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A combination of mechanical testing, EBSD and crystal plasticity finite element modeling were
used to investigate the influence of temperature on the fragmentation of grains in a zirconium
alloy. The results demonstrate that grains of Zircaloy-4 fragment more as the temperature rises.
This trend can be explained by an increasing difference between the CRSS values for hc+ai slip
and hai slip as temperature rises. This change in relative slip activities with temperature is
supported by experimental observations of macroscopic anisotropy and in-grain misorientation
axes calculated from EBSD data, as well as plasticity modeling. By tracking the microstructural
evolution during deformation, it is shown that the two major texture components fragment to
different degrees under the action of prismatic slip. Grains in the 1120

� �
fiber are significantly

more stable than those in the 1010
� �

fiber, which break up. Grains of the latter fiber fragment
heterogeneously as portions of the grain rotate in opposite directions, and some do not rotate at
all.
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I. INTRODUCTION

ZIRCONIUM alloys are used in structural compo-
nents of nuclear reactors, where they are subjected to
extreme environments. These components degrade by
oxidation,[1] hydride embrittlement,[2] and irradiation-
enhanced shape change.[3,4] These degradation mechan-
isms are influenced by a number of material character-
istics, which include texture,[4–6] microstructure,[4,5,7]

dislocation density,[4] and residual stresses,[4] which are
defined during processing. This means that the thermo-
mechanical processing of zirconium components has a
significant impact on component’s lifetime and reactor
efficiency. Currently, achieving the desired microstruc-
ture and texture involves using convoluted thermome-
chanical processing routes, developed empirically.
Optimization of material properties and processing
parameters requires the development of models that
can simulate the microstructural evolution taking place
during thermomechanical processing. This requires a
deeper understanding of the governing underlying de-
formation and recrystallization mechanisms.

The recrystallization behaviors of zirconium and
titanium have been the subject of a number of

studies.[8–13] In the work of Gerspach et al.,[11] it was
shown that the fragmentation of grains has an influence
upon the primary recrystallization texture following
moderate strain deformation (~40 pct).[11] In these cases,
oriented nucleation of new grains occurs at fragmented
regions of the prior grains. The orientations of the nuclei
dominate the texture throughout primary recrystalliza-
tion. The texture’s development in the latter stages of
recrystallization and the overall recrystallization process
is dominated by the favorable growth of specific grain
orientations.[3,8–10,14,15] The frequency of these specific
grains following primary recrystallization will influence
the texture that develops in secondary recrystalliza-
tion.[8] Thus, the deformed state of the grains will
influence the final recrystallization texture via its influ-
ence upon the processes taking place during primary
recrystallization. Since grain fragmentation plays a key
role during recrystallization, it is important to under-
stand how it occurs and how it is affected by the
operating deformation mechanisms.
The aim of this study was to investigate the

mechanism of grain fragmentation. We used EBSD
to quantify grain breakup by measuring grain average
misorientation (GAM) at different stages of deforma-
tion and at different temperatures, and to follow
grain fragmentation during deformation at 773 K
(500 �C). These results were interpreted subsequently
using crystal plasticity finite element modeling
(CPFEM).
The structure of the paper is as follows: the initial

material state is described in Section II. In Sections III
and IV, we discuss the influence of temperature upon the
mechanical behavior, microstructural and texture evo-
lutions. In Section IV–C, the influence of the dominant
prismatic hai slip upon the fragmentation of the two
main texture components is explored followed by a
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discussion of the influences of temperature and loading
direction upon the GAM. The observed experimental
trends are interpreted by the use of CPFEM in Sec-
tion V. Finally, the findings are collated and discussed in
Section VI.

II. MATERIAL

The material used in this study is Zircaloy-4 plate
supplied by Rolls-Royce plc in rolled and recrystallized
forms with a typical split basal texture (Figure 1). The
properties of Zircaloy-4 including the composition and
melting temperature can be found in Reference 16.

The microstructure is composed of single-phase
equiaxed grains of alpha Zr (HCP) (Figure 1(a)). The
texture is made up of a main 1120

� �
//RD fiber. This

fiber contains a pronounced texture component
1013
� �

1120
� �

which lies at u1 = 0 deg, F = 20 deg
to 40 deg, u2 = 30 deg. This fiber gives rise to maxima
along RD in the 1120

� �
pole figure (Figure 1(b)). Using

the inverse pole figure color scheme given in Figures 5
and 7, 1120

� �
//RD grains are green. For the majority of

grains, the (0002) poles are orientated at 20 deg to
30 deg from the ND toward the TD. The ODF shows
that there is a spread across u2 about the main fiber. As
a result, a number of grains also belong to a less distinct
fiber 1010

� �
//RD. These can be seen as blue grains in the

inverse pole figure color scheme and show up as the
regions of maximum 1010

� �
pole intensity about the

RD.

III. MECHANICAL BEHAVIOR

The material was tested in uniaxial compression.
Specimens were deformed along the RD and the ND at
298 K, 573 K, and 773 K (25 �C, 300 �C, and 500 �C)
up to the maximum strains of 0.07 and 0.6. The samples
were cuboidal with dimensions of 9 9 9 9 15 mm (RD
compression) and 9 9 9 9 10 mm (ND compression).
The final dimensions of the samples strained to 0.07
were measured to determine the Lankford coefficient,
defined as the ratio of the two transverse strains, and a
useful measure of deformation anisotropy. For the
samples compressed along the RD, the Lankford
coefficient is given by eTD/eND, whereas for the samples
compressed along the ND, it is given by eTD/eRD.
An Instron 5885H loading rig with a 250 kN load cell

and an environmental chamber was used for the
compression experiments at room and elevated tem-
peratures. The initial strain rate in all of the compression
experiments was 10�4 s�1.
The stress–strain curves obtained during mechanical

loading are shown in Figure 2. Both the yield stress and
the hardening behavior of Zircaloy-4 are temperature
sensitive and dependent upon the loading direction. The
hardening behavior is noticeably different for the RD
and the ND cases. The flow curves measured for RD
compression at 298 K and 573 K (25 �C and 300 �C)
exhibit an inflection between 0.1 and 0.25 strain,
indicating an increase in work-hardening rate. No such
inflection exists for RD compression at 773 K (500 �C)
or compression along the ND at any temperature. This
inflection has also been seen previously during the

Fig. 1—Initial microstructure (a) and texture in the form of pole figures (b) and u1 sections (c).

2144—VOLUME 46A, MAY 2015 METALLURGICAL AND MATERIALS TRANSACTIONS A



in-plane compression of high-purity Zr and is indicative
of twinning.[17,18] At small strains (<0.1), the flow
stresses during ND compression are higher than those
during RD compression. This is a direct consequence of
the texture of the material which makes the easier
prismatic slip much more likely for compression along
RD than along ND.

The Lankford coefficients calculated from the samples
strained to 0.07 are shown in Figure 3. In RD com-
pression, the ratio of the transverse strains is 2.2, that is,
the strain along TD is 2.2 times that along ND. This
ratio increases with increasing temperature, reaching 3.1
at 773 K (500 �C). This suggests that accommodating
deformation along the ND becomes relatively more
difficult as the temperature increases. During ND
compression, the deformation is more isotropic, and
the effect of temperature is smaller. However, as the
temperature rises, relatively more strain is accommo-
dated along the RD than that along the Transverse
Direction (TD). This suggests that deformation along
the TD becomes relatively more difficult with the
increasing temperature. As temperature increases,
deformation appears to become more difficult along

the direction with the highest basal pole density. This
then implies that, as the temperature rises, the deforma-
tion along the c-axis becomes harder than that along the
hai axis. It should be noted that the Lankford coefficient
is expected to change as texture develops during defor-
mation. The degree of variation is likely to depend on
how much the basal pole figure distribution develops
during deformation. However, under the conditions
measured in this study, the majority of basal poles
remained aligned closest to the ND following deforma-
tion. Thus, it is reasonable to infer that the increasing
deformation temperature reduces the degree of strain
accommodated along the hci axis than along the hai axis.

IV. MICROSTRUCTURAL EVOLUTION

A. Texture Evolution

Texture was measured using EBSD. Surface prepara-
tion for EBSD (and XRD) consisted of grinding,
diamond polishing (6, 3 and 1 lm diamond paste),
etching (60 pct H2O, 5 pct HF, 35 pct HNO2), and final
OPS polishing (5:1 ratio OPS: H2O2). EBSD mapping
was carried out on a FEI Sirion Field Emission Gun
Scanning Electron Microscope with an HKL EBSD
system. EBSD Maps of 180 9 230 lm in dimension
were acquired at a working distance of 10 to 15 mm
using 20 kV accelerating voltage.
EBSD texture measurements were undertaken using a

step size of 5 lm and 15 to 20 scans from several regions
across each sample, sampling a total area of 0.8 mm2

and over 8000 grains. u1 sections at u1 = 0 deg, 30 deg,
and 60 deg are given in Figure 4 showing the texture
after uniaxial compression to 0.07 along RD and ND.
RD compression causes a strengthening of the
1013
� �

1120
� �

component visible at u1 = 0, F = 20
to 40, and u2 = 30. At 573 K and 773 K (300 �C and
500 �C), the initially predominant 1013

� �
1120
� �

com-
ponent shifts slightly to smaller F values. Compression
along ND does not cause a large preferable strengthen-
ing of either of the two components (Figure 4). Instead,
they both strengthen as the distribution of orientations
moves to smaller F values.

Fig. 2—True stress vs true plastic strain curves for uniaxial compression at three temperatures along (a) the RD and (b) the ND.

Fig. 3—The variation of Lankford coefficient (after 0.07 strain) with
temperature. Lankford coefficients measured after RD compression
are calculated from the ratio of the following transverse strains eTD/
eND. For ND compression, eTD/eRD is used.
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B. Intragranular Misorientation Development

Detailed EBSD maps of 180 9 230 lm in dimension
were acquired at a working distance of 10 to 15 mm
using 20 kV accelerating voltage and a step-size of
0.35 lm. Between 4 and 6 maps were acquired per
specimen. The EBSD maps were analyzed to quantify
the development of intragranular misorientation using
two main parameters: GAM and nearest neighbor
disorientations (misorientation angles/axis pairs be-
tween neighboring measurement positions). GAM val-
ues were calculated for each measurement point. This
was done by calculating the disorientation angle be-
tween the average orientation (calculated using the
method described in Cho et al.[19]) of a grain and the
orientation at each position within that grain. The
distribution of GAM provides information on the
spread of orientations within a single grain. GAM
values increase as regions of grains rotate away from the
mean orientation, and thus can indicate the extent to
which a grain is fragmented. Nearest neighbor orienta-
tions were used to indicate the main axis of misorien-
tation in the grains, which can provide an indication of
the main active slip system.[20]

Representative EBSD maps of the deformed
microstructures are shown in Figure 5. Deformation
twins are visible after compression at 298 K and 573 K
(25 �C and 300 �C). The twins have been identified as
85 deg 1012

� �
1011
� �

tensile twins by comparing the
misorientation relationship between the parent grain
and the twin with the characteristic relationships of the
commonly observed twin systems.[21] Unexpectedly, the
area fraction of twins observed during RD compression
is higher at 573 K (300 �C) than that at 298 K (25 �C)
after 0.07 strain. At 773 K (500 �C), only a few twins
can be seen after either RD or ND compression. The

maps clearly show that the grains have developed spatial
variations in orientation, that is, they have started to
break up.
The misorientation axis of neighboring misorienta-

tions can give an indication of the active slip systems.
The method of extracting and plotting the In-Grain
Misorientation Axis (IGMA) used here is the same as
that explored by Chun et al.[20] The method is limited, as
it cannot be used to discriminate clearly between
different hc+ai slip modes or basal slip modes. How-
ever, it can show clearly whether prismatic slip or non-
prismatic slip is dominant within a grain. This dis-
crimination is possible as a result of prismatic slip
having a distinct misorientation axis about the h0001i
axis. Basal and pyramidal hc+ai slip axis distributions
lie close to huvt0i, which is 90 deg from the h0001i axis
that is characteristic of prismatic slip. Therefore, peaks
in axis distributions due to prismatic slip are clearly
distinguishable from peaks caused by basal or pyramidal
slip.
Distributions of these axes were calculated from the

specimens compressed to 0.07 at each of the three
temperatures and two loading directions (six specimens
in total). Misorientation axes were extracted from the
10 pct of grains with the highest prismatic Schmid
factors and the 10 pct of grains with the lowest
(Figure 6). In most cases, the misorientation peak is
strongly aligned with h0001i, the characteristic axis for
prismatic slip. This is to be expected as prismatic slip is
considered by far the easiest slip system in Zr and its
alloys.[21] In a few cases, the huvt0i directions are more
prevalent: at 298 K and 573 K (25 �C and 300 �C) in the
grains poorly oriented for prismatic slip in RD com-
pression (Figures 6(d) and (e)) and at 298 K (25 �C) ND
compression (Figure 6(j)). This suggests that at 298 K

Fig. 4—ODF u1 sections (0 deg, 30 deg, 60 deg) for RD compression at (a) 298 K (25 �C), (b) 573 K (300 �C), and (c) 773 K (500 �C); and ND
compression at (d) 298 K (25 �C), (e) 573 K (300 �C), and (f) 773 K (500 �C).
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(25 �C) and perhaps at 573 K (300 �C), some of the
grains that are least well orientated for prismatic slip
undergo an increased amount of deformation via non-
prismatic slip systems. However, this is not the case at
773 K (500 �C) (Figures 6(j) and (l)). It should be noted
that although IGMA may enable conclusions about the
dominant slip systems that are active in a particular
grain or set of grains, it cannot provide unambiguous
information regarding secondary slip activity. There-
fore, although these results strongly imply that prismatic
slip is dominant at 773 K (500 �C), this does not mean
that non-prismatic systems are inactive—only that their
influence is obscured by that of the dominant system.
The influence of secondary systems can be more easily
studied by tracking the orientation change from the
initial to the deformed state. This is explored in the
following section.

C. Orientation Tracking

The analysis of texture evolution and misorientation
analysis suggest that prismatic slip dominates during
deformation at 773 K (500 �C). In order to observe
directly how the grains of the two main texture
components break up under the action of prismatic
slip, a selected region was tracked, using EBSD, during
compressive strain along the RD, to a maximum strain
of 0.17. This analysis is not possible ex situ since the
starting grain orientation is not known.
To minimize sample oxidation, the tests were under-

taken in a vacuum of approximately 1.2 9 10�4 atm
and heated using resistance heating in a Gleeble 3500
mechanical testing system. Despite these precautions,
some surface oxidation did take place. As a result, the
post-deformation EBSD quality was relatively poor,

Fig. 5—Microstructural maps acquired after 0.07 compressive strain. Samples shown include those strained along the RD at (a) 298 K (25 �C),
(b) 573 K (300 �C), and (c) 773 K (500 �C); and ND at (d) 298 K (25 �C), (e) 573 K (300 �C), and (f) 773 K (500 �C).

Fig. 6—In-Grain Misorientation Axis distributions for 10 pct of grains best orientated for prismatic slip (a–c and g–i) and 10 pct of grains worst
orientated for prismatic slip (d–f and j–l) during RD (a–f) and ND (g–l) compressions at 298 K (25 �C), 573 K (300 �C), and 773 K (500 �C).
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with an indexing rate of only 58 pct. Only indexed data
points were used in the analysis. Cleaning of the data
was used only to aid identification of the grains post-
deformation. The size of the mapped region was
350 9 460 lm2, and the number of grains measured in
the initial EBSD scan was 1473.

A section of the mapped region is shown in Figure 7
before and after RD compression at 773 K (500 �C).
Misorientations were calculated between the initial
orientation of each grain and the orientations within
the grain after deformation. The misorientation angle
and calculated axes distributions are shown in Figure 8.
The misorientation angle distribution between the initial
and final state reveals that orientations within the grains
with 1010

� �
//RD rotate by a greater degree than those

with 1120
� �

//RD. This suggests that the latter rotate
less, or are more stable under RD compression, which is
in agreement with the observed texture evolution. The
1120
� �

//RD grains do still appear to show misorienta-
tion away from their original orientations, that is, all
grains rotate to some extent. All grains can be expected
to undergo some degree of rotation during deformation,

either as a result of slip induced lattice rotation or due to
rigid body rotation from the influence of neighboring
grain interactions.
The distribution of GAM values calculated from the

deformed grains alone is shown in Figure 8(d). There is
a greater spread of orientations in the deformed
1010
� �

//RD grains than the deformed 1120
� �

//RD
grains. This might appear like a small effect, but it is
clearly significant since, as will be discussed later, both
orientations have the identical starting slip activities.
The axis about which the grain rotations have taken

place reveals that the grains with 1010
� �

//RD rotate
mainly about the h0001i axis. As mentioned previously,
this misorientation axis is characteristic of prismatic
slip. The 1120

� �
//RD rotate mainly about the 1010

� �

axis although there is a spread about huvt0i. This peak
may be caused by a rotation of the grain about the
transverse direction (which is parallel to 1010

� �
), a

direct consequence of the lack of constraint at the
surface of the sample. In fact, the misorientation axis
plot for the 1010

� �
//RD grains also show a peak for

rotations about the transverse direction (in this case the
1120
� �

axis). Alternatively, the 1010
� �

axis has been
said to be characteristic of basal slip; however, the
co-activation of hc+ai slip variants[20] or a combination
of all main slip systems could potentially generate
similar orientation changes.
The important finding is that the grain distortion in

the 1120
� �

//RD grains, which is more stable, is not
about the h0001i axis despite the fact that prismatic slip
must dominate. CPFEM simulations have also shown
differences between the rotation axis distributions of the
two fibers. That for 1010

� �
//RD fiber showed qualita-

tive agreement with the experimentally derived data
(Figure 8). The simulated 1120

� �
//RD fiber rotation

axis distribution, however, showed a more random
rotation axis distribution than that shown in Figure 8.

D. Influence of Temperature and Loading Direction on
Grain Breakup

Having determined the basic characteristics of grain
breakup, one can now look at how it is affected by
temperature and loading direction. The GAM distribu-
tions from samples strained to 0.07, corresponding to
the EBSD maps shown in Figure 5, were calculated for
the two different loading directions at the three different
temperatures: room temperature, 573 K and 773 K
(300 �C and 500 �C). The strain chosen for this analysis
is a compromise between introducing sufficient defor-
mation to see its effect on the microstructural evolution
while keeping the strain low enough in order to avoid
significant twinning, which is important to allow com-
parisons between samples compressed at different tem-
peratures. The GAM values from the twinned grains
(which do not exceed an area fraction of 14 pct) were
not included in the GAM distributions shown.
Figure 9(a) clearly shows that there is a significant

difference between the GAM distributions for samples
compressed along different loading directions at 773 K
(500 �C). The distributions in (Figure 9(b)) are de-
scribed using the median and the upper and lower

Fig. 7—Selected region of larger microstructural map before (a) and
after (b) compressive strain along the RD. The latter has been partly
reconstructed to allow for easier visualization of the microstructure.
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Fig. 8—Misorientation axis distributions between the initial and final orientations for the grains of (a) the 1010
� �

//RD fiber and (b) the 1120
� �

fiber. (c) Misorientation angle distribution between the initial and final orientations for the two fibers and (d) Grain average misorientation
calculated from the deformed grain data for grains of the two fibers.

Fig. 9—(a) Grain average misorientation distributions exhibiting the difference in spread between the two directions taken from RD and ND
compression at 773 K (500 �C) after 0.07 strain. (b) The median of the RD (red) and ND (blue) GAM distributions at three temperatures. The
upper and lower quartiles of the distributions are shown as error bars (Color figure online).
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quartiles of the GAM values calculated. The upper and
lower quartiles are plotted as error bars. It can be seen
that both the median GAM and its spread (inter-
quartile range) increase with temperature for both RD
and ND compression (Figure 9(b)), with the greatest
increase occurring between 298 K and 573 K (25 �C and
300 �C). The GAM spread for the ND compression
specimens is always larger than for the RD specimens.
This suggests that the breaking-up of the grains is more
pronounced in the case of ND compression and that the
amount of breakup increases as temperature increases.
Since the activity of the available deformation modes
can be affected by both changing the deformation
temperature and the loading direction, we have used
crystal plasticity modeling (CPFEM) to explore how the
activity of the main slip modes may influence the GAM
distributions.

V. CRYSTAL PLASTICITY FINITE ELEMENT
MODELING

The CPFEM code used in this study was originally
described by Bate.[22] It has been used previously for
lattice strain prediction[23] and texture simulation[24] in
IF steel. Deformation is imposed in small strain incre-
ments. Shear strain rates on all slip systems are
calculated at each material point (integration point)
using constitutive equations. Overall equilibrium is
attained using the strains and stresses calculated at each
integration point. Slip is assumed to be weakly rate
sensitive. The slip rates and shear stresses are related
through the viscoplastic relation:

_c
_c0
¼ s

s0

� 	1
m

where _c is the slip rate, s is the resolved shear stress, s0 is
the instantaneous slip resistance, and m is the rate
sensitivity. The macroscopic rate sensitivity of zirconi-
um during deformation along the RD lies within the
range of 0.02 and 0.06 above room temperature.[25] The
value used for m in this work was kept constant at 0.02.

Slip systems included into the model were prismatic
1010
� �

1120
� �

, basal 0001f g 1120
� �

, and pyramidal
1011
� �

1123
� �

. Using intergranular strain measurements
and modeling, Xu[26] has shown that basal slip should be
included into crystal plasticity modeling of a similar
alloy, Zircaloy-2. Twinning is not included as a defor-
mation mode in this model. Early studies on single
crystals showed that the relative activity of the available
systems changes with temperature.[27,28] In the current
study, the Lankford coefficients measured after com-
pression testing suggest that deformation along the hci
axis becomes more difficult as temperature increases.
The simplest explanation for this behavior is that hc+ai
slip becomes relatively harder than prismatic and basal
slip (hai slip). We therefore ran a series of simulations
with the increasing CRSShc+ai/CRSShai ratio in order to
reproduce the observed increase in anisotropy with
temperature and predict its impact on grain breakup.
The range of CRSS ratios used was between 1 and 10,

whereas the typical CRSS ratio used in crystal plasticity
simulations of a similar alloy Zircaloy-2 is between 3
and 4.[26,29] The ratio of 1:1 was included as a means of
exploring the result of hc+ai getting relatively easier
with the increasing temperature, which was suggested in
previous work.[27,30] A ratio of 10:1 gives a better fit to
the flow curves at 773 K (500 �C), than a ratio of 3 to 4,
as well allowing better predictions of Lankford coeffi-
cients (Figure 10) and texture for RD compression.
The remaining single crystal slip parameters used in

the CPFEM carried out in this study were derived
through obtaining a reasonable match between the
simulated and experimental stress strain curves, Lank-
ford coefficients, and texture evolution data. The slip
parameters used are given in Table I.

A. Polycrystalline Deformation Modeling

The polycrystalline aggregates modeled were made up
of 10 9 10 9 10 20-node isoparametric brick elements,
each with eight integration points. Each element was
assigned an orientation, and the chosen set of 1000
orientations represented the initial texture. Models were
run to simulate compression along RD and compression
along ND. The orientations at the integrations points

Fig. 10—(a) Comparison of experimental flow curve of RD compres-
sion at 773 K (500 �C) and simulated flow curves using hai:hc+ai of
1:1:3 and 1:1:10, (b) Comparison of the experimental Lankford coef-
ficient measured at 0.2 strain (red line) with simulated values after
an equivalent strain using different hai:hc+ai ratios. The horizontal
axis scale represents the number of times the hc+ai slip CRSS is
harder than that used for hai slip (Color figure online).
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were then used to calculate the GAM distributions for
each grain, so that they could be compared directly with
the experimental data.

The GAM spread calculated from the simulations of
RD compression is shown alongside the equivalent
experimental data in Figure 11 at two different strain
levels (0.07 and 0.2 true strain). Using a CRSS ratio
(hc+ai/hai) of 10, the model clearly captures the greater
spread in GAM exhibited by the 1010

� �
//RD grains

compared with grains belonging to the 1120
� �

//RD
fiber. Increasing the number of elements representing
each grain was investigated, and it was found to give
similar GAM distributions. The primary difference was
an increase in the breadth of the GAM distribution as
the number of elements used per grain rose. In addition,
using more elements per grain reinforced the trend of
increasing misorientation with the increasing slip
anisotropy.

Figure 12 shows that the predicted GAM spread for
ND is larger than that of RD compression, which was
observed experimentally (Figure 9(b)). However, the
predicted difference between the two directions is
smaller than that found experimentally. The influence
of changing the relative slip activities upon the GAM
distribution can be seen in Figure 12. The median values
and upper quartile of the GAM distributions increase as
hc+ai slip becomes relative harder than hai slip. The
difference between ND and RD compression also
increases as the CRSS ratio rises.

B. Perturbed Grain Modeling

In a ‘‘perturbed’’ grain simulation, the compression of
a single crystal is modeled using the same parameters
used for the polycrystalline model but rather than using
the same orientation for all integration points in a grain,
the main orientation is ‘‘perturbed,’’ and the integration
points are orientations within a small range of the mean
orientation. This spread in orientation allows the grain
to develop internal stress and strain gradients to
accommodate the imposed constraints by providing a
kind of substructure. Although recrystallized materials
do not usually have such initial perturbed microstruc-
tures, it can be argued that the impingement of
neighboring grains leads to the development of local
stress variations, which combined with the (related)
development of deformation substructures, lead to the
development of mosaicity within grains. Here, we used
CPFEM simulations of ‘‘perturbed’’ grains to study the

Table I. Slip Parameters Used in This Study

Parameter Value

CRSS prismatic slip s0 = 41, ss = 55 MPa
CRSS pyramidal slip s0 = 41 to 410, ss = 55 to 550 MPa
CRSS basal slip s0 = 41, sS = 55 MPa
ho prism = 1000 MPa, basal =

1000 MPa, pyr = 4 MPa
hIV prism = 0 MPa, bas = 0 MPa,

pyr = 0 MPa
a prism = 2.7, basal = 2.7, pyr = 3.6

Fig. 11—GAM distributions in the two predominant fibers at 0.07 and 0.2 strains after RD compression at 773 K (500 �C). (a) Calculated data
from EBSD; (b) equivalent data calculated from CPFEM.

Fig. 12—Variation of median GAM with hc+ai/hai ratio for both
RD and ND compressions. Upper and lower quartiles of GAM dis-
tributions shown as error bars.
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two fibers ( 1120
� �

//RD and 1010
� �

//RD), by randomly
perturbing their orientation by 5 deg.

The results of the ‘‘perturbed’’ grain simulations are
illustrated in Figure 13, where the original and final
distributions of orientations are plotted on 1120 pole
figures for both simulations. These results clearly show
that whereas for the 1120


 �
grain the spread in orien-

tations narrows with deformation, it increases sig-
nificantly for the 1010


 �
grain. This increase in spread

occurs by rotation about ½0001�, which is consistent with
the one being induced by prismatic slip and in agreement
with the results of the EBSD misorientation axis
analysis.

This increase in spread can also be quantified by
GAM. The GAM calculated for the perturbed grains is
shown in Figure 14 alongside GAM distributions of
grains within these fibers during simulated RD and ND
compressions. The perturbed grain compressed along
the 1010


 �
direction has a significantly larger spread in

orientation (median GAM of 5.2) than that compressed
along the 1120


 �
direction (median of 0.3). The latter

actually has a smaller spread of orientations than the
input orientation spread. The simulation of ND com-
pression upon a perturbed grains of the two fibers
(compression along 1013


 �
and 1123


 �
in Figure 14)

produces similar GAM spreads both having a median
of ~3.

VI. DISCUSSION

A. Mechanical Behavior: Effect of Temperature and
Loading Direction

The higher yield stress for ND compression than that
for RD compression is a direct consequence of the
texture of the material and the consequential lower
Schmid factor for prismatic slip. The relatively higher

CRSS of hc+ai slip[21] means that it is less likely to play
as big a role as prismatic slip during yielding. This yield
anisotropy, the strong anisotropy in the transverse
strains, and the misorientation angle analysis all point
to the idea that prismatic slip dominates deformation in
the early stages.
Therefore, the dramatic drop in flow stress with

increasing temperature is likely to be caused by the
temperature sensitivity of prismatic hai slip, which is
well known and has been attributed to a number of
phenomena, including the change in strength of solute
pinning[28,31] or even simply to the variation of the
lattice resistance to slip.[32]

The changes in Lankford coefficient with temperature
shown in Figure 3 suggest that the difference in CRSS
between hai and hc+ai slip increases with the tem-
perature. Since twinning also contributes to the defor-
mation strain and the amount of twinning changes with
temperature, it could be argued that the increasing
anisotropy is a consequence of lower twinning activity.
There are two arguments against this. First, the twin
volume fraction in the samples in which the Lankford
coefficients were measured was small (<14 pct) as can be
seen in Figure 5 and was actually greater at 573 K
(300 �C) than that at 298 K (25 �C) (Figures 5(a) and
(b)). Therefore, if twinning were responsible, one would
expect a reversal in the observed trend. Second, even
when twinning is heavily active, the amount of shear it
contributes is much smaller than that contributed by
slip. This was shown by McCabe et al.[33] who observed
that after 17 pct compressive strain of high-purity Zr,
only 20 pct of the shear was accommodated by twin-
ning, despite a large twin area fraction of 45 pct.
Therefore, we believe that the change in anisotropy
with temperature is attributed to differences in the
relative activities of slip modes and not to twinning and

Fig. 13—Perturbed grain model results. 1120
� �

poles of the initial
and strained (0.2 strain) orientations of the perturbed grain models
after (a) RD compression along 1120


 �
; and (b) 1010


 �
axis. Fig. 14—Median GAM calculated from EBSD, polycrystal CPFEM

and perturbed grain CPFEM. The upper and lower quartiles of the
distributions are shown as error bars.

2152—VOLUME 46A, MAY 2015 METALLURGICAL AND MATERIALS TRANSACTIONS A



that hc+ai slip becomes relatively more difficult than hai
slip as the temperature increases.

The IGMA axis distributions from the grains with
lowest prismatic Schmid factor during ND compression
(Figures 6(j) through (l)) show the dominant misorien-
tation axis to be near [uvt0]. This implies that non-
prismatic slip is more active at 298 K (25 �C) than that
at 773 K (500 �C). Assuming this non-prismatic slip to
be pyramidal hc+ai slip supports our idea that hai and
hc+ai slips are more similar (and thus hc+ai is more
readily activated) at room temperature (RT) than at
773 K (500 �C). This does not mean that hc+ai slip is
easier at RT than at 773 K (500 �C). This is clearly not
true. All that is required is that the CRSS for hc+ai slip
drops more slowly or at the same rate with temperature
than that for prismatic slip.

The suggestion that hc+ai slip becomes relatively
harder than hai slip as temperature increases is not made
lightly, as it contradicts single crystal CRSS measure-
ments[27] and data fitted to flow curves and texture
data.[30] It is important to note, however, that these
studies[27,30] were carried out on high purity zirconium,
which has <50 ppm oxygen.[34] Soo[28] showed that the
presence of oxygen in zirconium hardens prismatic slip
and makes it significantly more temperature sensitive.
Between 77 K and 473 K (�196 �C and 200 �C), Soo
showed that prismatic slip in their lowest purity alloy
(2000 ppm O) became easier by a factor 5.6 whereas the
highest purity alloy (135 ppm O) became easier by a
factor of 2.5. These finding are supported by calcula-
tions using a hard sphere model by Churchman, which
predicted that the presence of oxygen will harden
prismatic slip more significantly than pyramidal hc+ai
slip.[35] The alloy used in our study is a commercial alloy
containing between 1000 and 1400 ppm oxygen. The
comparatively high oxygen content may cause the
relative activities of hai and hc+ai slip systems to be
significantly different from those reported in studies
using high-purity Zr, and thus could explain our
unusual result. The consequences of a variation in the
relative slip activities upon the microstructural evolution
are discussed later.

B. The Mechanism of Grain Breakup by Prismatic Slip

At 773 K (500 �C), prismatic slip dominates, and
both textural evolution and misorientation analysis
between the initial and the deformed states show that
the 1120

� �
//RD orientations are more stable under RD

compression. Texture analysis shows that, during RD
compression, the 1010

� �
//RD grains rotate toward

1120
� �

//RD. In addition, misorientation analysis shows
a significant increase in GAM for the 1010

� �
//RD fiber.

These results are consistent with those from the CPFEM
simulations, which clearly show that, for compression
along RD, grains with 1120


 �
aligned with the loading

direction (LD) are stable under uniaxial compression,
whereas those with 1010


 �
are not. This leads to the

development of a stronger 1120
� �

fiber after deforma-
tion, although a weaker 1010

� �
is also present. This

same instability also leads to a greater degree of grain
breakup in the 1010

� �
fiber in perturbed grain simula-

tions, which is consistent with the higher GAM values
obtained experimentally.
At first, this appears counter-intuitive, since both

orientations have the same resolved shear stresses for
prismatic slip and both orientations have a symmetric
arrangement of independent slip systems, which should
enable deformation in plane strain without rotation.
However, the reason for their disparate behaviors be-
comes clear once we look closely at what happens to the
Schmid factors for prismatic slip when the resolved shear
stress on the highest stressed planes is not identical. This
will happen in a single crystal if the grain is not perfectly
oriented and in a polycrystal as a result of stresses imposed
by neighboring grains, which modify the local stress state.
As shown in Figure 15, unbalanced shear stresses lead to
unbalanced shears and a rotation in both cases. However,
the consequences of this rotation are different in each case.
In the 1010


 �
case, this rotation increases the Schmid

factoron the active slip system, leading to further rotation,
whereas in the 1120


 �
case, it leads to a decrease of the

Schmid factor in the active slip system and an increase in
the complementary slip system, which will eventually lead
to higher activity in the complementary slip system and a
rotation in the opposite direction. Hence, although both
orientations appear to be stable, local stress fluctuations
lead to instability in the 1010


 �
case, whichwill rotate until

it is oriented with 1120

 �

along the LD that is truly stable.
This instability is similar in nature to the instability of cube
grains in FCC materials.[36]

Despite their difference in orientation stabilities, the
texture of the deformed material clearly shows the

Fig. 15—Schematic explanation of the differing stabilities of the two
orientations 1120

� �
//LD (right) and 1010

� �
//LD (left) under compres-

sive deformation. A and B represent slip systems, and arrows represent
active shearing of those slip systems. In case 1, unbalanced slip on A
leads to rotation away from the starting orientation, which increases the
shear stress on A, leading to further rotation. In case 2 the same rota-
tion leads to the activation of slip system B, which reverses the sense of
rotation.
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development of fibers with both orientations, although
the more stable one is stronger. This can be rationalized
by considering the kind of intragranular stress fluc-
tuations one expects to develop during polycrystalline
deformation. Impinging neighboring grains are likely to
create stress fluctuations with characteristic wavelengths
shorter than the grain size, which would lead to
instabilities with rotations of opposite sign. That is to
say, parts of the grain will rotate clockwise to 1120


 �

along the loading direction, whereas other parts will
rotate toward 1120


 �
, for example. This leads to grain

breakup and instead of a complete rotation toward the
stable orientation, the grain will break up into a range of
orientations, which include the 1010


 �
orientation. This

is illustrated by the results of the perturbed grain
simulations shown in Figure 16. It can be seen that the
instability discussed above gives rise to the development
of strain heterogeneity and a concomitant spatial
variation in rotation across the deformed grain. A
compressive strain of 0.2 leads to rotations of ±11 deg
about 1010


 �
//LD (Figure 16(c)), a clear illustration of

grain breakup, which looks remarkably like the grain
breakup observed in the EBSD map in Figure 7(b).

Although this explanation is based on uniaxial
compression, it clearly applies more generally to any
nonredundant deformation. In uniaxial tension, the
opposite is expected, i.e., the 1010

� �
fiber will be the

stable orientation and in plane strain compression along
the ND, (e.g., during rolling), orientations with 1010


 �
//

RD will be the most stable. This is in agreement with the
stable orientation identified by Wagner et al. in titani-
um[8,37] and also the observed and simulated textures in
hexagonal metals where the 1123

� �
1010
� �

component is
stronger than the 1013

� �
1120
� �

) component.[21,38,39]

C. Grain Breakup: Effect of Temperature and Loading
Direction

EBSD data analysis showed that increasing the tem-
perature causes an increase in intergranular grain misori-
entationand that compressionalong theNDcauses greater
spread in orientations than the compression along the RD
(Figure 9). This is slightly counterintuitive, as polycrys-
talline deformation usually becomes more homogenous as
the temperature increases due to dynamic recovery.

CPFEM simulations were used to explore whether
this behavior could be explained by the variation in the
relative activities of hc+ai and hai slip, which is
suggested by the change in deformation anisotropy.
The results showed that increasing the ratio of hc+ai/
hai slip does indeed lead to an increase in the median
and upper quartile of the GAM distributions for both
RD compression and ND compression. Furthermore,
the difference between the GAM for ND and RD also
increases with both temperature (measurement (Figure
9(b))) and anisotropy (modeled (Figure 12)).

The model predicts an increase in GAM with the
increasing hc+ai/hai ratio, Figure 12, because the
increase of plastic anisotropy increases the amount of

Fig. 16—A slice taken from the center of the perturbed grain aggregate
compressed along the 1010


 �
axis. (a) Shear strain localizes at 45 deg to

the compression axis, (b) Rotation angles from the original orientation,
(c) polarized rotation angles from the original orientation. Positive rota-
tions are shown in red and negative in blue (Color figure online).
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incompatibility between neighboring grains during de-
formation. This incompatibility must be accommodated
by intergranular strain heterogeneity, which in turn is
responsible for the development of in-grain misorienta-
tions. Therefore, the observed increase in GAM with
temperature further supports the idea that hc+ai
becomes relatively more difficult at higher temperatures.

As the perturbed grain simulations showed, single-
grain breakup depends strongly on the alignment of the
grain with respect to principal deformation directions
but our polycrystalline simulations demonstrate that
this effect is not as strong in a polycrystal, and that
orientation gradients develop in stable grains as well as
unstable grains. This is not unexpected, as these grains
will also experience incompatibilities with neighboring
grains. Nevertheless, it is clear from both the experimen-
tal data and the modeling results that grains with
unstable orientation develop significantly higher intra-
granular misorientations during polycrystalline defor-
mation due to the grain break-up mechanism described
earlier. One important point is that the predicted
spreads in misorientation are narrower than those
measured (Figure 12). This is, in all likelihood, due to
the small number of integration points (viz. 8) used to
model each grain in the polycrystal simulation, which
fails to accurately represent the highly heterogeneous
nature of deformation within grains. Simulations with
higher numbers of integration points per orientation do
indeed predict higher GAM values but were too
computationally expensive to be used here.

Both the predicted and experimentally obtained GAM
values for samples compressed along RD were, in all
cases, lower than those for samples compressed along the
ND. One potential reason is that whereas for RD
compressionmost of the deformation occurs by prismatic
slip, ND compression requires a significant contribution
of hc+ai slip. However, it is not obvious why hc+ai slip
should lead to higher intragranular misorientations,
particularly as hc+ai slip appears to sharpen the texture.
Another more likely reason follows from assuming that
most of the intergranular orientation spread arises from
prismatic slip, as described earlier and supported by the
misorientation axis analysis shown in Figure 6. Since in
ND compression the deformation of this material is
nearly axisymmetric but grain breakup is significantly
direction dependent, many more grains are likely to be
unstable than in the RD compression case, resulting in a
higher median GAM.

D. Implications

This mechanism of grain breakup via prismatic slip has
important implications for the thermomechanical pro-
cessing of Zr and other HCP materials like Ti and even
Mg, where prismatic slip dominates at large strains. It
implies that, for processing in the alpha phase, homoge-
neous grain breakup will not be achieved unless the
principal work directions are varied during processing.

Grain breakup is also important for recrystallization.
The mechanism presented here predicts that the unstable
components will develop heterogeneous substructures
with high misorientation gradients, whereas the stable

components will develop much more homogeneous
substructures. Since misorientation influences the grain
boundary mobility required for recrystallization, the
unstable grains should have an advantage over the
stable grains and should recrystallize faster, leading to a
change in texture. It has long been recognized that
during recrystallization, the texture of Zr alloys appar-
ently ‘‘rotates’’ by 30 deg, and it is plausible that this
texture change is a direct consequence of the different
substructures developed in stable and unstable grains.
Finally, this work suggests that grain breakup will

influence the development of deformation textures in
HCP materials and that grain breakup is influenced by
single crystal anisotropy through near neighbor interac-
tions. This implies that models for texture prediction that
do not consider grain interaction and cannot account for
grain breakup may fail to predict these effects.

VII. CONCLUSIONS

Mechanical testing, EBSD, and CPFEM were used to
characterize the microstructural evolution during uni-
axial compression of a recrystallized Zr alloy at different
temperatures.
Analysis of the Lankford coefficient data and the

misorientation axes calculated from EBSD data indicate
that the anisotropy between the CRSS of hc+ai slip and
hai slip increases as the deformation temperature rises.
This unexpected behavior may result from the different
influences interstitial oxygen atoms have on the slip
resistances of the two systems.
At 773 K (500 �C), the texture evolution during

compression along RD is almost exclusively determined
by prismatic slip. The 1120

� �
//RD fiber is stable

whereas the 1010
� �

//RD fiber is not. A mechanism for
their different stabilities has been proposed.
Grains of the stable orientation breakup less than

grains with the unstable orientation. Crystal plasticity
modeling of a ‘‘perturbed grain’’ shows that this happens
through the development of intragranular deformation
heterogeneity. In polycrystalline deformation, grain
breakup is probably driven by intergranular stresses and
deformation incompatibility of neighboring grains.
The degree of grain breakup, as measured using GAM,

increases with temperature. Using CPFEM, we have
shown that this is consistent with the conclusion that, for
this alloy, slip anisotropy increases with temperature.
Differences in the way that grains fragment during

deformation offers an explanation as to why the typical
recrystallization texture change for Zr alloys is a
rotation by 30 deg about h0001i, from the stable texture
component to the unstable texture component.
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