Characterizing the Local Primary Dendrite Arm Spacing
in Directionally Solidified Dendritic Microstructures
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Characterizing the spacing of primary dendrite arms in directionally solidified microstructures is
an important step for developing process—structure—property relationships by enabling the
quantification of (i) the influence of processing on microstructure and (ii) the influence of
microstructure on properties. In this work, we utilized a new Voronoi-based approach for
spatial point pattern analysis that was applied to an experimental dendritic microstructure. This
technique utilizes a Voronoi tessellation of space surrounding the dendrite cores to determine
nearest neighbors and the local primary dendrite arm spacing. In addition, we compared this
technique to a recent distance-based technique and a modification to this using Voronoi tes-
sellations. Moreover, a convex hull-based technique was used to include edge effects for such
techniques, which can be important for thin specimens. These methods were used to quantify the
distribution of local primary dendrite arm spacings, their spatial distribution, and their corre-
lation with interdendritic eutectic particles for an experimental directionally solidified Ni-based
superalloy micrograph. This can be an important step for correlating processing and properties

in directionally solidified dendritic microstructures.
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I. INTRODUCTION

DEVELOPING an enhanced understanding of
mechanical behavior in materials relies upon sufficiently
characterizing microstructure details at the relevant
length scales that contribute to this behavior. Moreover,
to truly enhance the predictive capability of processing—
structure—property models that aim to improve material
performance requires a quantitative stereological
description of the relevant microstructure features and,
thereby, the material itself. Predictive models that
effectively capture the linkage between processing and
properties (through microstructure) can be utilized
within an integrated computational materials engineer-
ing (ICME) approach to design materials and accelerate
their insertion into application.

The focus of the present work is on single-crystal
nickel-based superalloys, which are used in turbine
blades within the hi%h temperature section of the
modern turbine engine.!"? In single-crystal nickel-based
superalloys, there are a number of length scales of
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microstructure that contribute to mechanical behavior,
ranging from the y’ precipitates to pores and eutectic
particles to the dendrites themselves. At the largest
microstructure length scale in directionally solidified
single-crystal microstructures, the features of interest are
the dendrites; many features at lower length scales (e.g.,
eutectic particles, precipitates, etc.) or at similar scales
(e.g., porosity, freckle defects, etc.) are strongly associated
with the dendrite arm spacing and morphology.” "' The
solidification morphology associated with dendrite arm
spacing has been described in the literature.”! Histori-
cally, the primary dendrite arm spacing (PDAS) has been
found to correlate with processing (e.g., solidification
rate)”"'* ' as well as with properties (e.g., creep strength,
fatigue properties).'>®! For instance, Lamm and Singer'®
produced single-crystal nickel-based microstructures
(PWA 1483) with a varied range of different dendrite
arm spacings (250 to 600 um) and found that decreasing
the mean dendrite arm spacing was associated with an
increased high-cycle fatigue life. The fatigue cracks were
found to originate at shrinkage porosity and the largest
pores correlated with a large PDAS.

The traditional approach for measuring PDAS in
single-crystal metals, whereby the number of dendrite
cores in a specified area is related to the dendrite arm
spacing!'®1%!" is given by:

A
A=cy\/— 1
o/, i
where 1 is PDAS, 4 is the area analyzed, n is the number
of dendrites, and ¢ is a coefficient that depends on the
microstructure. McCartney and Hunt!'” showed that
¢ = 0.5 for a random array of points, ¢ = 1 for a
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square array of points, and ¢ = 1.075 for a hexagonal
array of points; they had to apply a correction for the
bulk dendrite arm spacing A as processing conditions
caused a change in the local environment of the
dendrites. However, this approach is insufficient for
capturing local arm spacings or the dendrite arm
spacing distribution, and may provide problems with
complex geometries such as turbine blades. In fact, part
of the motivation for quantifying the local PDAS is that
a narrow distribution (i.e., low standard deviation) of
local PDAS values may result in a more homogeneous
distribution of interdendritic microstructure features
and, more importantly, a narrow distribution of
mechanical properties.!'™ For instance, structural inho-
mogeneities in single-crystal components, which may
cause wider property variations, have been correlated to
asymmetric heat flux and transients in solidifications.!'”’
The research objective herein is to evaluate the
capability of some recent approaches, as well as some
modified versions of these approaches, for characteriz-
ing the local dendrite arm spacing within experimental
dendritic microstructures. In this work, an experimental
dendritic microstructure is used for this analysis along
with three different techniques that are based on the
nearest neighbor spacing and/or a Voronoi tessellation
of the dendrite cores. Comparison of existing and new
metrics with traditional PDAS metrics is discussed for
both local and global measures. The current methods
investigated supply statistical information of local spac-
ing and coordination number while introducing a
technique for addressing edge effects and examining
the parameter sensitivity of these different methods. In
comparison to previous work,” this work introduces
and compares the statistical distributions of local
dendrite arm spacings for the four methods, for a more
quantitative analysis. It was found that augmenting
existing techniques with Voronoi tessellations to define
the subset of first nearest neighbors or refining existing
Voronoi-based techniques resulted in a more physical
description of the local dendrite arm spacing. Moreover,
for certain cases, the mean local dendrite statistics can
adequately approximate the PDAS found with the
traditional bulk characterization technique (Eq. [1]).

II. METHODOLOGY

The approach utilized herein to measure the local
dendrite arm spacing is based on a Voronoi tessellation
of the spatial array of dendrite cores. The following
analysis techniques were implemented in MATLAB
R2012a (The MathWorks, Inc.). To illustrate how the
present method works and differs from some other
published methods, we generated a synthetic 5 x 5 cubic
pattern of points with a small degree of noise (100 pct
noise fraction, 0.20a, noise fraction[z]), as shown in
Figure 1(a).”” For the purposes of describing several
different methods shown in Figure 1, this synthetic
pattern of points can be considered as the cores of
primary dendrites.

One such method for measuring the local dendrite
arm spacing is the Warnken—Reed method.*'*?! The
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Warnken—Reed method calculates the dendrite arm
spacing for a single point (black dot) by starting with
an initial number of nearest neighbors, kjniial, (3 closest
neighbors) and iteratively adding potential nearest
neighbors that are within a cutoff distance defined by
the already-added nearest neighbors. For instance, the
inner circle in Figure 1(b) represents the average spac-
ing, d,ys, of these neighbors and the outer circle repre-
sents the cutoff for adding the next neighbor, d,,, +
adyq, where dgq is the standard deviation of the nearest
neighbor spacings and « is a parameter that is typically
between 1 and 2. Neighbors continue to be added until
the cutoff does not include any new neighbors. The local
coordination number and dendrite arm spacing is
calculated from the neighbors added (shown as red
dots). However, if the standard deviation of the dis-
tances of the nearest neighbors dgq or the parameter o is
large, this technique can continue to add nearest
neighbors beyond the first nearest neighbors; our
implementation stopped after 20 nearest neighbors.
Clearly, a method for restricting the number of nearest
neighbors using such a technique is necessary.

A simple way of identifying the potential first nearest
neighbors is to perform a Voronoi tessellation of the
space surrounding the points, as shown in Figure 1(c).
The polygon edges are equidistant between the points
contained in the two adjacent polygons and the triple
points (merging of three lines) are equidistant between
the points contained in the three adjacent polygons.
Therefore, the first nearest neighbors (FNNs, shown as
open circles in Figure 1(c)) correspond to the edges of
the central polygon (that contains the black dot). This
subset of points is the maximum number of nearest
neighbors that the central point can have.

In this manner, several techniques have been identi-
fied to quantify a local dendrite arm spacing based on
the Voronoi-identified FNNs.*' For instance, the
Voronoi Warnken—Reed method (Figure 1(d)) only
includes the Voronoi FNNs as potential nearest neigh-
bors and cannot expand beyond these, alleviating a
potential problem of selecting second nearest neighbors
or greater. Another method using the Voronoi FNNS is
to consider all of these potential nearest neighbors as
nearest neighbors (Figure 1(e)), as in Brundidge er a/.'¥
Unfortunately, this approach is sensitive to small
perturbations in the spatial positions of the neighbors.
For instance, if the lower right hand neighbor in
Figure 1(e) moves away from the central point, it no
longer shares an edge with the polygon containing the
black dot; in this scenario, the two adjacent polygons on
either side effectively “pinch” off this neighbor. This
scenario, however, has a physical basis as these two
dendrite cores mainly compete with the central core, and
the lower right core has a much less prominent effect on
the central core. The last method, which is examined in
the present paper, utilizes a criterion based on the edge
lengths of the Voronoi polygon. In Figure 1(f), those
neighbors with edge lengths less than a critical fraction,
derii, of the total polygon perimeter are excluded as
nearest neighbors (e.g., 10 pct in Figure 1(f)). In
the present study, the local dendrite arm spacing
statistics are evaluated using these four techniques:
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Fig. 1—The difference between various methods for defining the nearest neighbors (red dots) and their spacing for a single point (large black
dot). (a) Initial 5 x 5 cubic pattern with noise fraction of 100 pct and noise level of 0.20ay. (b) The Warnken—Reed method with « = 1.5 and
Kinitiat = 3. The inner circle represents the average spacing, d,y,, of these neighbors and the outer circle represents the cutoff for adding the next
neighbor, daye + 0dga. (¢) Voronoi tessellation diagram for the points. The potential first nearest neighbors are identified through shared vertices
with each point. (d) The modified Warnken—Reed method with « = 1.5 and kjniia1 = 3, whereby the neighbors are restricted to only those iden-
tified using the Voronoi tessellation. (¢) Using only shared vertices (and connecting lines forming a polygon) of the Voronoi tessellation to iden-
tify the nearest neighbors (d.;, = 0.0). (f) Modified tessellation-based technique whereby the nearest neighbors are identified as those with line
lengths above a critical threshold fraction of the total perimeter line length d.; = 0.10 of the tessellated polygon for the point (Reprinted

from®®) (Color figure online).

Warnken—Reed, Voronoi Warnken—Reed, and the
Voronoi technique with (d.;>0) and without
(deriv = 0) a line length threshold.

As an example of a more disordered structure,
Figure 2 plots the four different methods for a different
configuration of surrounding points (dendrite cores). In
Figure 2(b), the iterative Warnken—Reed method con-
tinues to non-physically add neighbors beyond the first
nearest neighbors due to a large initial dyq value from
the initial three distances. The Voronoi-modified version
in Figure 2(d) stops at four nearest neighbors despite the
fact that several points lie within the outer boundary
computed by this method. The Voronoi method with
d.iv = 0.0 clearly overestimates the number of nearest
neighbors, while the four nearest neighbors identified
through d..;; = 0.10 (Figure 2(f)) perhaps offers a better
approximation of the number of nearest neighbors.
Interestingly, comparing the methods in Figures 2(d)
and (f), the coordination number is the same, but the
nearest neighbors identified is different. This is due to
the Warnken—Reed method being a distance-based
method, and identifying the four closest neighbors,
while the modified Voronoi technique is based on the
edge lengths of the Voronoi polygon, and hence utilizes
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this to identify nearest neighbors (which may not be the
closest neighbors).

The traditional PDAS metric does not consider the
order or disorder of the dendrites within the micro-
structure. Figure 2 illustrates why a local metric for
PDAS may be needed. For the field of view given in
Figures 1(a) and 2(a), the bulk PDAS metric would be
the same since the number of dendrites # and the area 4
are equal (see Eq. [1]). However, the disorder of the
dendritic structure in the case of Figure 2 may yield (i) a
more uneven distribution of solute elements, (ii) the
formation of second phase particles, (iii) the formation
of gas or shrinkage porosity, or (iv) the lateral growth of
secondary dendrite arms. Hence, in addition to the bulk
PDAS values, understanding how processing conditions
may impact the disorder of the dendritic structure may
be important for understanding the properties of direc-
tionally solidified alloys.

Other techniques exist for quantifying the homoge-
neity or heterogeneity of PDAS in directionally solidi-
fied dendritic microstructures. For instance, the minimal
spanning tree (MST) method® provides a statistical
analysis of the disorder in a system of points by
connecting all points with the shortest line segments
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Fig. 2—The difference between various methods for defining the nearest neighbors (red dots) and their spacing for a single point (large black
dot) with a distorted local environment. Parts («) through (f) are as Fig. 1: (a) initial pattern, (b) the Warnken—Reed method with « = 1.5 and

Kinitial =
(e) the Voronoi method (der; =

possible. In this manner, the mean distance of all line
segments (m) and the standard deviation (o) characterize
the disorder of the system and casting these values into a
m-a design space allows for comparison between differ-
ent point systems.**! This has been eﬂectlvely applied to
characterize the mean dendrite arm spacing, PDAS
distribution, and the disorder in first Pb- Tl allo?/s Tand
subsequently in other alloy systems.! As an
example of this technique, Figure 3 plots the dendrite
cores and connecting line segments for the single-crystal
nickel-based superalloy micrograph used in this study
(Figure 4). Moreover, other methods such as radial
distribution functions, fast Fourier transforms, and/or
correlation functions can also be used to characterize the
dendrite arm spacing distribution. However, it should be
noted that these approaches are not intended for local
characterization of the dendrite arm spacing and are not
as effective for correlating the local spacing with local
microstructure features as shown herein. Moreover,
these techniques do not quantify the number of nearest
neighbors and are often coupled with Voronoi polygons
to compute the nearest neighbor distributions. Rather,
these analysis methods are more effective at character-
izing and comparing the homogeneity/heterogeneity of
the dendritic structure between different processing
conditions. Hence, there will be limited discussion of
these techniques in the present work.
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3, (c) the Voronoi tessellation diagram for the points, (d) the Voronoi-modified Warnken—Reed method with o = 1.5 and kjnjgja1 =
0.0), and (f) the modified tessellation-based technique with d . =

3,
0.10 (Color figure online).

III. RESULTS

A. Application to Dendritic Microstructure

A micrograph of a directionally solidified single-
crystal nickel-based superalloy microstructure that is
polished and imaged perpendicular to the solidification
direction is shown in Figure 4. This microstructure was
produced usmg the 11c]1u1d metal cooling technique, as
described in Miller®® and Elliott er al™ First, the
dendrite cores were identified manually (white and black
dots). Automated methods to identify dendrite cores can
be invaluable for future large scale analysis.?”**) More-
over, the white particles in this image are eutectic
partlcles A total of 393 dendrite cores are contained in
this image over an area of 24.25 mm?, giving a PDAS of
248.4 um using ¢ = 1 (Eq. [1]). The remainder of the
analysis uses this micrograph as a template for charac-
terizing the local dendrite arm spacing.

B. Accounting for Image/Part Edge Effects

The ability to handle edge effects when computing
local dendrite arm spacings with dendrite cores is vital
for quantifying statistics in thin sections, such as the
wall of an airfoil blade that ma only contain 1 to 3
dendrite cores across the section.”-**] As a first example
of one such a technique, we have used a convex hull of
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Fig. 3—Minimal spanning tree method® for defining the spacing
and homogeneity of a microstructure (set of points), whereby the
lines represent the minimal distance of connecting line segments. The
set of points selected for this example were selected from the den-
drite cores shown in Fig. 4, where the white dots indicate ‘edge’ den-
drite cores.

Fig. 4—Dendritic structure normal to the withdrawal direction in a
directionally solidified single-crystal nickel-based superalloy cast
using the liquid metal cooling technique.”® The dots denote the den-
drite cores, where the white dots indicate ‘edge’ dendrite cores, as
discussed in Fig. 5 and the associated text.

the dendrite cores in Figure 4 to identify “edge”
dendrite cores and quantify the dendrite arm spacing.
The dendrite core locations are first extracted from the
experimental image, as shown in Figure 5. Then, a
convex hull is generated around the points; this is the
minimum ‘“‘convex’ area that contains all the points.
Next, the edge points (white dots in Figure 4) are
identified by finding those points with Voronoi vertices
that lie outside of the convex hull (dotted blue line in
Figure 5(a)). Then, to utilize Voronoi-based techniques
for these points, a new polygon is generated by the
intersection of the initial polygon from the Voronoi
tessellation and the convex hull; the new polygon of the
edge dendrite cores is colored red in Figure 5(a) to
distinguish from the bulk dendrite cores. The polygons
belonging to the interior and edge dendrites are shown
in Figures 5(b) and (c), with a random coloring scheme

430—VOLUME 45A, JANUARY 2014

B Oon D B - A o -

.5800530%?99‘%%‘3333%9
\*)

 OOARAIASEE A0 Roa0

gl

Sl

; o°oﬁ%a°o°°§° SRSaae |

(b) Interior dendrite cores (C) Edge dendrite cores

Fig. 5—(a) Voronoi tessellation of dendritic structure from Fig. 4.
The dotted blue line (surrounding the points) denotes the convex
hull of the dendrite cores and the red polygons delineate the cores
that intersect the convex hull. The interior and edge dendrites are
shown in (b) and (c), respectively, with each polygon colored differ-
ently as a guide to the eye (Color figure online).

used to delineate the different polygons. Last, the
neighbors can now be calculated using either a new
criterion or the same criterion used for interior points.
For the present analysis, the same criterion (polygon
with edge length threshold) was used for all points;
although herein the interior dendrite cores are used to
compare statistics with other techniques and bulk PDAS
values. More complicated techniques are needed to deal
with complex geometries that include concave character
and internal passages in order to eventually apply these
techniques to complex structures such as turbine blades.
Multiple instantiations of microstructures with edge
effects can shed light on the appropriate method for
determining the local PDAS at edges, which may be
different from that used in the interior.

C. Spatial Distribution of Local Primary Dendrite
Arm Spacings

The spatial distribution of local dendrite arm spacing
and coordination number can provide insight into the
order/disorder of primary dendrites and can identify
regions that could potentially contain more/less inter-
dendritic features and/or contain different properties.
For instance, the PDAS and coordination number for the
directionally solidified superalloy micrograph (Figure 4)
is shown in Figure 6. In this example, we used the
Voronoi tessellation-based technique with an edge length
threshold of d.;; = 0.12. Dendrite cores with local
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PDAS similar to the mean PDAS of the bulk (248.4 um)
are colored white and those with PDAS above (below)
the mean PDAS are red (blue); the lower and upper
bounds of the color bar are —25 and + 25 pct of the mean
PDAS value, respectively. In general, the exterior den-
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(b) Coordination number

Fig. 6—(a) Local dendrite arm spacing (um) and (b) coordination
number based on the Voronoi tessellation with edge length threshold
of deiiy = 0.12 or 12 pet.

240

drite cores have similar PDAS as the interior dendrite
cores using this technique. A similar color bar is used for
the coordination number as well. As would be expected,
the exterior dendrite cores tend to have a lower coordi-
nation number than the interior dendrite cores, with a
few that only have 2 nearest neighbors. However, the
dendrite cores with a low coordination number on the
edges are not consistently over/under the mean PDAS
(i.e., they do not significantly bias the statistics from the
edge dendrite cores). Future work will examine what
techniques may be most applicable for characterizing
local dendrite arm spacings and coordination numbers
for dendrite cores on free surfaces. It is envisioned that
sectioning large numbers of instantiations of syntheti-
cally generated microstructures of known bulk dendrite
arm spacings can be used to understand the bias
introduced by edge effects and to understand what are
the best techniques for quantifying the local spacing.
The local dendrite arm spacing for the remaining three
techniques is shown in Figure 7. The same color bar for
local PDAS as in Figure 6 is used here. First, notice that
the Voronoi tessellation-based technique with an edge
length threshold of d.;; = 0.0 has a much larger fraction
of dendrite cores with PDAS greater than the bulk PDAS
than below the bulk PDAS (83.5 pct above 248.4 um).
Clearly, the local PDAS is overpredicted in this case. The
Warnken—Reed and Voronoi Warnken—Reed methods
are shown in Figures 7(b) and (c). At first glance, a
majority of thelocal PDAS values are very similar between
the two methods (~79 pct). However, ~21 pct of the cores
resulted in a difference between the two techniques, which
is caused by the original Warnken—Reed method using
neighbors outside of those FNNs identified from the
Voronoi polygons. In every case, the Warnken—Reed
method resulted in higher local PDAS values than the
Voronoi Warnken—Reed method, as would be expected
since this is purely a distance-based method and sub-
sequent additions can only increase the local PDAS.
Figure 8 shows the difference in local PDAS values
between the two techniques. In several cases, the
difference is greater than 250 um and/or 100 pct of the
PDAS value quantified by the Voronoi Warnken—Reed
method. The differing dendrite cores is approximately
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(a) Voronoi Tessellation (di; = 0.0) (b) Warnken-Reed (o = 2.0) (¢) Voronoi Warnken-Reed (o =2.0)

Fig. 7—Local dendrite arm spacing (um) for the three techniques not shown in Fig. 6: (a) Voronoi tessellation with edge length threshold of
deric = 0.0, (b) Warnken—Reed technique with o = 2.0, and (¢) Voronoi Warnken—Reed with o = 2.0.
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an equal percentage for edge dendrites as well as interior
dendrite cores.

D. Local Primary Dendrite Arm Spacing Statistics

The local dendrite arm spacing statistics are also
calculated for the interior dendrite cores to compare
with the traditional PDAS measurement. The cumula-
tive distribution function plot for the local dendrite arm
spacing is shown in Figure 9 for the three different
techniques over a range of parameter values, which are

Primary dendrite arm spacing ((m) difference

Fig. 8—Difference in the local dendrite arm spacing (um) between
the Warnken—-Reed and Voronoi Warnken—Reed techniques with
o = 2.0. The Warnken—Reed technique had a greater PDAS value in
every case (~21 pct of dendrite cores are different).
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given in the legend. The bulk PDAS measurement is
shown as a vertical black line and the hexagonal star
shows the 50th percentile intersection point. The local
dendrite arm spacing distributions are characterized in
terms of mean, standard deviation, skewness, and
kurtosis (Table I), while the coordination number dis-
tributions are characterized in terms of their mean and
the percentages of 3, 4, 5, 6, and 7+ nearest neighbors
(Table II). The skewness and kurtosis measure the
asymmetry of the distribution and the sharpness of the
peak/thickness of the tail, respectively. The skewness
and kurtosis are 0 and 3, respectively, for a normal
distribution.

There are distinct differences between the local
dendrite arm spacing distributions calculated by the
four techniques (Figure 9 and Table I). The Warnken—
Reed and Voronoi Warnken—Reed are compared ini-
tially. In the case of the Warnken—Reed method, the
PDAS distribution is shifted towards large PDAS values
at high o values (a positive skewness value gives a long
tail) and has a sharper peak and a longer, fatter tail
(high kurtosis values), more so than the other methods.
This skewness is caused by an overestimation of the
number of nearest neighbors in some cases, due to large
values of either dq or the parameter o.. For the Voronoi
Warnken—Reed method, there is a lack of a long tail and
the skewness/kurtosis of the distribution tends more
towards normality. However, the calculated mean
PDAS with this method tends to underestimate the
bulk-measured PDAS. While the maximum number of
nearest neighbors (8 for o > 1.2) is more realistic, a large
percentage of dendrite cores are predicted to have only 3
nearest neighbors, even in the case of a large o
parameter (48.6 pct for oo = 2.0). It is also interesting
that increasing the o parameter for the case of the

1
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Fig. 9—Probability distribution functions for the various local characterization methods compared within for the internal dendrites within the
dendritic microstructure shown in Fig. 4. The four different techniques are compared with the bulk PDAS for a range of parameter values. The
upper bound of the parameter range for each technique is shown as a dotted line. To facilitate the comparison, the Warnken—Reed and the
Voronoi technique (d.;¢ = 0.0) are shown in (a), and the remaining Voronoi-modified techniques are shown in (b).
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Table I. Local Primary Dendrite Arm Spacing Statistics

Primary Dendrite Arm Spacing

Method Parameter Mean (um) Diff. (Pct) Std (um) Skewness Kurtosis
Bulk (Eq. [1], ¢ = 1) — 248.4 0.0 — — —
Voronoi Tessellation deic = 0.00 272.9 99 28.0 0.1 33
Voronoi Tessellation deic = 0.02 270.0 8.7 27.2 0.1 3.2
Voronoi Tessellation deic = 0.04 266.4 7.2 26.8 0.1 3.1
Voronoi Tessellation deic = 0.06 263.0 5.9 25.7 0.1 3.1
Voronoi Tessellation deic = 0.08 258.4 4.0 26.1 0.2 3.1
Voronoi Tessellation deic = 0.10 253.3 2.0 25.3 0.2 3.0
Voronoi Tessellation deic = 0.12 247.6 -0.3 26.0 0.2 2.9
Voronoi Warnken—Reed o =10 230.0 —-7.4 25.0 0.4 3.5
Voronoi Warnken—Reed o =12 230.9 -7.0 26.0 0.4 34
Voronoi Warnken—Reed o =14 232.7 —6.3 27.4 0.4 3.2
Voronoi Warnken—Reed o= 1.6 236.1 -5.0 29.5 0.4 3.1
Voronoi Warnken—Reed o =128 239.0 —-3.8 30.5 0.4 3.0
Voronoi Warnken—Reed o =20 242.2 —-2.5 31.8 0.3 3.0
Warnken—Reed o= 1.0 230.1 -74 25.1 0.3 34
Warnken—Reed o =12 231.8 —6.7 26.9 0.5 3.5
Warnken—Reed o 1.4 234.5 —-5.6 29.4 0.6 3.8
Warnken—Reed o =16 239.2 —-3.7 33.0 0.8 4.0
Warnken—Reed o =128 248.1 -0.1 48.1 1.9 8.3
Warnken—Reed o =20 259.2 43 64.2 1.9 6.5
Minimal Spanning Tree N/A 215.2 —-13.4 34.1 —0.5 4.8
Table II. Local Coordination Number Statistics
Coordination Number (Pct)
Method Parameter 3 4 5 6 >7 Mean
Voronoi Tessellation deic = 0.00 0.0 2.5 20.4 57.3 19.8 5.98
Voronoi Tessellation deic = 0.02 0.0 4.0 26.0 57.0 13.0 5.80
Voronoi Tessellation deic = 0.04 0.0 7.4 34.7 51.4 6.5 5.57
Voronoi Tessellation deic = 0.06 0.0 11.8 45.2 39.9 3.1 5.35
Voronoi Tessellation deic = 0.08 1.5 24.1 49.2 24.8 0.3 4.98
Voronoi Tessellation deic = 0.10 5.3 43.0 41.5 10.2 0.0 4.57
Voronoi Tessellation deic = 0.12 17.3 52.3 26.9 34 0.0 4.16
Voronoi Warnken—Reed o =10 94.1 4.6 0.9 0.0 0.3 3.08
Voronoi Warnken—Reed o =12 87.6 8.7 2.8 0.3 0.6 3.18
Voronoi Warnken—Reed o= 14 79.3 11.8 5.3 2.5 1.2 3.35
Voronoi Warnken—Reed o= 1.6 65.9 18.0 8.0 5.3 2.8 3.62
Voronoi Warnken—Reed o =138 56.3 19.8 12.1 8.4 34 3.84
Voronoi Warnken—Reed o =20 48.6 19.8 14.9 11.5 5.3 4.07
Warnken—Reed o =10 91.6 7.1 0.9 0.0 0.3 3.10
Warnken—Reed o =12 83.9 9.6 4.0 1.2 1.2 3.27
Warnken—Reed o= 14 72.8 14.6 7.1 2.8 2.8 3.52
Warnken—Reed o= 1.6 58.5 21.7 9.0 4.0 6.8 3.89
Warnken—Reed o =138 52.0 19.2 10.8 6.2 11.8 4.63
Warnken—Reed o =20 44.0 19.2 12.1 7.1 17.6 5.55

Voronoi Warnken—Reed method tends to shift the slope
of the probability distribution function without affecting
either the minimum or maximum local dendrite arm
spacings.

For comparison, the minimal spanning tree method
(Figure 3) was also included in Table I. Not surpris-
ingly, the mean distance of the connecting line segments
is much shorter than the bulk calculated PDAS using
Eq. [1] with ¢ = 1. Remember that the MST method is
composed of the shortest line segments to connect all

METALLURGICAL AND MATERIALS TRANSACTIONS A

dendrites. Both the MST standard deviation and kur-
tosis values are larger than the Voronoi tessellation
method (for all d.;;) and the Voronoi Warnken—Reed
method (for all «), indicating a wider distribution and a
larger deviation of the distribution from normality
(kurtosis = 3). Moreover, the distribution is skewed
towards a larger tail at lower distances (negative
skewness) unlike the other techniques, which again is
associated with the selection of the shortest line seg-
ments to characterize the spacing.
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Quantifying the coordination number and the local
PDAS values using all FNNs identified by the Voronoi
tessellation polygons (d.i = 0) clearly overestimates
both measures; mean PDAS is ~10 pct off from the
bulk-measured PDAS value and ~20 pct of dendrite
cores have more than 6 nearest neighbors. As the edge
length threshold parameter increases, less nearest neigh-
bors are identified and the calculated mean PDAS
approaches the bulk-measured PDAS value (within 0.3
pet for d.;; = 0.12). For d.; = 0.12, the majority of
dendrite cores have 4 nearest neighbors (>50 pct),
followed by 5 nearest neighbors (26.9 pct) and 3 nearest
neighbors (17.3 pct). Moreover, the local PDAS distri-
bution has a low skewness value (0.2) and a kurtosis of
2.9, indicating an approximately normal distribution. In
general, the Voronoi tessellation-based technique with
an edge length threshold criterion of d . = 0.12
tends to give the best agreement in terms of both
bulk-measured PDAS and coordination number.

E. Correlation with Interdendritic Features

The relationship between the occurrence of interden-
dritic features (e.g., pores or eutectic particles) and the
local dendrite arm spacing (or distance from cores, etc.)
can provide insight into the importance of quantifying
the local spacings. We have examined how these
metrics may relate to the formation of eutectic particles
in this work by first segmenting the interdendritic
particles and then computing probability distribution
functions.

The eutectic particles in Figure 4 were segmented
using the following process. The particles were seg-
mented by first leveling the intensity of the micrograph
using a cubic polynomial with interaction terms. This
step ensured that there was no shift in contrast from one
side of the micrograph to the other (due to uneven
etching, etc.). The threshold intensity was then selected
by maximizing the difference in the mean intensity
between the two distributions (eutectic particle
and matrix). Then, a size threshold was enforced by

discarding eutectic particles with less than 5 pixels (1 pixel
~1.7 um, i.e., 5 pixels = 15.2 um?). As an example of the
segmentation, Figure 10(a) showsa Imm x 1 mm region
from Figures 4 and 10(b) shows the corresponding binary
image of the segmented eutectic particles (in white). While
other segmentation techniques, such as region grow-
ing,*” have been used to segment these interdendritic
particles features in 3D serial slices, the method utilized
within produced sufficient segmentation of the particles
for the subsequent analysis.

The Euclidean distance to the nearest dendrite core
and the nearest Voronoi vertex was then calculated for
each pixel within the micrograph. The Euclidean dis-
tance is the distance from each pixel to the nearest
feature, which in this case is either the centroids of the
dendrite cores or the Voronoi vertices, and this metric is
repeated over all pixels within the image to create a map.
As an example, Figure 10(c) shows the Euclidean
distance map for the same 1 mm x 1 mm area utilizing
the dendrite core centroids identified in Figure 4. The
darker intensity indicates closer Euclidean distances to
the dendrite core and the lightest pixels between the
dendrite cores actually correspond to the boundaries of
the Voronoi tessellation.

The probability of encountering (or forming) a eutectic
particle can then be calculated as a function of this
Euclidean distance from the nearest dendrite core or the
Voronoi vertex, as shown in Figure 11. Based on the
image segmentation, the area fraction of eutectic particles
in Figure 4 is 3.6 pct and is shown as a red line in
Figure 11. The pixels lying within 100 um of the image
boundaries were excluded to eliminate the possibility that
dendrite cores just outside of the image field of view could
affect the statistics. As can be seen from Figure 11(a), the
left (right) blue line indicates the distance whereby all
distances below (above) have a probability of having a
eutectic particle that is lower (higher) than the global area
fraction (red line), i.e., it is less (more) favorable for a
eutectic particle to form. The transition distance of
eutectic particle favorability is between 86 and 93 um,
i.e.,~1/3 of the PDAS (248.4 pum). This plot shows that it

(a) Original image

(b) Segmented image

(¢) Euclidean map

Fig. 10—(a) A 1 mm x 1 mm subregion from Fig. 4 is shown along with two corresponding images of the same area: (b) a binary image with
segmented eutectic particles (white) and (¢) a Euclidean distance map from the dendrite core centroids, where lighter intensity refers to further

distances from the dendrite cores.
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Fig. 11—The probability of a eutectic particle as a function of the distance to (a) the nearest dendrite core or (b) the nearest Voronoi vertex.
The inset schematic shows the reference point(s) for the Euclidean distance in each plot.
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Fig. 12—The eutectic particle size as a function of the distance to (a) the nearest dendrite core or (b) the nearest Voronoi vertex. The distance
for each particle is the distance for the particle centroid. The 50th-percentile area, 45, = 410 um?, refers to the particle size where 50 pct of the

eutectic particle area lies above/below this size.

is not favorable for eutectic particles to form close to the
primary dendrite core.

Figure 11(b) is a similar plot as a function of distance
from the vertices of the Voronoi tessellation (see
schematic). This plot was generated in a similar manner
to Figure 11(a); a Euclidean distance map was first
formed from the Voronoi vertices, then the boundary
pixels within 100 yum of the image boundaries were
excluded, etc. There is an increased occurrence of
eutectic particles at vertices, regardless of their distance
from the dendrite core. This observation (along with the
fact that the probability of occurrence is higher than in
Figure 11(a) by almost 2 pct) suggests that solute is

METALLURGICAL AND MATERIALS TRANSACTIONS A

forced near the Voronoi vertices, thereby increasing the
probability of eutectic particle occurrence. The transi-
tion distance in this plot is between 67 and 90 um, i.e., at
~1/3 of the PDAS. While this analysis shows the
preferential formation of eutectic particles based on
the local distances, correlation with the size of particles
is also important.

The eutectic particle size may be correlated with the
distance from the dendrite cores or Voronoi vertices as
well. Figure 12 shows the eutectic particle size as a
function of the distance from the nearest dendrite core
and the nearest Voronoi vertice. The solid line shows the
50th-percentile area, As, = 410 um?, which refers to the
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Fig. 13—The probability of a eutectic particle of a certain size occurring as a function of the distance to («) the nearest dendrite core or (b) the
nearest Voronoi vertex. Two particle sizes are considered: particle sizes below and above the 50th-percentile area Aso. The solid line denotes the
distance at which the probability functions first intercept, indicating a transition from the favorability of small particles to large particles (a) or

vice versa (b).

eutectic particle size where 50 pct of the eutectic particle
area lies above/below this size. There is a noticeable
tendency for the larger particles (4 > A4sy) to form
further away from the dendrite core and closer to the
Voronoi vertices, while the smaller eutectic particles
(A < Asp) can form at all distances. However, it is
difficult to quantitatively tell from the following plot
what the preference is for smaller or larger particles as a
function of distance. Therefore, to further quantify this
relationship with respect to the size of the particles, the
probability associated with a eutectic particle pixel
belonging to either a small or large particle is calculated
in Figure 13. Interestingly, in Figure 13(a), at distances
closer to the dendrite cores, there is a clear preference
for smaller particles (4 < Asy) to form over larger
particles (A4 > Asy). At a distance of 84.5 yum (~1/3
PDAS), as denoted by the solid line, there is a
crossover in the probability function and larger parti-
cles are statistically favored to form over smaller
particles. In the case of distances from the Voronoi
vertices, there is a similar behavior except that larger
particles are favored at smaller distances (closer to
Voronoi vertices). The crossover in the probability
functions occurs at 79.3 um (~1/3 PDAS again). At
distances greater than this, there is not as definitive of a
trend as with the dendrite cores, i.e., in some cases,
there is a greater probability for smaller particles to
form and, in some cases, for larger particles to form.
Clearly, the distance from the dendrite cores and,
hence, the local PDAS affect the probabilities of
interdendritic particles to form, though. In a similar
manner, it is anticipated that a similar relationship may
be associated with shrinkage porosity, gas porosity,
and other interdendritic defects.
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IV. CONCLUSIONS

Characterizing the PDAS in directionally solidified
microstructures is an important step for developing
process—structure—property relationships by enabling
the quantification of (i) the influence of processing on
microstructure and (ii) the influence of microstructure
on properties. Thin-walled directionally solidified struc-
tures (e.g., a turbine blade) require new approaches for
characterizing the dendrite arm spacing and the micro-
structure. In this work, we utilized a new Voronoi-based
approach for spatial point pattern analysis that was
applied to an experimental dendritic microstructure.
This technique utilizes a Voronoi tessellation of space
surrounding the dendrite cores to determine nearest
neighbors and the local PDAS. In addition, we com-
pared this technique to a recent distance-based tech-
nique, the Warnken—Reed method, and a modification
to this using Voronoi tessellations, along with the
minimal spanning tree method. Moreover, a convex
hull-based technique was used to include edge effects for
such techniques, which can be important for thin
specimens. These methods were used to quantify the
distribution of local PDASs as well as their spatial
distribution for an experimental directionally solidified
superalloy micrograph. Last, eutectic particles were
segmented to correlate distances from dendrite cores
and Voronoi vertices to the occurrence and size of these
interdendritic features. Interestingly, with respect to the
distance from the dendrite core, it was found that there
is a greater probability of occurrence of large eutectic
particles (>410 ym) over small particles at dis-
tances greater than ~1/3 of the bulk-measured PDAS.
This systematic study of the different techniques for
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quantifying local PDASs, and their effect on micro-
structure, can be an important step for correlating
with both processing and properties in single-crystal
nickel-based superalloys.
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