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In situ high-energy synchrotron X-ray diffraction experiments and micromechanics-based finite
element simulations have been conducted to examine the lattice-strain evolution in metallic-
glass-matrix composites (MGMCs) with dendritic crystalline phases dispersed in the metallic-
glass matrix. Significant plastic deformation can be observed prior to failure from the macro-
scopic stress–strain curves in these MGMCs. The entire lattice-strain evolution curves can be
divided into elastic–elastic (denoting deformation behavior of matrix and inclusion, respec-
tively), elastic–plastic, and plastic–plastic stages. Characteristics of these three stages are gov-
erned by the constitutive laws of the two phases (modeled by free-volume theory and crystal
plasticity) and geometric information (crystalline phase morphology and distribution). The
load-partitioning mechanisms have been revealed among various crystalline orientations and
between the two phases, as determined by slip strain fields in crystalline phase and by strain
localizations in matrix. Implications on ductility enhancement of MGMCs are also discussed.
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I. INTRODUCTION

BULK metallic glasses (BMGs) exhibit many desir-
able properties, e.g., high strengths and hardness, large
elastic limits, and excellent corrosion and oxidization
resistance,[1–7] which make them potential candidates as
new structural materials. However, BMGs are notorious
for their brittle nature upon loading due to the forma-
tion of the highly localized shear bands. In a monolithic
BMG, a major shear band will run through the entire
sample once it initiates from some weak locations. To
circumvent this disadvantage, a class of metallic-glass-
matrix composites (MGMCs), with ductile dendritic
crystalline phases dispersed in the metallic-glass (MG)
matrix, has emerged with improved toughness, due to
the stabilization against shear localization and propaga-
tion of critical shear bands upon loading.[8–13] The
primary objective will be clearly directed to how to
design such a microstructure and control the internal

strain fields so that the ductility enhancement can be
manipulated.
A number of studies have been conducted to investi-

gate the deformation mechanisms in the dendrite-dis-
persed MGMCs. For example, Hofmann et al.[10] and
Qiao et al.[8,9,14–16] found that the MGMCs had substan-
tially improved malleability and tensile ductility com-
pared with monolithic BMGs, presumably by blocking
the propagation of shear bands by soft crystalline phases
in MGMCs under loading.[10,17,18] This mechanism can
be revealed by post-mortem observations, while only
limited in situ studies have been performed by syn-
chrotronX-ray and neutron diffractionmeasurements on
the microstructural origin of these deformation mechan-
isms.[19–23] We note that the synchrotron X-ray diffrac-
tionmeasurement has unique advantages, compared with
the neutron diffraction in respect of resolution, which
tends to be more sensitive to structural disorder and
fluctuations, and allows the background intensities
between peaks to be estimated more reliably.[24]

In the X-ray diffraction, lattice strain can be calcu-
lated from the shift of diffraction peaks, which corre-
sponds to the elastic lattice distortion of grains in
different crystallographic directions. From the microme-
chanics standpoint, the lattice strain relies on the
intergranular interactions of inhomogeneous deforma-
tion fields in neighboring grains, which is also called
Type-II strains.[25] In diffraction analysis, the lattice
strain in the hhkli direction, ehkl, is calculated from the
interplanar spacing (dhkl), based on the change of values
dhkl before and after deformation, which can be mea-
sured from the {hkl} peak shift in the diffraction pattern.
In elastic deformation, the evolution and anisotropy of
ehkl are determined by the elastic anisotropy and texture
of materials, while in plastic deformation, they are
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mainly contributed by plastic slips and intergranular
interactions among neighboring grains. The deviation of
the measured ehkl from the extrapolated curve of the
measured elastic–elastic portion is denoted as inter-
granular strains.[25,26]

In the reported diffraction works, Ott et al.[23] studied
the elastic strain evolution of particle-reinforced
MGMCs in single crystal direction using the syn-
chrotron X-ray diffraction and finite element modeling
(FEM) during compressive loading. Their simulations
are based on continuum Mises plasticity without any
reference to the plastic anisotropy in the inclusions, and
also there is no reference to the strain localization in the
matrix. Clausen et al.[21,22] investigated the lattice-strain
evolution of dendrite-crystal-strengthened MGMCs by
neutron diffraction and self-consistent models. Their
self-consistent model is based on the Eshelby inclusion
model and gives a neat treatment of how a crystalline
grain deforms within other grains, which clearly has
difficulties in describing dendritic crystals. Deformation
in the matrix involves strain localization, which again
cannot be addressed by the self-consistent model.
Limitations in these literature works have prevented a
full understanding of deformation mechanisms in these
composites.

In the current work, a synergistic experimental/mod-
eling study is reported to investigate the lattice-strain
evolution of crystalline phases in the dendritic-inclusion-
dispersed MGMCs under in situ uniaxial compressive
deformation in both elastic and plastic stages. The
composition of the selected MGMC system is
Zr58.5Ti14.3Nb5.2Cu6.1Ni4.9Be11.0 in atomic percent
(at. pct). The final microstructure of the MGMC, as
shown in the scanning-electron-microscopy (SEM) im-
age of Figure 1(a), consists of metallic-glass matrix and
crystalline phase. During the transition from elastic-to-
plastic deformation in the crystalline phase (~450 MPa
under uniaxial compression), we are interested in the
sequence of yielding in different grain families. In other
words, which grains are ‘‘hard’’ or ‘‘soft’’ when the
crystalline microstructure is dendritic and the surround-
ing matrix is elastic? During the transition from elastic-
to-plastic deformation in the matrix phase (~1450 MPa
under uniaxial compression), the emphasis is placed on
the load partitioning between the MG matrix and
crystalline dendrites. For example, how would the shear
bands affect the lattice-strain evolution in the second
phase? Deformation behavior was identified using high-
energy synchrotron X-ray diffraction, with the schemat-
ic in Figure 1(b) illustrating the experimental set-up.
Procedures to obtain representative diffraction results in
Figures 1(c) and (d) are explained in Section II.

Deformation mechanisms can be studied from a
microstructure-based finite element method in which
the crystalline phase and matrix are explicitly modeled
in Figure 2. Appropriate geometric information (such as
crystallographic orientation and shape) and constitutive
models (including crystal plasticity for the inclusion and
free-volume model for the matrix) can be assigned to the
finite elements. The connection between the synchrotron
X-ray diffraction measurements and the finite element
simulation lies on the lattice strain, which can be

extracted by finding the grains that satisfy the diffraction
condition, as schematically shown in Figure 2(c). De-
tails of modeling and simulation, as well as lattice-strain
extraction procedure, are given in Section III. Lattice
strains will provide the unprecedented information on
the underlying deformation mechanism at microstruc-
tural scales, and our explicit microstructure-based
simulations differ from many previous studies in this
class of materials. Consequently, effects of dendrite
shape, crystalline orientations, and strain localization in
the matrix on lattice-strain evolution can be investigated
and be used to understand the deformation mechanisms.

II. EXPERIMENTAL METHODS

A. Sample Preparation

The MGMCs were prepared by arc-melting a mixture
of Zr, Ti, Ni, Cu, Nb, and Be with purities greater than
99.9 pct in weight percent (wt pct) under a Ti-gettered
argon atmosphere. The liquid alloys were sucked into a
cylindrical copper mold with a diameter of 3 mm and a
length of around 70 mm. Upon cooling from a high-
temperature melt, the alloy undergoes partial crystal-
lization by nucleation and subsequent growth of the b
phase in the remaining liquid, producing a two-phase
microstructure containing b-phase dendrites in the MG
matrix. The energy-dispersive spectrometry (EDS)
analysis revealed the compositions of the dendrites and
the glass matrix to be Zr66Ti15Nb8Cu10Ni1 and
Zr50Ti13Nb3Cu20Ni14, respectively. It should be note
that the element Be cannot be detected by EDS, and it is
almost wholly enriched in the MG matrix.[15] The
volume fraction of the dendrites was found to be
approximately 55 pct by analyzing the contrast on the
SEM images. For mechanical experiments, the samples
were still in a cylindrical geometry, and machined to
6 mm in length with an aspect ratio of 2:1. The ends of
samples for mechanical tests were polished to a 1200 grit
SiC surface to ensure alignment.

B. Synchrotron X-ray Measurements

The high-energy synchrotron X-ray diffraction was
carried out at the beamline, 11ID-C, of the Advanced
Photon Source (APS), Argonne National Laboratory,
USA. As schematically shown in Figure 1(b), a digital
image plate (MAR 345, with a 200 9 200 lm2 pixel size)
was positioned 1,800 mm downstream from the sample
to record the scattered intensity in transmission through
the specimens, with a beam size of 0.2 9 0.2 mm2. A
two-dimensional (2D) ring pattern was recorded on the
image plate, as shown in Figure 1(c). Scattering patterns
were extracted by azimuthally averaging the ring pattern
over an arc of approximately 5º centered on the vertical
(loading) direction using the FIT2D software.[27] The
specimens were loaded incrementally in uniaxial com-
pression using a motorized screw-driven load cell, and
the data were collected automatically every 20 seconds,
without stopping the load. All the samples were tested
under compression at a strain rate of 2 9 10�4 s�1.
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The interplanar spacing of the {hkl} planes, dhkl, was
determined in terms of the Bragg’s law, dhkl =
k/2sin hhkl, where 2hhkl is the diffraction angle of
different {hkl} planes and determined by fitting the
position of an individual Debye cone on the diffraction
spectra. Due to the high angular resolution of the
synchrotron-based X-ray diffraction technique, the
slight shift of diffraction patterns could be tracked
during the course of loading. The lattice strain, ehkl, can
thus be obtained by

ehkl ¼
dhkl � d0hkl

d0hkl
; ½1�

where dhkl
0 is the interplanar spacing in the undeformed

state. The diffraction peaks of {110}, {200}, {211},
{220}, and {310} planes of the b phase in the MGMCs
with a BCC structure before and after deformation
are exhibited in Figure 1(d) under compressive
deformation.

Longitudinal

Transverse(110)
(200)

(211)
(220)

(310)

(a)

(c)

(b) (d)

Fig. 1—(a) Scanning electron microscope image of the dendritic crystalline phase (b) in the metallic-glass matrix with the composite composition
of Zr58.5Ti14.3Nb5.2Cu6.1Ni4.9Be11.0 (at. pct) and the crystalline phase volume percentage of ~55 pct. (b) Schematic illustration of the in situ syn-
chrotron X-ray diffraction experiment on the compression sample. (c) X-ray diffraction pattern of the as-cast specimen before deformation. (d)
Line profiles for the specimens before deformation and at an applied stress of ~1500 MPa.

Fig. 2—(a) The finite element simulation is conducted on a compres-
sion specimen with cubic elements in ABAQUS model. (b) and (c)
display all the crystalline grains and the {310} grains, respectively.
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III. MODELING

A. Microstructure-Based Finite Element Simulations

In contrast to the self-consistent model in which a
grain of interest is embedded in an effective homoge-
neous medium,[21,22] the microstructure will be explicitly
simulated with appropriate constitutive models assigned
to each phase as shown in Figure 2. The crystalline
phase can be assigned with a slip-based crystal plasticity
model,[25,26] which describes the Schmid law, slip
anisotropy, and hardening behavior. The constitutive
parameters include elastic constants C11, C12, and C44;
the critical resolved shear stress s0; and those describing
strain-rate dependence and hardening behavior. Details
are given in Section III–B. This model has been imple-
mented in ABAQUS, a commercial finite element
software, through the user-defined material (UMAT)
subroutine,[28] which has been modified further for the
lattice-strain analysis. The MG matrix can be assumed
to be elastic-perfect plastic solids in some cases for the
sake of simplicity with the constitutive parameters of
Young’s modulus E, Poisson’s ratio m, and yield stress
rBMG
Y . However, at the late stage of deformation, the

localized deformation in the narrow shear bands will
give a stress field that cannot be faithfully described by
the elastic–plastic model. To this end, we adopt the free-
volume-based constitutive model for more elaborate
studies since it is capable of capturing the shear-banding
events,[29,30] with details being given in Section III–C.
This constitutive model has been implemented into
ABAQUS using the UMAT subroutine in Reference 29
which allows us to study the interaction between
individual shear bands and the background stress
fields.[31,32]

Compared with the traditional MGMCs with particle-
like crystalline inclusions in the MG matrix,[23,33–36] the
typical characteristic of this kind of composite is that a
large amount of dendritic single crystals with random
crystallographic orientations precipitate in the MG
matrix. However, a full 3D mesh of the dendritic
microstructure in Figure 1(a) is not feasible because of
the fine geometric details. Here, we adopt a uniaxial
specimen in Figure 2(a) with 7,986 cubes.[25] Half of
these cubes belong to the MG matrix, while the other
half are of the crystalline phase, as shown in Figure 2(b).
This configuration is close to the experimental condi-
tion, where the crystalline phases have a volume
percentage of ~50 pct in the MGMC specimens. Each
grain in Figure 2(b) has eight C3D8R elements with the
same crystal orientation, in which the C3D8R element is
a 3D-reduced-integration hexahedral element. Note in
Figure 1(a), each crystalline inclusion is dendritic and
actually consists of multiple grains. All the crystalline
grains are assigned with the same crystal plasticity
constitutive parameters but with different crystallo-
graphic orientations. The boundary conditions in the
current models are with an applied load at one end and
pinned boundary at the other end.

The extraction and calculation of lattice strains, ehkl,
are specified as follows. A subset of grains is selected,
hhkli directions of which are parallel (or within a small

tolerance angle) to the diffraction vector, q. The
tolerance, which is the maximum deviation between
the hhkli direction and q, is chosen in the simulations to
ensure that a large amount of {hkl} grains could be
selected to improve the statistical quality (e.g., ±4 deg in
our simulation). Figure 2(c) exhibits the selected grains
with the h310i crystallographic orientation in the model.
The lattice strain, ehkl, is a volume average of the
projected elastic strain, given by[25]

ehkl ¼

PNgrain

N¼1

R
eelasticij qiqjdXN

PNgrain

N¼1

R
dXN

; ½2�

where dXN is the differential volume of the Nth grain,
and NGRAIN is the total number of grains in hhkli
directions.

B. Crystal Plasticity for Crystal Inclusions

In the slip-based crystal plasticity theory,[37,38] the
crystal will yield when the revolved shear stress reaches a
critical strength on a given slip system (i.e., the Schmid
law), and the constitutive model also needs to specify the
flow behavior and hardening law. From the kinematics
point of view, the deformation behavior of the material
elements is characterized by the deformation gradient:

Fij ¼
@xi
@Xj

; ½3�

where xi and Xi are the current (deformed) and initial
coordinates, respectively. The total deformation gradi-
ent can be decomposed into elastic and plastic parts,
Fij = Fik

e Fkj
p , where Fik

e and Fkj
p denote elastic and plas-

tic deformation components, respectively. The plastic
rate of deformation is

_Fp
ikF

p�1
kj ¼

Xns

a¼1

_c sðaÞ; sðaÞflow

h i
s
ðaÞ
i m

ðaÞ
j ; ½4�

where ns is the total number of slip systems, _c, si
(a),

and mj
(a) are the shear rate, slip direction, and slip

plane normal of the ath slip system, respectively. The
shear rate is a function of the resolved shear stress,
s(a), acting on the slip plane and the flow strength of
the slip system, sflow

(a) . The resolved shear stress is com-
puted as

sðaÞ ¼ m
ðaÞ
i Fe�1

ij JrjkF
e
kls

ðaÞ
l ½5�

where J = det(Fe). The elastic part of the deformation
gradient is related to stress through

Tij ¼ CijklE
e
kl; ½6�

where Ee
ij ¼ 1

2 ðFe
kiF

e
kj � dijÞ is the elastic Lagrange-

Green strain, and Tij is the material stress tensor,
which is related to the Cauchy stress by

Jrij ¼ Fe
ikTklF

e
jl ½7�
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The Pierce–Asaro–Needleman’s constitutive law is
used to characterize the plastic flow and strain harden-
ing, given by

_cðaÞ ¼ _c0j
sðaÞ

sðaÞflow

jnsgn½sðaÞ�; ½8�

_sðaÞflow ¼
X

b

habj _cðbÞj; ½9�

where the self-hardening modulus is given by

haa ¼ hðcÞ ¼ h0 sec h
2j h0c
ss � s0

jðno sum on aÞ ½10�

Here h0 is the initial hardening modulus, s0 is the ini-
tial yield stress, ss is the saturation slip strength (the
stress at which the large plastic flow initiates), and

c ¼
Rt

0

P

a
j _cðaÞjdt is the total accumulated shear strain

on all slip systems. The latent hardening moduli, hab,
are given by

hab ¼ hðcÞ½qþ ð1� qÞdab�ða 6¼ bÞ; ½11�

where q is the ratios of latent to self-hardening.
To summarize, the constitutive behavior of crystals is

characterized by a set of parameters, including the
elastic constants in principal directions (C11, C12, and
C44), characteristic strain rate ( _c0), stress exponent (n),
initial yield stress (s0), saturated yield stress (ss), and
initial hardening rate (h0).

C. Free-Volume Model for the Metallic-Glass Matrix

Following the Spaepen’s free-volume model,[30] the
stress-driven increase in the free volume reduces the
viscosity, thus leading to strain-softening behavior of
MGs. In the pure shear case, the plastic-strain rate ( _cp)
is represented by

@cp

@t
¼ 2f exp � av�

vf

� �

exp �DGm

kBT

� �

sinh
sX

2kBT

� �

; ½12�

where f is the frequency of atomic vibration, a is a
geometric factor of order 1, v* is the hard-sphere volume
of an atom, vf is the average free volume per atom, DGm

is the activation energy, X is the atomic volume, s is the
shear stress, kB is the Boltzmann constant, and T is the
absolute temperature.

The evolution of free volumes is determined by two
competing processes during deformation: the stress-
driven creation and diffusion-dominated annihilation.
Thus, the net change rate of the free volume is given by

@vf
@t

¼ v�f exp � av�

vf

� �

exp �DGm

kBT

� �

� 2akBT
vfCeff

cosh
sX

2kBT

� �

� 1

� �

� 1

nD

� �

; ½13�

where nD is the number of atomic jumps needed to
annihilate a free volume equal to v*, and nD = 3 in the

current calculation, and the effective elastic modulus is
Ceff = E/3(1 � t). Using the small-strain and rate-depen-
dent plasticity framework, the plastic strain is assumed to
be proportional to the deviatoric stress, as generalized
from Eq. [12], while the temporal change in the free
volume is also coupled with theMises stress, as generalized
in Eq. [13]. This constitutive model allows us to study the
interaction between individual shear bands and between
the shear bands and the background stress fields.[31,32]

IV. RESULTS

A. Lattice-Strain Evolution in MGMCs

The compressive engineering stress–strain curve of a
cylindrical MGMC specimen is shown Figure 3(a). Note
that the compressive stress/strain is denoted as positive
throughout this paper. Under quasi-static compressive
loading, the composite exhibits a yield stress of ry =
~1.5 GPa, with a corresponding elastic strain limit, ey =
1.2 pct. After further deformation, linear work harden-
ing prevails until the failure occurs for the MGMC
specimen, with the fracture strength of rf = ~1800 MPa
and plastic strain of ey

p = ~5.6 pct. It could be noted
that the yielding strength of the MGMCs is much higher
than that of single b-phase specimens, which is
~450 MPa in the current case.[15,22] But there is no
indication of yield and subsequent plastic deformation
of the second phase (b) from the macroscopic stress–
strain curve in Figure 3(a).
Figure 3(b) displays the applied stress vs the longitu-

dinal lattice-plane-specific elastic strain (i.e., lattice
strain) curves of the b-Zr crystalline phase in the
MGMCs for {310} grains. Three stages of deformation
can be identified. In Stage I (0 to 450 MPa, an elastic–
elastic stage), the lattice strain of the b-phase crystals
increases linearly with the applied stress, since both the
dendritic crystalline phases and MG matrix are under
elastic deformation. In Stage II (450 to 1480 MPa, an
elastic–plastic stage), the b phase yields at around
450 MPa, and plastic deformation starts thereafter,
which can be concluded from the deviation of lattice
strains in this stage from the extrapolated straight line
from Stage I. In Stage III (1480 to 1550 MPa, a plastic–
plastic stage), both the crystals and MG matrix deform
plastically after 1480 MPa, and the lattice strain
decreases with increasing the applied stress thereafter,
until the ultimate failure of MGMC specimens. We
denote this lattice strain decrease in Stage III as a
‘‘turnover’’ phenomenon, which results from an elastic
relaxation near the second phase. The microscopic
mechanisms responsible for these three stages and their
transitions will be investigated in detail as described in
next section.

B. Elastic–Elastic Deformation of the b-Zr Crystalline
Phase and MG Matrix (Stage I)

Figure 4 gives the measured stress–lattice-strain
curves of the b phase for several grain families. In Stage
I, when the applied stress is below 450 MPa, these
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curves are straight lines with different slopes, which are
governed by the elastic constants of both the crystal and
MG phases, the geometric shape of crystalline phases,
and crystallographic orientations of these dendrites. In
this study, the elastic constants (C11, C12, and C44) can
be fitted from the comparison between the predicted and
the measured slopes of stress–lattice-strain curves in
Stage I. These slopes are denoted as kExp

hkl and kFEM
hkl ,

respectively. The elastic constants are optimized to
minimize the following objective function:

u ¼ k200Exp � k200FEM

� 	2

þ k211Exp � k211FEM

� 	2

þ k220Exp � k220FEM

� 	2

þ k310Exp � k310FEM

� 	2

½14�

The resulting elastic constants are C11 = 91.0,
C12 = 69.5, and C44 = 31.0 GPa, while the reported
elastic constants by the self-consistent model are
C11 = 90.0, C12 = 68.0, and C44 = 33.0 GPa.[21,22]

C. Elastic–Plastic Transition of the b-Zr Crystalline
Phase (Stage II)

When the second phase deforms plastically and the
MGmatrix deforms elastically, the lattice strains deviate
from the straight lines extrapolated from Stage I, which
can be characterized by the intergranular strains
(Dehkl):

[25,26]

Dehkl ¼ eExperiment
hkl � eExtrapolationhkl ½15�

as plotted against the applied stress in Figure 5. The
deviation is a result of load partitioning between ‘‘hard’’
and ‘‘soft’’ phases or grains.[26,39] When two solids are
under an isostrain condition (which corresponds to the
Taylor model of a polycrystal in which all grains have

(a)

(b)

Elastic-elastic stage, in 
which both the MG
matrix and crystalline 
inclusion deform 
elastically.

Elastic-plastic stage, in 
which the MG matrix 
deforms elastically and  
the crystalline phase 
yields around 450 MPa.

Plastic-plastic stage, in 
which both phases deform 
plastically, and the lattice 
strain evolution makes a 
“turnover”.

Fig. 3—(a) The macroscopic compressive engineering stress–strain
curve shows considerable plastic deformation. (b) A representative
stress–lattice-strain curve can be divided into 3 stages. This example
is particularly for grains with their h310i directions parallel to the
loading direction.

Fig. 4—Stress vs lattice-strain curves from the X-ray diffraction with
the extrapolated lines from the elastic stage of each curve. Four
grain families, {200}, {211}, {220}, and {310}, have been measured.

Fig. 5—Stress vs intergranular strain curves for {200}, {211}, {220},
and {310} grains in the transition from Stages I to II.
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the same strain field as the macroscopic one), the one
with a high ratio of yield stress to modulus, rY/E, will
yield later and is the ‘‘hard’’ solid. Once the ‘‘soft’’ solid
(with a low rY/E) yields, the load will be supported by
the ‘‘hard’’ solid so that the corresponding elastic strain
in the ‘‘hard’’ solid significantly increases. In other
words, the ‘‘hard’’ solid will experience positive inter-
granular strains, and the ‘‘soft’’ one with negative
intergranular strains.

The load partitioning occurs not only between the two
phases but also among the grains. As presented in
Figure 5, at the transition from Stage I to Stage II, De200
is the most positive, and De220 is about zero, indicating
that {200} grains are the ‘‘hardest,’’ followed by {310}
and {211} grains, while {220} grains are the ‘‘softest.’’
The ‘‘hardest’’ {200} grains will carry more applied
loads, and their further deformation will decrease the
slope of the r � e200 curve in Stage II, as shown in
Figure 4. In order to testify these experimental results,
the ‘‘hard’’ and ‘‘soft’’ crystal directions could be further
demonstrated by calculations from the strength-to-
stiffness ratio, rcry

hkl, as given by[39]

rhklcry ¼
rhklY

Ehkl
¼ s0

mhklEhkl
½16�

where rcry
hkl and mhkl are the strength-to-stiffness ratio and

Schmid factor in the hhkli direction, respectively; and s0
is the critical resolved shear stress. The first grain family
to yield will be the one with the lowest strength-to-
stiffness ratio, which is the ‘‘softest’’ grain family. Three
sets of slip systems for BCC materials, {110}h111i,
{112}h111i, and {123}h111i, are considered in the
current calculation. In Table I, for the {110}h111i slip
system, the ‘‘hardest’’ grain family is {200} with a rcry

hkl

value of 2.85 9 10�3, followed by {310} grains with a
rcry
hkl value of 1.67 9 10�3, and the {220} and {211} grain
families are the ‘‘softest’’ with a rcry

hkl value of
1.17 9 10�3. For the {112}h111i and {123}h111i slip
systems, the ‘‘hardest’’-to-‘‘softest’’ grain sequence is in
the order: {200}, followed by {310} grains, then {220},
and finally, {211} grain families, and the rcry

hkl values are
all listed in Table I. Therefore, {200} and {310} grain
families are much ‘‘harder’’ than the {211} and {220}

grain families for all these three slip systems. However,
all the intergranular strains of {hkl} grains will become
positive, when the applied stress increases to high
enough (e.g., 1000 MPa), since the MG matrix has a
much higher rMG value of 20.22 9 10�3 than the
crystalline phases, indicating that the matrix is much
‘‘harder’’ than all the crystal grain families.

D. Elastic–Plastic Transition of the MG Matrix (Stage
III)

In uniaxial compression, when the applied stress
reaches ~1480 MPa, the deformation behavior of crys-
tals enters the Stage III in Figure 3(b), in which both the
MG matrix and crystal inclusions deform plastically.
Then, the lattice strain in each crystalline orientation
decreases with the increasing applied stress until the
ultimate failure of the MGMCs specimens occurs.
Our initial ABAQUS simulations employ cubic grains

of random crystal orientations and the elastic–plastic
matrix to simulate the lattice-strain evolution of crystals
in MGMCs. The overall trends of the lattice-strain
evolution of the crystalline phase in MGMCs can be
obtained in Figure 6 with both experimental and
simulated results, after carefully choosing the constitu-
tive parameters for the three families of slip systems,
{110}h111i, {112}h111i, and {123}h111i, in the crystal-
plasticity theory and for the Mises plasticity in MG
matrix, which are all listed in Table II. In Figure 6, it
can be observed that the simulation results have a good
agreement with the experimental results in Stage I, while
some discrepancy appears in Stages II and III. Although
the simulation results exhibit some deviation from the
experimental results in the end Stage II and Stage III, we
obtain the same sequence of different grain families at
various stress levels, such as 800, 1400, and 1500 MPa,
i.e., red–blue–green–black ({220}–{211}–{310}–{200})
from left to right in Figure 6. The discrepancy near
the end of Stage II may result from the highly idealized
microstructure in simulations, as opposed to the actual
dendritic structure, as well as from the hardening law
that may not faithfully represent the deformation
behavior in the crystalline phase.

Table I. Strength-Stiffness Ratios of a Number of {hkl} Grains in the Crystalline Phase and the Metallic-Glass (MG) Matrix,
with an Initial Yield Stress of 150 MPa for the Crystalline Phase

Parameters for the Crystalline Phase

Parameter Slip System {200} Grains {220} Grains {211} Grains {310} Grains

E (GPa) — 129 158 158 138

rcry
hkl(10�3) {110}h111i 2.85 1.17 1.17 1.67

rcry
hkl(10�3) {112}h111i 4.94 2.01 1.22 2.88

rcry
hkl(10�3) {123}h111i 7.53 2.06 1.32 3.51

‘‘Hard’’-‘‘Soft’’ {200}-{310}-{220}/{211}

Parameters for the MG matrix

Parameter Value Parameter Value Parameter Value

rMG (10�3) 20.22 EMG (GPa) 89 rMG (GPa) 1.8
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It should also be noted that thermal residual stress
might exist in the MGMCs, which is developed during
rapid cooling due to the difference in thermal expan-
sion coefficients between the MG matrix and dendrite
crystals. The magnitude of thermal residual stress can
be calculated using the Eshelby equivalent inclusion
method.[40] The residual stress in MGMCs has been
extensively reported to be in the range of 100 to
300 MPa for crystalline inclusions and less than
100 MPa in the matrix.[20,41–44] For the MGMCs in
the current study, there is an initial tensile longitudinal
residual stress in the b phase and a compressive stress
in the MG matrix, which will slightly affect the initial
yield of inclusions in MGMCs, as pointed out in
Clausen et al.[22] Similar to Clausen et al.[22] who used
a self-consistent model but not considered residual
stress, thermal residual stress is not introduced in our
FEMs, but it will be clearly an important future
research line.

V. DISCUSSION

A. Effects of Inclusion Shape and Dendrite Orientation
on Lattice-Strain Relaxation in Stage III

The crystalline phases in the FEM capture some but
not all the features of the dendritic microstructure.
Therefore, it is necessary to examine the effect of
geometric parameters on the predictability of the FEM
results. Using a single-inclusion model, three kinds of
geometric shapes (cubic, spherical, and dendritic mor-
phologies) are employed in the inset of Figure 7. Stress–
elastic strain curves of these different models under
uniaxial compression are presented. The yield stresses
for the inclusion and matrix are 450 and 1400 MPa,
respectively. It could be observed that the slopes of
stress–elastic strain curves increase at ~450 MPa, and
the turnover behavior occurs at ~1400 MPa with an
enlarged view in the inset of Figure 7. It should be noted
that the change in slopes in Stage II are almost the same
for the inner cubic and spherical models, while the
elastic-strain evolution is very different for the dendritic
model. This is due to the introduction of high aspect-
ratio features in the dendrite, and, thus, the severe stress
concentration. However, the trend of lattice-strain
evolution is similar for these three different shapes.
Near the end of these curves, the plastic zone in the
matrix will expand as the applied stress increases, and
the load partitioning by the matrix will relax the elastic
strain in the inclusion that is responsible for the
turnover behavior in the stress vs lattice-strain curves
for the crystalline inclusions. However, we note that this
analysis is based on a continuum plastic model for the
matrix, while the actual deformation is by the shear

Fig. 6—Experimental and finite element simulation results of the lat-
tice-strain evolution curves for {200}, {211}, {220}, and {310} grains.

Table II. Parameters Used in the Finite Element Simulations
with Results Matching the Lattice-Strain Evolution in the

Composites, as Shown in Fig. 6

Crystal Parameters Value

C11, C12, C44 (GPa) 91.0, 69.5, 31.0

Slip Systems {110}h111i {112}h111i {123}h111i

n 10 6.3 10
s0 (GPa) 0.30 0.20 0.50
ss (GPa) 0.80 0.35 0.80
h0 (GPa) 0.0050 0.0050 0.10
q 1.4 1.4 1.4

Parameter Value Parameter Value Parameter Value

EMG (GPa) 89 mMG 0.37 rMG
Y (GPa) 1.45

Fig. 7—Stress vs e33
elastic curves of the single inclusion model with cu-

bic-, spherical-, and dendritic-inclusion shapes (inset).
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bands. This issue will be further illustrated later by the
free-volume model.

Another variable is the orientation of the dendritic
inclusions with respect to the loading direction, since
this trend will directly affect the resulting plastic-zone
development. To reduce the simulation effort, 2D
uniaxial compression simulations on the MGMCs with
45- and 90-deg-oriented dendrite inclusions were per-
formed to investigate the influence of orientations of the
dendrite inclusions on the lattice-strain evolution, re-
spectively. It is found that in the MGMCs with a 45-deg-
oriented dendrite inclusion, no relaxation occurs, as
indicated by (iii) and (iv) in Figure 8(a). In contrast,
slight relaxation can be observed in the model with a 90-
deg-oriented dendritic inclusion, as shown in Fig-
ure 8(c). As discussed in References 45 through 47,
complex stress states under loading can be beneficial in
improving the plasticity of MGMCs. In the 45-deg
dendritic model, the stress concentration initiates from
four corners of the dendrite inclusion and propagates
throughout the entire sample, as shown in the Mises

stress contour in Figure 8(b). In contrast, stress con-
centration only starts from two horizontal dendrite
vertexes, and the other two perpendicular dendrite
vertexes have low stresses, as shown in Figure 8(d).
Therefore, this inclusion-geometry study can provide
some guidance on the design and preparation of
MGMCs.

B. Effects of Localized Deformation in Metallic Glass
on Lattice-Strain Evolution

The studies above successfully predict the lattice-
strain evolution of crystalline phases in MGMCs.
However, the role played by the localized deformation
in shear bands in the MG matrix remains unclear. Thus,
the free-volume-based constitutive model for the MG
matrix is employed to investigate the shear-band ini-
tiation and propagation in the MGMC upon uniaxial
compression. The material parameters for the MG
matrix are vf/av* = 0.05, EX/2kBT = 200, v = 0.37,
nD = 3, a = 0.15, and v*/X = 1, and the normalized

Fig. 8—(a) Stress vs e22
elastic curves for both the inclusion and matrix in the composite with the dendrite inclusion shown in (b), which shows the

Mises stress contours at stress level (iv). Both the matrix and inclusion are simulated as elastic-perfectly plastic solids, with Young’s modulus,
Poisson’s ratio, and yield stress being 89 GPa, 0.37, and 1.4 GPa for the matrix, and 60 GPa, 0.37, and 0.45 GPa for the inclusion. (c) Every-
thing else being the same as (a), the rotation of the dendritic crystalline phase by 45 deg leads to a dramatic change of the lattice-strain evolu-
tion when the matrix yields (i.e., at the very end of the stress–e22

elastic curves). (d) The Mises stress contours of model in (c) at stress level (iv).
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applied strain rate is 10�3 s�1. In simulations shown in
Figure 9, the inclusions are assumed to be an elastic-
perfectly plastic body, with the Young’s modulus,
Poisson’s ratio, and yield stress being 60 GPa, 0.37
and 0.45 GPa, respectively. For comparison, two types
of MGMCs with different inclusion shapes—dendritic
and circular morphologies—are employed for calcula-
tions.

Figure 9(a) describes the lattice-strain evolution for
both the MG matrix and crystalline inclusion in the
circular-inclusion model under compressive loading.
Here, the lattice strain is in fact the elastic strain in
the loading direction, and the applied stress is the one on
the entire specimen. The ultimate lattice strain in the
crystalline inclusion is obtained by averaging the values
of all inclusion grains. As observed in Figure 9(a), with
increasing the applied stress, the lattice strain in both the
matrix and inclusion rises linearly at the beginning till a
deviation occurs at a stress of ~0.8 GPa. Afterward, the

lattice strain of the MG matrix still increases linearly,
while that of inclusions increases at a much lower rate.
This trend is due to the load partitioning following the
yielding of the crystalline inclusion. When the applied
stress reaches ~ 1.7 GPa, the difference of stress/lattice-
strain slopes between the MG matrix and inclusion
becomes more significant. With the further increase in
the applied stress, the lattice strain of the matrix
increases significantly, while that of the inclusions begins
to decrease, i.e., turnover phenomenon happens. To
obtain insights into the mechanism responsible for the
stress/lattice-strain slope change in the matrix and
inclusion, particularly on the turnover behavior, the
free-volume contours at stress level (iv) are plotted in
Figure 9(b). Note that SDV1 in Figure 9(b) denotes the
first solution-dependent state variable (SDV), which is
employed to represent the free volume in the UMAT
code.[29] At the stress level (i), although inclusions have
already yielded at a nominal yield stress of 0.45 GPa,

Fig. 9—Stress vs e22
elastic curves for both the inclusion and matrix in the composite with multiple circular (a) and dendritic (c) inclusions, respec-

tively. The Mises stress contours are shown at stress level (iv) for circular (b) and dendritic (d) model, respectively. The matrix is described by
the free-volume constitutive model, with the Young’s modulus and Poisson’s ratio being 200 GPa and 0.37, respectively. Other parameters can
be found in the text. The inclusion phase is an elastic-perfectly plastic solid with the Young’s modulus, Poisson’s ratio, and yield stress being
60 GPa, 0.37, and 0.45 GPa, respectively. All figures are given in a deformed mesh with a displacement magnification ratio of 1, and the state-
dependent variable 1 (SDV1) specifies the free volume.
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and the free volume in the matrix starts to localize
around the matrix/second phase interface, no stress/
lattice-strain slope change occurs. This trend indicates
that the load partitioning in the MGMCs does not
happen immediately following the yielding of inclusions.
When the load is increased to 1.2 or 1.7 GPa, localized
deformation begins to form in shear bands, typically as
demonstrated in stress levels, (ii) and (iii). At these two
stages, more loads will be transferred to the matrix,
resulting in much increased lattice strains, while the
lattice strain in the crystalline inclusion tends to evolve
slowly. In Figure 9(b), the shear bands can be observed
to initiate at an angle of ~45 deg from the matrix/
inclusion interface and propagate outward. Ultimately,
when the localized shear bands propagate and link with
each other, the lattice-strain relaxation in the inclusions
become more significant, and the turnover behavior will
emerge at the stress level (iv).

The study on the dendritic-inclusion-embedded
MGMCs with the free-volume model is presented in
Figures 9(c) and (d), which exhibit similar trends with
the circular-inclusion model. The only difference is that
the shear bands preferentially initiate from vertexes of
the dendritic inclusions in Figure 9(d). This trend
demonstrates that the geometry of the inclusions does
not exert significant influence on the lattice-strain
evolution. Note that in these simulations, MGMCs
contain roughly 20 pct (volume percent) of crystalline
inclusions. However, in the real specimens, the volume
percentage of crystals is ~50 pct. The only difference
between the high-volume and low-volume percentage
cases is that the chance of forming a dominant shear
band by connecting many minor ones is much lower for
the high-volume percentage case, due to the enhanced
blocking effect of second phases. Clearly, the success of
the MGMCs in the ductility enhancement needs to reach
the percolation limit, below which the plasticity of
MGMC specimens cannot be enhanced significantly.

VI. CONCLUSIONS

In summary, microscopic deformation mechanisms in
the in situ MGMCs have been examined using syn-
chrotron X-ray scattering and FEM under compressive
loading in the current study. In a uniaxial compression,
the r � ehkl curves of the crystalline inclusions could be
divided into three stages. In Stage I, both the inclusion
and matrix are elastic, before the crystalline inclusions
yield at an applied stress of ~450 MPa. In Stage II,
crystals undergo plastic deformation, while the amor-
phous matrix remains elastic until ~1480 MPa. In Stage
III, beyond 1480 MPa, both the crystal and matrix yield
and are subjected to the plastic deformation until the
ultimate failure of specimens occurs. After the b phase
yields, the stress concentrations appear in the MG
matrix, resulting in the yielding behavior of the matrix
at an applied stress slightly lower than its macroscopic
yield stress. Different crystal geometries, including
cubes/spheres/dendrites, are used to examine the inclu-
sion-shape effects on the elastic strain evolution of the
inclusions. Both the elastic-perfectly plastic model and

the free-volume-based model are used for the MG
matrix, which successfully explain the relaxation of
elastic strains in the second phase and also the effects of
geometric shape and dendrite orientations. Moreover,
the current study can provide some guidelines in the
design and preparation of MGMCs. For example, the
45-deg dendritic inclusions should work better in im-
proving the ductility of MGMCs, compared with the
90-deg case, because more stress concentration is intro-
duced into the MGMC specimens upon loading for the
45-deg case. The percentage of crystalline inclusions
should be above the percolation limit so as to block and
deflect the shear-band propagation to form a major
shear band, which can lead to the catastrophic failure of
MGMC specimens.
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21. B. Clausen, S.Y. Lee, E. Üstündag, C.N.P. Kim, D.W. Brown, and
M.A.M. Bourke: Mater. Sci. Forum, 2002, vols. 404–407, pp. 553–
60.
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