 0.8 nm, f
is estimated to be about 0.18-0.04. In this case, accord-
ing to the above mass balance equation, DXGB will be
far higher than DXb. On the other hand, since C1 and
C2 in Eq. [D5] are in the same order, c.f. Eq. [B4] and
Table I, the term C2DX

b in the bracket of the right-
hand side of Eq. [D5] will be negligible compared to
C1DX

GB. Then, neglecting C2DX
b and substituting

C1 = �2axz and the expression of f (Eq. [12]) into
Eq. [D5], DGmix can be further simplified as

DGmix ¼ �2axzf DXGB
� �2 ½D6�

According to Reference 20, for the case of low-veloc-
ity limit (e.g., t< 10�5 m/s), the average value of DXGB

can be calculated by

DXGB ¼ d
DGB

XGB � Xb
� �

t ½D7�

Combining Eqs. [1], [28] and [D7], DGmix is rewritten
as

DGmix ¼ � 2axzfV2
m

R2T2

c2

D2
½D8�

Differentiating Eq. [D8] over D,
dDGmix Dð Þ

dD can be solved
as

dDGmix Dð Þ
dD

¼�2axzV2
m

R2T2

c
D2

2fþ 3d D� dð Þ2

D3

 !
c
D
þ 2f

dc
dD

" #

½D9�

NOMENCLATURE

GB Grain boundary
MGFEM Molar Gibbs free energy of

mixing
a Scale factor of bond energy

between the bulk and the GB
x Interaction energy in the bulk

phase
z Coordination number
rA=rB Molar GB area of pure A/B

atoms
cA=cB GB energy of pure A/B atoms
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Xb/XGB Solute molar fraction in the
bulk/GB phase

DXb/DXGB Increment of solute molar
fraction in the bulk/GB phase

X0 Global solute molar fraction
f Volume fraction of GBs
d GB thickness
t Velocity of GB migration
MGB GB mobility
DGB Solute diffusion coefficient in

the GB phase
Qb/QGB Activation energy for solute

diffusion in the bulk/GB phase
c GB energy
Psolute Solute drag force
Helas Elastic energy of solute atoms

in the GB phase
lbA=l

GB
A =lbB=l

GB
B Chemical potential of A/B

atom in the bulk/GB phase
k Lagrangian multiplier
Vm Molar volume
Gtotal Total Gibbs free energy before

mixing
VD/VD+dD Average volume of

grain(D)/grain(D+dD)
DGmix, DGb

mix, DG
GB
mix Additional MGFEM due to

DXb=DXGB(system, bulk, GB)
Gmix, G

b
mix, G

GB
mix MGFEM assuming

equilibrium solute distribution
(system, bulk, GB)

G0
mix, G

0b
mix, G

0GB
mix MGFEM considering

nonequilibrium solute
distribution (system, bulk, GB)
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