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In this study, an overview of the computational tools developed in the area of metal-based
additively manufactured (AM) to simulate the performance metrics along with their ex-
perimental validations will be presented. The performance metrics of the AM fabricated parts
such as the inter- and intra-layer strengths could be characterized in terms of the melt pool
dimensions, solidification times, cooling rates, granular microstructure, and phase morphologies
along with defect distributions which are a function of the energy source, scan pattern(s), and
the material(s). The four major areas of AM simulation included in this study are thermo-
mechanical constitutive relationships during fabrication and in-service, the use of Euler angles
for gaging static and dynamic strengths, the use of algorithms involving intelligent use of matrix
algebra and homogenization extracting the spatiotemporal nature of these processes, a fast
GPU architecture, and specific challenges targeted toward attaining a faster than real-time
simulation efficiency and accuracy.
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I. INTRODUCTION

THE numerical modeling of additive manufacturing
(AM) processes and using those tools for process and
performance characterization is gaining interest in the user
community such that these tools could be used for process,
materials, geometry, and performance optimization. In
order to use these tools, an overview of the fundamentals
and a few numerical tool functionalities has been discussed
in this work. First, the concept of a ‘finite’ volume enclosed
by a lower dimensional surface, line, and point boundaries
needs to be understood.[1–3] In traditional metallurgy,
generally representative microstructural observations are
made at local length scales using multi-scale optical,
scanning, and transmission electronmicroscopy. These are
followed bymechanical tests such as tensile and high-cycle
fatigue tests to understand how the local microstructures
are phenomenologically tied to their mechanical property
counterparts. When, for example, in traditional tensile
tests the dog-bone geometry[4] introduces a macroscopic

uniform state of deformation, it becomes very easy to
connect the local microstructures with their macroscopic
property analogs provided that the microstructure is more
or less uniformly distributed in the ‘finite’ volume.[5–11]

In the case of metal melting-based additive manufac-
turing technologies, the energy sources are very small
(~100 lm)[12,13] leading to microstructural variations in
the fabricated structures and the freedom to create
complex geometries with high precision.[13] This resolu-
tion and geometric complexity, however,makes it difficult
to apply a phenomenological understanding based on
localmicrostructure to overall part performance. In order
to circumvent these issues, it is important to simulate
performance metrics using distributed volume-based
numerical techniques such as ‘The Finite Element’
method which automatically compensates for the volume
enclosures. This compensation is in-built in the finite
element methodology since it first propagates forcing
functions such as point force(s), pressure, and other types
of boundary conditions (displacement and interfacial
interactions)/stimulus from the region of exposure to the
enclosure boundaries, and then the effect of the bound-
aries are taken into account and the response function is
back-propagated throughout the volume. The forward
and backward propagations occur seamlessly due to the
embedment of a positive definite stiffness matrix which
can be decomposed using a Cholesky algorithm into an
upper and lower triangular matrix, each responsible for
one kind of propagation to compute force equilibrium
and displacement compatibility in the entire fabricated
structure.[14–16]

In order to perform meaningful analysis of perfor-
mance metrics of AM structures, a capable finite
element formulation should include capturing the mul-
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ti-scale microstructure via efficient spatiotemporal ho-
mogenization methodologies, an architecture to apply
point-, line-, and area-based boundary conditions, and
an effective and efficient mesh generation strategy to
map out the size and shape of the AM structure along
with spatial anomalies such as precipitates and appro-
priate surface integrals to account for the nature and
intensity of the boundary conditions.[17]

The objectives for process modeling in AM are
slightly different from simulation and modeling of part
performance metrics, but a ‘finite’ volume processing
domain, using a finite element strategy, can also be used.
The major objective here is to correlate the energy
source, raw material characteristics, and geometry with
the thermal history and cooling rates which in turn leads
to predictions of melt pool dimensions, defects, residual
stresses, and distortions. The simulation objectives
could be set such that the optimized process parameters
such as power, part orientations, and speed could be
obtained for cost functions such as minimal residual
stress or minimal defects for a given geometry. Together,
process and performance modeling of AM structures
could help reduce the number of fabrication, metallur-
gical characterization, and ‘standardized shape’ me-
chanical testing experiments typically used for
qualifying AM for a particular application. It should
also be noted that a huge amount of experimental effort
is required to quantify the effects of small, accurate,
controlled, and fast-moving energy sources across a
wide range of geometrical variations.[17] These correla-
tions cannot be captured using traditional approaches,
and hence simulation is required to gain the under-
standing required to design better and optimize existing
processes to enable the ‘next industrial revolution’
sooner rather than later.

II. METHODOLOGY

The methodology for simulation of process and
performance metrics includes three steps, namely the
preprocessing, solution, and postprocessing steps.

A. Preprocessing Stage

For process simulations, during the preprocessing
stage, the first step is to computationally represent the
scan patterns. However, such scan vector information is
not readily available from most machine vendors. An in-
house mechanism for computational representations of
scan patterns has been developed for this purpose. A
layer-by-layer video of a part being fabricated can be
used to figure out the start point, scan angles, scan
directions, and the order of scan lines. Once the scan
characteristics have been obtained, representative scan
lines closely matching the machine vendor scan strategy
are fed to the simulation. An example showing the close
match between the scan patterns predicted using the in-
house computational tools and a real scan pattern
extracted from an EOS M270 machine are shown in
Figure 1. In the future, the preferred method for
obtaining accurate scan pattern information will be to

read scan vectors directly from machine build software.
In order to develop and test new types of scan strategies,
a flexible algorithm-based scan pattern generator is also
available.
The second important step during the preprocessing

stage is material data collection. The important thermal
variables to be measured include the heat energy
absorption coefficients (i.e., laser absorptivity), density
of different states of matter (powder, bulk-solid, liquid,
and vapor) at different temperatures, specific heat, and
thermal conductivity. These variables, particularly for a
powder bed, are typically unknown. To experimentally
determine these variables, several experiments have been
developed. Laser illumination of a square/circular patch
of area using a set scan pattern to heat powder to a
temperature below its melting point while monitoring
that patch using an IR camera enables us to calculate
spatiotemporal heat energy characteristics and correlate
these to absorptivity and thermal conductivity of the
powder bed. To establish density of the powder bed,
experiments involve creating a thin-walled cylindrical or
prismatic container in the machine, accurately measur-
ing the weight and volume of the geometry when filled
with and emptied of powder, and calculating the powder
packing density accordingly. These experiments were
developed in conjunction with one of our research
partners, Mound Laser & Photonics Center in Dayton,
Ohio.
The specific heat as a function of temperature is

generally obtained from the literature and/or using
Thermocalc.[18] Other variables of interest such as the
temperature- and phase-dependent coefficient of thermal
expansion, elastic modulus, poisson’s ratio, yield
strength, and strain rate sensitivity as well as the solidus
temperature, solid-state transition temperature(s) and
phase(s) if present, latent heat of fusion, latent heat of
vaporization, liquidus temperature, and vaporization
temperature (including those of any low-elemental
weight constituents) are typically obtained from lit-
erature values.[19]

A few theoretical Scheil predictions for computing the
solidus and liquidus temperatures as a function of
carbon percentage in CoCrMoC alloy powder used for
fabrication using the Selective Laser Melting are shown
in Figures 2(a) through (c). The reason behind investi-
gating the state change temperatures as a function of
carbon percentage is to determine the amount of
uncertainty in solidus and liquidus temperatures since
the powder manufacturers such as Carpenter Powder
Products, Inc. do not provide with a range of Carbon
percentage instead of a set value for the Carbon
percentage and to experimentally obtain the carbon
percentage would require WDS or other wet chemical
analysis methods are expensive. Therefore, Scheil cal-
culations could be used for predicting the range of
solidus and liquidus temperatures as a function of
Carbon percentage. It should be also noted that, with
increasing carbon content, the evolving solid comprises
more deleterious phases such as Laves, M23C6, and r
phases. Also, it could be seen that the evolving solid
volume fraction changes as a function of carbon
percentage in these illustrations. It should be also noted
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that Carbon has been assumed to be a fast diffuser after
a weight percentage of 0.15 pct or more.

Thermocalc databases could be also used for assessing
the bulk thermal properties such as thermal conduc-
tivity, specific heat, and density changes as a function of
temperature. A few examples showing thermal proper-
ties for a representative CoCrMoC alloy at 62.85 pct
Cobalt, 30 pct Chromium, 7 pct Molybdenum, and
0.15 pct Carbon are shown in Figure 3.

The third step during the preprocessing stage is to
generate 2.5-dimensional and full 3-dimensional meshes
such that the macroscopic domains and the dynamic
energy sources are fully captured. The 2.5-dimensional
mesh is a Z-directional extension of the mesh shown in
Figure 4. The fine mesh region follows the laser move-
ment, with laser exposure. A full 3-dimensional mesh
(Figure 5) has also been developed such that the number
of degrees of freedom can be reduced significantly, and
the quality of the solution can be made better. Other
advantage of having a full 3-dimensional mesh is to ease
the use of an eigensolver[15,17] as the mesh transitions
from a fine to coarse mesh domain in x-, y-, and z-
directions in exactly the same fashion, whereas the 2.5-
dimensional mesh is symmetric in the x- and y-directions
but is extruded in the �z-direction without any length
scale change.

For performance metric simulations, the preprocess-
ing stage comprises obtaining the dislocation density
and other microstructural features such as precipitates,
grain boundaries, euler angle, and macroscopic texture,
if any. Detailed preprocessing including mesh gen-
eration required for performance metric simulations
has been provided in prior work by the authors.[17,20,21]

Figures 4, 5 and 6 illustrate various types of prepro-
cessing experiments and simulation conditions.
The governing equations and boundary conditions for

carrying out process simulations are well addressed in
the literature.[22–31] Similarly, the in-house thermo-me-
chanical constitutive relationships for performance met-
ric modeling are addressed in the literature.[17,20,21,32–36]

The computational complexity for currently available
finite element algorithms to simulate a full-sized part
which fills an SLM machine has been demonstrated to
be intractable,[37] even for the most powerful supercom-
puters. The present simulation environment includes an
attempt to solve the problem with intelligent solver
algorithms and inclusion of problem specific asymp-
totics (Figures 7 and 8).

B. Solution Stage

For process simulations, some of the solver options
and a brief review of the efficiency algorithms are
provided as follows:

1. Intelligent assembly of stiffness matrices[17]

In Figure 4, two meshes are shown. The finer mesh
captures the high fidelity of thermal gradients around
the laser beam, whereas the coarser mesh captures the
slow gradients where such a fine mesh is not required.
As the laser moves in space and time, the fine mesh
changes its configuration as well. In traditional finite
element packages, the assembly of elements and renum-
bering of nodes is required to be done repeatedly for
moving meshes as a function of fine mesh movements,
whereas in the proposed framework,[17] intelligent algo-

Fig. 1—A comparison between (a) a real scan pattern extracted from an EOS machine and (b) an equivalent computer-generated scan pattern
for a crescent-shaped slice at the same build height.
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rithms have been formulated and programed for higher
efficiencies such that the nodal connectivity and assem-
bly calculations are not required to be redone for each
fine mesh movement which is tied to the laser movement
instead those movements can be taken into account
using a cut-and-paste stiffness matrix methodology.[17]

2. Intelligent Cholesky algorithm for small numbers
truncation and data compression[17]

The Intelligent Cholesky algorithm neglects small
numbers present in the lower triangular Cholesky matrix
based on criteria such as near-neighborhood connec-
tivity of a physical node in the mesh and dot product
multiplication of two rows of the original Cholesky
matrix and determining if the final product is smaller
than a certain threshold resulting in reduced FLOPs
involved in computing the degrees of freedom as the
addresses of the non-zero Cholesky matrix components
are registered. This strategy also reduces the memory
requirement to store these matrices. The data reduction
provided depends on the finite element mesh or sparsity
pattern of the initial stiffness matrix requiring Cholesky
factorization. In the case of intelligent stiffness matrix
assembly to replicate the point laser energy input during
the selective laser melting process, the FLOPs and data
compression reduction is typically around 1009 de-
pending on the nature of the problem as all the
significant Cholesky matrix component addresses are
relatively fixed in the fine mesh once a near steady-state
thermal profile is achieved.

Fig. 2—Variation of solidus and liquidus temperatures as a function
of increasing carbon percentage (a) 0.08 pct, (b) 0.15 pct, and (c)
0.25 pct. It could be clearly observed that deleterious phase pre-
cipitations increase as a function of increasing carbon percentages.
All the computations have been performed using the Thermocalc
TCFE7 database.

Fig. 3—(a) Density and (b) Enthalpy variations as a function of tem-
perature. Enthalpy derivative as a function of temperature leads to
the computation of Specific Heat.
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3. Eigenmodal solver[15,17]

The eigenmodal solver is a dimensional reduction
technique for thermal problems. The dimensional re-

duction provides cross-sectional thermal modes
propagating in the �z-direction of the powder bed on
illuminating the top +z surface of the bed with a point
laser or a collection of multi-beam electron energy
sources. This solution methodology is the first formal
beam theory developed for thermal problems. This
innovation further results in huge savings during the
computation of the degrees of freedom. These savings

Fig. 4—A coarse mesh grid with a fine mesh box that moves with the laser[17].

Fig. 5—Full 3-dimensional mesh with a refinement region that moves with the laser.

Fig. 6—Precipitate morphologies in nickel-based superalloys cap-
tured using appropriate meshing.

Fig. 7—Prior b grain boundary incorporation using appropriate
mesh descriptions for EBM-processed Ti6Al4V.
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could easily result in solutions which are anywhere ~108
to 1014 times faster than the FEA solutions with
negligible or no loss of accuracy. An example has been
shown which depicts the one-to-one match between the
finite element and the eigensolver solutions in Figure 9.
It should be noted that this method solves for inhomo-
geneous material distributions as well. An example of
such a distribution is the placement of solid and powder
in arbitrary finite element cells in the powder bed at
different locations to realize the complex 3-dimensional
geometries.

Apart from various efficiency algorithms mentioned
above to determine the melt pool and the thermal/
residual stress contours throughout the computational
domain, a myriad of new algorithms have been devel-
oped to characterize defects such as keyholes which are
a result of the vaporization phenomenon. First vapor-
ization creates an open jaw cavity in the regions of
maximum laser intensity followed by the partial filling of
this cavity as a result of the turbulent fluid flow in the
melt pool. This results in the closure of the vaporization
cavity leading to keyhole porosities.

C. Keyhole Porosity

1. Governing equations (Reynolds averaged Navier–
Stokes method (RANS))
The governing equations for fluid flow in the melt

pool are defined in Eq. [1]:

dvl
dt

¼ � vl � rð Þ � vl �
1

q
rPl þ cr2vl þ f

vl ¼ fu; v;wg
u ¼ �uþ u

0

v ¼ �vþ v
0

w ¼ �wþ w
0
;

½1�

where c ¼ l
q is the ratio between viscosity l and density

q, Pl denotes the pressure, and f ¼ f0
q is the mass density

of body force and external forces where f0 is the sum of
internal body force and external forces inside the melt
pool. The variables u, v, and w denote the x, y, and z

Fig. 8—Transmission electron microscopy for computation of dislo-
cation length/volume, for example, in an equilibrium diffusional
HCP a substructure.

Fig. 9—FEA and Thermal eigensolver with 1st-order correction one-on-one degrees of freedom (DOF) comparison using homogenous modes for
computation.
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components of the velocity with �u; �v; and �w denoting the
mean velocities in the mutually perpendicular axis,
respectively, and the primed quantities denote the
turbulent fluctuations. This formulation is similar to
the time homogenization scheme for Dislocation Den-
sity-based Crystal Plasticity Finite Element method.[38]

2. Boundary conditions
The initial velocity of the liquid melt at the liquid–

vapor (plasma) interface can be calculated using
Bernoulli’s principle with the known depth of every
node at the interface using Eq. [2]:

P1

q1g
þ v21
2g

¼ P

qg
þ v2

2g
þ Dh; ½2�

where the pressure is denoted as P, melt pool velocity v,
and relative height Dh, which is known at the surface of
the melt pool, and any node (1) with known pressure P1

on the plasma/liquid boundary and the velocity v1 can
then be calculated as shown in Figure 10.

The pressure at the interior nodes such as P1 at node
(1) comprises the recoil pressure in the plasma zone,
surface tension, laser-induced thermocapillary, hydro-
static and hydrodynamic components of pressure which
need to be considered.

A sample result from this investigation in 2-dimen-
sional scaled coordinate system representing the back of
the melt pool is shown in Figure 11. A detailed

description and results will be discussed in a future
research communication.
It could be observed from Figure 11 that the velocity

profile at the plasma region become almost horizontal
and the biggest in magnitude around 0.5 scaled depth
although the scale depth of the plasma wall is always
shallower compared to the maximum depth of the melt
pool; therefore, generally the depth at which the biggest
velocity magnitude occurs is at around 33 to 40 pct
depth of the maximum melt pool depth.

3. Sherman Morrison Woodburry algorithm and pre-
conditioners[14]

The Sherman Morrison algorithm performs a multi-
rank update of the inverse of a matrix such that the
stiffness matrix does not need to be recalculated and
inverted with laser or electron beam energy source
position changes. The implementation of this algorithm
reduces the computational costs involved in matrix
inverse reconstructions and solution updates specifically
for solution frameworks which include iterative conver-
gence and where the change in stiffness matrix between
two iterations is minimal. It provides computational
speed enhancements of 1009 to 10009 depending on the
reduced dimension rank of the update.

ðKþ DKÞ�1 ¼ K�1 � K�1U D�1 þ VK�1U
� ��1

VK�1

where DK ¼ UDVT ½3�

Fig. 10—Melt pool and vacuum cavities and variables of interest for performing the RANS analysis.

Fig. 11—RANS results for melt pool flow in the back side of the melt pool between the plasma region and the solid–liquid interface.
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In the above equation, U;V denote the eigenvectors
and D denotes the eigenvalues of the change in stiffness
matrix denoted by DK.

These algorithms are being programed to make use of
Graphical Processing Units using the CULASparse
solver. Other implementations of these kinds of elastic
FEM problems have similarly been attempted.[39]

For performance metric simulations, the steps in-
volved in the solution stage have been described in
Reference 20. These steps are typically implemented for
Dislocation Density-based Crystal Plasticity. A new
classical crystal plasticity-based user material, element
assembly, and finite element subroutines have been also
developed to act as an intermediate step of homogeniza-
tion between the dislocation density-based crystal plas-
ticity and macroscopic continuum length scale
anisotropic plasticity. The steps for computing the
performance metric degrees of freedom such as dis-
placements and other integration point variables such as
stresses, hardness evolutions and aggregate crystal
rotations as a function of material deformation are
described here.

First, an implicit algorithm involving unbalanced
force is set up. This algorithm is based on the Newton’s
3rd law which states that for every action exerted by an
external stimulus on a system there exists an equal and
opposite reaction by the system on the external stimulus.

In order to ascertain this equilibrium at each point
inside the computational domain, the offset from this
equilibrium is computed in terms of the residual force.
We define the residual as follows:

Rf ¼ fexternal � finternal; ½4�

where Rf denotes the residual force, fexternal is the ex-
ternally applied force by the stimulus, and finternal is
the force distribution the material volume creates such

that the fexternal could be counteracted. The internal
force, finternal, is defined as follows:

finternal ¼
Z

V

BTr u;ruð ÞdV; ½5�

where B denotes the strain–displacement matrix,
r(u, �u) is the stress vector obtained by transforming
the stress tensor to a vector, and V is the volume of an
element.
The algorithm to solve the non-linear finite element

problem is described in Table I.
Various nonlinearities such as the shear strain rate

( _caÞ, critical resolved shear stress (CRSS) at each slip
system (a), and stress update (r) occur simultaneously,
and therefore their respective evolutions are nested
together and shown in Table II.
The importance of convergence has been shown with

an example simulation replicating the uniaxial tensile
testing of a single-crystal copper bar. A comparison of
the material stress–applied strain curve for simulation
with and without correct adaptive time stepping as
shown in Table II along with the definition of unbal-
anced force in Eq. [4] has been illustrated in Figure 12.
It could be observed that the Jacobian becomes unstable
near the yield point and leads to oscillatory stress–strain
behavior where an adaptive time stepping scheme has
not been followed.

D. Postprocessing Stage

Postprocessing of process simulation results involves
visualizing variables of interest such as thermal con-
tours, phase evolutions, and residual stress distributions
in 3-dimensional space for process simulations. Similar
variables of interest for performance metric simulations
include stress and equivalent plastic strains. Some
examples showing results of process and performance

Table I. Plastic Deformation Finite Element Algorithm with Crystal Plasticity-Based Constitutive Formulation

For Step = 1 to Number of Time Steps
Apply external boundary increment:
dRf ¼ dfexternal � dfinternal
For load_unload_cycle = 1 to till convergence or maxN
(a) Global elastic loading
Retrieve Jacobian information of all integration points in all elements.
Calculate stiffness matrix [K] with BBAR integration procedure[1,40] inside element
Solve [K]du = dRf

u ¼ uþ du
(b) Plastic relaxation
Retrieve displacement vector for each element
Determine the deformation gradient, F, at each integration point
Calculate Jacobian at integration points with increments in each Fkl given Cijkl

Calculate shear strain rate ( _caÞ on each slip system (a) at each integration point
Determine the Lp ¼

PNs

a¼1 _c
aðma � naÞ—where ma is the slip direction and na is the slip plane normal and update

Fp updated ¼ I þ Lp � dt
� �

Fp. Here, Ns denotes the maximum number of slip systems. This Ns includes both traditional
and zig–zag slip systems

Calculate stress at each integration point using Fp updated by computing Felastic from F. Compute finternal ¼
R

V

BTrdV
Assemble internal forces and determine unbalanced force vector and save it as dRf

end
end
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simulations are illustrated in Figures 13 and 14, respec-
tively.

The postprocessing of thermal contours is also used to
determine the in-plane bonding and closure of scan lines
to form solidified bulk in a consecutive manner such
that the lack-of-fusion defects could be identified. A
recent numerical investigation has been conducted to
predict these defects by predicting the melt pool width
and subtracting this width from the scan line preset
spacing. In order to conduct this numerical experiment,
powders from three independent vendors have been
chosen, their powder bed densities and thermal conduc-
tivity have been measured, or other thermal parameters
such as the specific heat have been identified from the
literature, thereby constructing full spectra of material
properties and parameters to be inserted in the process
simulations. A detailed study on this numerical ex-
periment and associated experiments to provide data for
the simulations and further validate the simulation
results could be found in literature.[41]

Some of the results from this study could be summa-
rized in Figure 15 where the lack-of-fusion porosity has
been experimentally observed. It is shown that ex-
perimental porosity levels are increasing with decreasing
power-to-scan speed ratios, which seems to validate the

numerical hypothesis that lack-of-fusion porosity is a
direct function of melt pool width. The width has been
also observed to be decreasing as the power-to-scan
speed ratio decreases, causing powder to entrap in those
locations. The rectification of this problem using new
process parameters and their microstructural charac-
terizations has been also conducted.[41] This study
provides a quantitative guideline for the selection of
powder-specific process parameters and is the very first
study in this area.
The microstructural performance metric simulations

are generally followed by spatiotemporal homogeniza-
tions where the continuum anisotropic plasticity laws
are deduced as functions of the microstructure, so that
full part mechanical behavior simulations could be
conducted. An example showing the dependency of
these parameters on microstructure is shown in Fig-
ures 16 and 17. The case of temporal homogenizations
using in-house algorithms is discussed elsewhere.[38]

III. CONCLUSIONS

The simulation strategy described in this paper
has successfully been used to understand AM pro-

Fig. 12—Volume-averaged stress (material reaction)–strain (applied) behavior plotted using adaptive time stepping and compared against fixed
time stepping counterpart. A force unbalance Newton–Raphson implicit algorithm has been used in both the cases although the adaptive time
stepping leads to appropriate mechanical behavior, whereas a fixed time stepping leads to numerical instabilities near the yield point.

Table II. Nested Convergence of State Parameters and Adaptive Time Discretization

Plastic Deformation Gradient and Stress Computation Loop
Initialize Fp updated ¼ Fp

For iterations = 1: till convergence
Calculate new stress based on macroscopic loading in first part of the algorithm and Fp updated

Calculate new plastic deformation rate (Lp) and plastic deformation gradient Fp updated

Calculate growth or new value of the critical resolved shear stress (CRSS) which is a function of _ca

Check if dCRSS<toleranceð Þ
If yes then continue iterations
Else restart iterations with reduced dt = dt/2

End
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cess and part performance metrics. These approach-
es are being validated experimentally for both
process and performance simulations of metal melt-

ing-based additive manufacturing technology. Some
of the salient features of this algorithmic approach
are as follows:

Fig. 13—Indirect validation of the melt pool showing the melt pool asymmetry due to the existence of solid (conductor on one side) and powder
(insulator on the other side) around the melt pool.

Fig. 14—Plastic strain distribution at 10 pct total average strain for the stress/strain curves from (a) our simulations and (b) ANSYS anisotropic
multilinear continuum plasticity model.

Fig. 15—Melt pool width as a function of Powder/Scan Speed ratios.
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1. Scan strategies and geometries are directly inserted
into the simulations along with multi-scale meshes
to take into account the local effects of energy
source(s), local and non-local microstructural mor-
phologies, and geometrical features.

2. Automated mesh generation enables rapid gen-
eration of optimized meshes with convergence as-
surance for a given process.

3. The effect of alloying elements on cooling curves
can be directly obtained using TC-Prisma software
which serves as a look-up table for precipitation of
phases such as secondary and tertiary precipitates
in Nickel-based superalloys.

4. Efficiency algorithms ensure that multi-scale simula-
tions execute at real-time or close to real-time
speeds.

5. AM process costs can be reduced by prediction and
rectification of common build failure modes such as
residual stress-induced blade crashes.

6. A complete software solution is available to predict
part manufacturing characteristics and part perfor-
mance metrics for a prescribed application.
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