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The effect of solute atoms on grain boundary migration has been modeled on the basis of the
idea that solute atoms will locally perturb the collective rearrangements of solvent atoms
associated with boundary migration. The consequence of such perturbations is cusping of the
boundary and corresponding stress concentrations on the solute atoms which will promote
thermal activation of these atoms out of the boundary. This thermal activation is considered to
be the rate-controlling mechanism in boundary migration. It is demonstrated that the current
statistical approach is capable of explaining, in phenomenological terms, the known effects of
solute atoms on boundary migration. The experimental results of the effect of copper on
boundary migration in aluminum, due to Gordon and Vandermeer, have been well accounted
for.
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I. INTRODUCTION

IT has been known for a long time that impurity solid
solution atoms have a tendency of segregation to grain
boundaries, an effect which may strongly retard the
grain boundary mobility and thus the kinetics of
recrystallization and grain growth in pure metals, even
when present in the ppm range. The first quantitative
treatment of this phenomenon, usually referred to as
solute drag, was presented by Lücke and Detert,[1] where
they concluded that the effect is due to a direct
interaction between the solute atoms and the moving
grain boundaries.

Since the first quantitative treatment of Lücke and
Detert, two main theoretical approaches of the solute
drag effect on grain boundary mobility have come to
dominate the literature. These are the treatments of
Cahn[2] (commonly referred as the solute drag force
approach) and Hillert and Sundman[3] (commonly
referred as the dissipation approach). Typical applica-
tion examples for the force and dissipation approaches
are found elsewhere.[4–6] In the force approach, the
solute drag is estimated by summing the forces that the
solute atoms exert on the boundary and in the dissipa-
tion approach, by evaluating the amount of free energy
dissipated due to diffusion when the boundary goes
through a volume containing one mole of material. Over
the last few decades, a lot of efforts has been made to
generalize these approaches to a migrating phase
boundary into a multicomponent system.[3,7–9] Indeed,
in the initial treatment of the solute drag effect by Cahn
and by Lücke and Stüwe,[10] the equation used for

evaluating the solute drag does not apply to phase
transformations. It only applies to the migration of
grain boundaries, i.e., to one-phase materials.
The force approach and the dissipation approach

both have a sound physical basis and should therefore
be equivalent. However, the formula for calculating the
solute drag for a migrating phase boundary into a
multicomponent system in steady-state conditions has
been a subject of debates over the years, and it was only
recently that a valid expression has been found with a
remarkable amount of empirical insight.[11] The general
expression has also been derived in a deductive and
completely independent way by applying the principle of
maximum dissipation in Reference 12.
Even if in the recent years more complex situations than

the one treated in the initial studies of Cahn[2] and Lücke
and Stüwe[10] could be tackled, as two different types of
solute,[13,14] curved interfaces,[15] solute drag occurring in a
regular solid solution,[16] during massive phase transfor-
mations[12,17–20] or in nonsteady-state condition,[21,22] they
rely on the same framework: the composition profile of the
solute atoms around the migrating phase boundary is
calculated by solving Fick’s law for diffusion and then the
solute drag stems from the solute profile by applying the
appropriate equation. In the current article, however, we
will limit our discussion to the initial case treatedbyCahn[2]

and Lücke and Stüwe[10]: a moving grain boundary in a
binary solid solution which is supposed to be ideal.

II. BACKGROUND THEORIES

A. The Classical Treatment

Lücke and Detert[1] were the first to present a
quantitative theory of grain boundary mobility which
took into account the interaction between the grain
boundary and solute atoms. Their approach was further
developed by Cahn[2] and Lücke and Stüwe,[10,23] to be
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referred to as the CLS theory. This theory rests on the
assumption that a solute atom near a grain boundary
interacts with the boundary, the interaction force being

FðxÞ ¼ � dUðxÞ
dx

½1�

where x is the distance between the solute atom and
the boundary, and U(x) is the free energy of interac-
tion. For a boundary at rest, this interaction will result
in a symmetrically shaped solute concentration profile
across the boundary region. For dilute alloys (solute
concentrations c � 1), it follows from Boltzmann-sta-
tistics that the boundary concentration cb becomes

cb ¼ c exp �U xð Þ
kT

� �
½2�

where Uðx ¼ 0Þ ¼ �U0, T is the temperature, and k is
Boltzmann’s constant. If a pressure P causes the
boundary to migrate at a rate vb, then a consequence
of this migration will be a redistribution of the solute
concentration in the vicinity of the boundary. This sol-
ute atom redistribution will result in a net dynamic
drag force Ps opposing the migration. And, it follows
from the treatment of Lücke and Stüwe[10] that the
boundary migration rate becomes

vb ¼ mðP� PsÞ ½3�

where m is the intrinsic boundary mobility (i.e., that
corresponding to c = 0). The treatments by Cahn[2] and
Lücke and Stüwe[10,23] are derived on the basis of the
assumption that the effects on boundary mobility due to
the cusp formation resulting from the solute-boundary
interaction can be neglected; the validity of this assump-
tion is discussed later in this section. Another necessary
assumption to derive Eq. [3] is that a migrating bound-
ary in a solute-containing metal can be assigned a
mobility equal to that of the boundary in the pure metal.
Or, it means that the diffusivity of solute atoms across
the boundary is approximately equal to that of the
solvent ones. The consequence of relaxing this latter
assumption has been addressed by Westengen and
Ryum.[24] They demonstrated that by assuming different
boundary diffusion coefficients for solute and solvent
atoms, a drag force of similar nature to that introduced
above will result, even if U(x) = 0 for all values of x.

An important question to be addressed becomes as
follows: Is it acceptable, as proposed by Lücke and
Stüwe,[10] to reduce the effect of solute atoms on grain
boundary migration into a drag only, ignoring the
effects due to in situ interactions between solute atoms
and the boundary? We will try to answer this question
later by considering the phenomenon of solute-induced
cusping of a migrating boundary. First, however, the
main predictions and the general applicability of the
CLS-theory will briefly be considered.

B. Theory vs Experimental Results

In qualitative terms, the CLS theory predicts that a
grain boundary, subjected to a driving pressure (in a

solute-containing alloy), will migrate at a rate which will
depend on solute concentration, driving pressure and
temperature as schematically outlined in Figures 1(a)
through (c), respectively. A characteristic feature dis-
played in these diagrams is the discontinuous speed
changes commonly referred to as break-away or loading
phenomena. For instance, by increasing the solute
content, Figure 1(a), the drop is caused by a discontin-
uous increase in the boundary solute content (loading),
while by increasing the pressure, Figure 1(b), the rapid
increase in speed is caused by a discontinuous decrease
in solute content (break-away). However, these loading/
break-away phenomena are not as precisely defined as
that shown by the fully drawn curves in Figure 1.
Rather, the CLS theory predicts an S-shaped behavior
as indicated by the broken lines. The physical interpre-
tation of this effect is that within these S-regions, where
the theory has no unique solution, a general state of
boundary solute instability exists. Only in the extreme
cases, the CLS theory is capable of quantitative predic-
tions: For low solute contents, high driving pressures,
and high-temperature situations, there is no solute effect
or the boundary is free and has the property of that in
the pure metal, while in the other extreme of a loaded
boundary this theory predicts a migration rate as given
by

vb ¼ CbmDc
�1 Pb3

kT

� �
exp �Us þU0

kT

� �
½4�

where the concentration c is given as atomic fraction, Us

is the activation energy for solute diffusion, b is a typical
inter-atomic spacing, mD is the Debye frequency and C is
a constant.
This relationship was derived for the first time by

Lücke and Detert.[1] While the CLS theory seems to
provide a reasonable description, as shown above
(Figure 1), of the effects of solute atoms on grain
boundary mobility, there are important aspects which
are not satisfactorily covered. The following three
comments seem relevant in this context. First, in the
low solute regime where a break-away situation predicts
no solute-boundary interaction, the classic experiments
of Aust and Rutter[25–28] do indicate the existence of
such an effect as illustrated in Figure 2. Second, within
the relatively broad instability region of the CLS theory
where no predictions can be made, experimental inves-
tigations reveal no similar scatter in migration rate
observations as also evident from Figure 2 or, in other
words, reproducible results can be obtained even in
regions of rapidly changing migration rates. Third, for
solute atoms which have activation energies of diffusion
(within the boundary) different from that of the solvent
atoms, a solute effect on boundary mobility is to be
expected even if the interaction energy U0 is negligible or
zero,[24] in contrast to the prediction of the CLS theory.

C. Boundary Pinning

Machlin[29] considered that a moving grain boundary
should become cusped at a point where it meets a solute
atom, Figure 3(a), and he derived an expression for the
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pinning force by applying a Zener-drag type analysis. He
supposed that the rate-controlling step in the migration
process was diffusion of impurity atoms along the cusped
parts of the boundary.Lücke and Stüwe[23] also considered
this effect of cusping, but they concluded that the Zener-
drag treatment was not very satisfactory from a theoretic
point of view. It requires that the thickness of the boundary
is small in comparisonwith thediameterof the solute atom,
Figure 3(b), where, as argued by Lücke and Stüwe, for an
individual solute atom, just the opposite is true, Fig-
ure 3(c). Lücke and Stüwe’s conclusion is probably correct
in termsof the applicability of aZener-drag type analysis to
obtain the pinning action of individual solute atoms on a
migration boundary. On the other hand, even if a Zener
type analysis has to be rejected, it does not necessarily
follow from such a conclusion that the solute cusping effect
is insignificant or can be ignored. Roy and Bauer[30] were
thinking along similar lines when suggesting a 2D model
where diffusion, both parallel and perpendicular to the
boundary, was considered in terms of causing nonuniform
solute distribution and associated shape changes and
clustering. Their model indicated that clustering of impu-

rities in the boundary and subsequent break away of the
boundary from the clusters are natural consequences of
grain boundary migration.
The objective of the following treatment is to recon-

sider the Machlin idea that solute atom cusping will
retard the migration of grain boundaries. The approach
taken, however, differs from that of both Machlin[29]

and Roy and Bauer.[30] The main effect of cusping in the
current treatment is assumed to be ‘‘stress-concentra-
tion’’ on the cusp-forming atoms and a corresponding
change in the activation volume associated with the
thermal activation of these atoms.

III. THE EFFECT OF SOLUTE PINNING ON
BOUNDARY MIGRATION

A. General Considerations

The migration of a high angle grain boundary in a
pure metal has been treated in terms of different
approaches, a review of which has been given by
Humphreys and Hatherly.[31] All treatments, however,

(a) (b) (c)

Fig. 1—Some possible types of transitions (schematically) from free to loaded boundary; for details, see the text.

Fig. 2—Comparison of the grain boundary migration rates at
573.15 K (300 �C) as a function of solute concentration for tin and
gold as solutes in high-purity lead, from Refs.[25] and[26]. The solid
lines outline the trend displayed by the experimental points.

(a) (b) (c)

Fig. 3—(a) Formation of a cusp on a migrating grain boundary due
to interactions with solute atoms (redrawn from Machlin[29]). (b) and
(c) for boundary thickness small and large, respectively, compared
with the atomic diameter (redrawn from Lücke and Stüwe[10]).
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assume that if a pressure, P, acts on a boundary, then it
will migrate at a rate

vb ¼ mP ¼ CpbmD
Pb3

kT
exp �Ub

SD

kT

� �
: ½5�

In this equation, Cp is a constant and Ub
SD is an

activation energy associated with boundary migration.
This activation energy is typically found to have a value
half that of self-diffusion.

If solute atoms are added to the metal, then the
situation will change. These atoms will interact with
both a stationary and a migrating boundary, as defined
by Eq. [1]. The current treatment assumes a boundary
region potential for the boundary solute interaction as
schematically outlined in Figure 4(a), i.e., U xð Þ ¼ �U0

for x tð Þ � k
2

� �
� xðtÞ � xðtÞ þ k

2

� �
and U(x) = 0 for all

other values of x, where x(t) is the instantaneous
position of the boundary and k its thickness. Outside
the boundary region, thermal activation of the solute
atoms is associated with an energy Us (i.e., that of solute
bulk diffusion) except for jumping into the boundary
where the activation barrier may be somewhat less (U�s
in Figure 4(a)); however, such an energy profile refine-
ment will not be included in the current treatment at this
stage. It follows that in the static case, Figure 4(a), the
solute atom concentration in the boundary will be given
by Eq. [2].

If a pressure acts on the boundary, then the boundary
may start to migrate, and this boundary concentration
will change. In the current model, the basic idea is that
the effect of the solute atoms on the boundary migration
rate will be determined by the rate at which such atoms
are activated out of the boundary region. The pressure P
driving the boundary results in a cusping force FC on
each solute atom, which reduces the activation barrier
out of the boundary by FCb, as illustrated by the
‘‘jumping out of the boundary’’ energy profile in
Figure 4(b). To calculate the size of this pinning force
FC in mechanical terms, a breaking-angle analysis is
required, and as demonstrated by Lücke and Stüwe,[23]

the conclusions which can be drawn from such an
analysis are uncertain indeed. In the current treatment,
however, FC is calculated in a different way making such
an analysis unnecessary; see later.

The presence of the work-term, FCb, may influence
the boundary migration rate as qualitatively described
in the following: Imagine a situation where a pressure
P is applied on a statically saturated boundary at time
t = 0. On the assumption of a dilute solid solution,
the boundary regions far away (in terms of atomic
dimensions) from boundary solute atoms will respond
by migrating at a rate as determined by Eq. [5]. Such
a migration of the boundary is inhibited at the solute
atom sites with the consequence that these atoms cusp
the boundary. Let us assume, for a moment, that these
atoms have infinite interaction energy with the bound-
ary, in which case, the boundary bulges out until the
local curvatures generated counterbalance the applied
pressure. If, on the other hand, the boundary solute
atoms are associated with a local energy situation as

illustrated by the ‘‘jumping out of the boundary’’
energy profile in Figure 4(b), then one alternative
becomes an unpinning of the cusps by thermal
activation of solute atoms out of the boundary
(evaporation into the lattice) and another alternative
becomes un-cusping by boundary rearrangements of
solvent atoms. Which of these mechanisms will be rate
controlling is difficult to decide, but that will depend
on the effect a solute atom has on the local collective
solvent atom rearrangements associated with boundary
migration. However, the current treatment of solute–
boundary interaction rests on the postulation that the
first alternative above, i.e., ‘‘cusping-pressure-biased’’
thermal activation of boundary solute atoms out of the
boundary, is the rate-controlling step for the migration
of the boundary. The objective of the following
becomes to explore the consequence of such a thermal
activation mechanism on grain boundary migration in
dilute solid solutions. This approach represents a 2D
analogy to similar treatments for the corresponding
1D situation, i.e., migration of dislocations where
solute pinning may control the migration rate; see
Hirth and Lothe.[32]

B. The Model

Consider a boundary which migrates because of a
constant driving pressure P. Some time after the
pressure P has been applied, a steady-state boundary
solute concentration cb will be established, to which
corresponds a steady-state boundary migration rate vb.
This steady-state solute concentration will be defined by

/� þ /þ ¼ 0 ½6�

where /� is the rate per unit area at which the solute
atoms leave the boundary and /þ is the corresponding
arrival rate. It should be noticed that only the atoms
jumping behind the boundary contribute to the leaving
rate /�. Indeed, the atoms jumping forward will be
immediately recaptured by the migrating boundary.
Then, the leaving rate /� is proportional to the back-
ward jump frequency out of the boundary m�:

/� ¼ cbnbkm� ½7�

where the boundary concentration cb is given in terms
of atomic fraction, and nb is the number of atoms per
unit volume inside the boundary. Within the context
of the schematic energy profiles in Figure 4(b), the
backward jump frequency m� can be expressed, in
terms of thermal activations, as follows:

m� ¼ C�mD exp �Us þU0 � FCb

kT

� �
½8�

with C� a constant. The work FCb done by the force
FC decreases the energy barrier Us þU0, even if the
atom does not jump in the direction of the force FC

because the displacement of the grain boundary
releases the stress accumulated at the pinning atom.
Finally, the leaving rate is given by
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/� ¼ C�cbnbkmD exp �Us þU0 � FCb

kT

� �
: ½9�

The arrival rate /þ can be written as follows:

/þ ¼ � CþcnbmD exp �Us

kT

� �
þ cnvb

� �
½10�

where c is the bulk solute concentration (in atomic
fraction), n the number of atoms per unit volume in the
bulk of the material, and Cþ is a constant. The first term
in Eq. [10] represents thermal activation of bulk atoms
into the boundary, and the second ‘‘sweeping term’’
reflects the constant flux of solute atoms arriving in the
boundary because of its migrating at a rate vb into a
lattice containing a solute concentration c.

Balancing the expressions for /þ and /� (Eq. [6])
makes it possible to calculate cbðc;T;FCÞ, provided an
expression for the boundary migration rate vbðc;T;FCÞ
is obtained. A characteristic of a steady-state conditions
(Eq. [6]) is that when a solute atom ‘evaporates’ from
the grain boundary, another necessarily will arrive and
pin it again. Consequently, as a statistical average, the
distance the boundary will move in between thermal
activation and repinning typically becomes an atomic
distance of size b. And, it follows that in terms of
thermal activations, the boundary speed can be written:

vb ¼ b m� � C�mD exp �Us þU0 þ FCb

kT

� �� �
: ½11�

The second term inside the parenthesis is required to
take into account the statistical probability that solute

(a) (b)

Fig. 4—Schematic representation of the interactions between (a) a stationary and (b) a migrating grain boundary and solute atoms; for details,
see the text.
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atoms may jump against the cusping induced bias, FCb,
as illustrated schematically in Figure 5. So, a solute
atom has to overcome an energy barrier equal to the
energy barrier when there is no cusping effect Us þU0

plus the necessary energy FCb to compensate for the
work done by the force FC during the backward jump,
as illustrated by the ‘‘jumping with the boundary’’
energy profile in Figure 4(b). In this case, the solute
atom will remain in the boundary and consequently the
jump has no effect on the m�-term. Similar backward
jumps are also included in Hirth and Lothe’s treatment
of solute drag of moving dislocations.[32]

Combination of Eqs. [8] and [11] gives the following
expressions for the boundary velocity vb:

vb ¼ 2C�bmD exp �Us þU0

kT

� �
sinh

FCb

kT

� �
½12�

and by combining this relationship with Eq. [10], an
expression for /þ is obtained and it then follows from
Eq. [6] that the boundary solute concentration cb can
be written:

cb ¼ c
nb

nbk
exp

U0 � FCb

kT

� �

1þ 2 exp �U0

kT

� �� �
sinh

FCb

kT

� �� �
: ½13�

In deriving this expression, the constants C� and Cþ

have been assumed to be of approximately the same size
and have consequently been represented by a common
symbol,Cs, in the following. It is easily seen that Eq. [13] is
consistent with the required boundary conditions that for
low driving pressures/high solute concentrations, i.e.,
FCb=kT� 1, the boundary concentration becomes the
equilibrium level cb ¼ c exp U0

kT

� �
assuming the ratio nb

nbk
nearly equal to 1, and for high pressures/low solute
concentrations, i.e., FCb=kT� 1, cb ¼ c, conditions

referred to as loaded and break-away situations, respec-
tively, in the solute drag theory.
In order to achieve complete solutions of Eqs. [12]

and [13], an expression for the pinning force FC is
needed, or more exactly for the ratio FCb

kT . Fortunately, it
is possible to calculate this force because an alternative
expression to Eq. [12] for the migration rate can be
formulated. By having two independent relationships
for the same migration rate the pinning force problem
can be solved.
A second expression for the boundary speed is

obtained by considering a boundary subjected to a
driving pressure P and which also experiences a
restraining pressure PC ¼ FC=A ¼ FCkcbnb, Figure 4.
In between these restraining points the boundary is free
of solute atoms with a mobility, m, typical of that of a
pure metal, Eq. [5], and it follows that boundary speed
now can be written:

vb ¼ m P� 2c
R
� PC

� �
½14�

with R the effective radius of the boundary curvature
between the restraining points. The pressure stemming
from the grain boundary curvature will be neglected in
the following treatment, which assumes that the grain
boundary remains macroscopically planar during its
migration. It should be remarked that this treatment is
different from the one of Cahn[2] and Lücke and
Stüwe[10] in which the relationship vb ¼ m P� Psð Þ is
applied regardless of whether the grain boundary is free
of solute atoms or not.
By equating the two expressions for the boundary

migration rate, Eqs. [12] and [14], and by replacing m by
its expression, Eq. [5], the pinning force is obtained.
Unfortunately it is not possible to give this force in
terms of an analytical expression; only an implicit
expression can be given:

c ¼ 1

nb3

Pb3

kT � 2 Cs

Cp
exp � UsþU0�Ub

SD

kT

� 	
sinh FCb

kT

� �� 	
exp FCb

kT

� �
FCb
kT exp U0

kT

� �
þ 2 sinh FCb

kT

� �� � :

½15�

However, by numerical treatments, it becomes possible
to calculateFCðc;P;TÞ; cbðc;P;TÞ and vbðc;P;TÞ for any
given combination of materials’ specific parameters
n; b; c; Cp; Cs; U

b
SD; U0; andUs if it is assumed the ratio

nb
nbk

close to 1. In computing the boundary solute concen-
tration cb and the migration rate vb, the size of the pinning
force FC is monitored to check that this force does not
exceed that expected from a mechanical breaking-angle
analysis. As argued by Lücke and Stüwe,[23] such an
analysis is veryuncertain, but anestimate for themaximum
possible force FC is obtained from a Zener-drag type
argument, i.e.,Fmax ¼ pcb, where c is the boundary energy.
In the subsequent numerical treatment, the pinning force
FC is always smaller, or much smaller than this maximum
value; see also Appendix.
In the special case of a low driving pressure/high solute

concentration, i.e., FCb=kT� 1, a good approximate
Fig. 5—Schematic representation of an atom jumping against the
cusping bias FCb.
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solution for the migration rate of a loaded boundary
becomes

vb ¼
2

nb3
CsbmDc

�1 Pb3

kT

� �
exp �Us þ 2U0

kT

� �
½16�

where Cs is a constant. This expression for the boundary
migration rate is, except for the numerical factors 2

nb3
and 2

in front of U0, similar to Eq. [4], i.e., the one which was
originally derived by Lücke andDetert.[1] The origin of the
factor 2 in frontofU0 stems fromthe fact that in the current
model, the interaction energy U0 appears twice: (i) in the
boundary solute concentration in the fully loaded case
(Eq. [2]) and (ii) in the activation frequency of atoms
jumping out of the boundary (Eq. [8]).

C. Model Predictions

In contrast to the solute drag theory, the current
analytical treatment is simple indeed. The predictions
for the boundary solid solution contents cb and the
migration rates vb for grain boundaries, acted upon by a
pressure P in a generic solid solution alloy of various
solute contents c, are illustrated qualitatively in Fig-
ures 6(a) and (b), respectively. The metal studied is
assumed to have a close-packed spacing b equal to 3 Å
(typical value in metals). Then, the atomic density n is
estimated as 1

b3
and the ratio nb

nbk
as close to 1. The values

of the input parameters used are given in Figure 6(a),
except for the activation energy for boundary migration
Ub

SD, which for the sake of simplicity is taken as the half
of the activation energy for solute diffusion US, and for
the constants Cp and Cs for which numerical values 18
and 82, respectively, have been selected (the procedure
adopted for the quantification of these parameters in an
experimental case is explained later). Figure 6(a) shows
the grain boundary concentration cb as a function of the
matrix concentration c for various values of the inter-
action energy U0. The corresponding variation in the
boundary migration rate vb is illustrated in Figure 6(b).

Note that for values of U0 larger than some critical level,
the cb vs c curves become S shaped, and consequently
the vb vs c curve takes the form of a similarly shaped
configuration, broken lines in the figures. A similar
behavior is predicted also by the CLS theory and is
interpreted as an instability phenomenon associated
with either break-away or loading; see Section I. The
physics, however, behind this peculiar behavior is more
transparent in the current treatment where the break-
away/loading phenomenon is reduced to a well-defined
discontinuity (fully drawn lines), the reason for which
can be explained in free energy terms as follows: by
increasing the c-values from the lower side in Fig-
ure 6(a), one eventually reaches the point marked A
where the system spontaneously can lower its free
energy by a discontinuous increase in boundary con-
centration, point B, i.e., a concentration close to the
equilibrium one defined by Eq. [2].
In terms of comparing the predictions which follow

from the current solute pinning approach to that of the
CLS theory, two important differences emerge: (i)The
current model predicts a c-dependence in the boundary
migration rate vb also for c-values below the break-away
level in accordance with experimental observations, e.g.,
Figure 2, in contrast to the CLS theory, and (ii) a strong
solute-pinning effect may, according to the current
approach, prevail even in cases where the interaction
energy U0 = 0. It appears as intuitively obvious that in
cases where the activation energy for solute diffusion in
the boundary is significantly different from that of
boundary self-diffusion, the solute atoms will disturb the
solvent redistribution pattern and restrict boundary
migration even if the ‘‘long range’’ elastic interaction is
negligible. A similar U0-effect is found in the model by
Westengen and Ryum.[24] The effect of varying the main
variables P and T on the boundary migration rate is
illustrated in Figures 7(a) and (b), respectively. While
the CLS theory is capable of making quantitative
predictions only in the low pressure/high concentra-
tion/low temperature (fully loaded) regime, the current

(a) (b)

Fig. 6—Model predictions for: (a) solute atom concentration in the boundary cb vs that in the bulk c in a migrating boundary under constant
driving pressure, for the U0-values given (b) the corresponding variation in the migration rate vb.
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model gives equally good predictions for any combina-
tion of driving pressure, solute concentration and
temperature, as will be demonstrated in the application
section below.

IV. APPLICATIONS

The current model will now be tested on the bases of
some classical experimental investigations, of which the
most notable ones are those due to Aust and Rutter[25–28]

and Gordon and Vandermeer.[33–36] The latter work, on
the effect of small additions of Cu on grain boundary
migration in aluminum, is the most carefully conducted
experiment of its kind, and will therefore be examined
first.

To allow some flexibility in the model, a tuning
parameter has been introduced. The area acted upon by
the restraining pressure PC was taken only as a fraction
j of the geometrical area A initially assigned:

a ¼ jA ¼ j
cbnbk

: ½17�

The physical meaning is that the activation volume
related to the work of the force FC is actually smaller
than the one predicted geometrically. This parameter
modifies the restraining pressure in the following way:
PC ¼ FC

a ¼ 1
jFCcbnbk. The consequence of this takes the

form of introducing j as a multiplication factor in the
right-hand side of Eq. [15], whereas the expressions for
the boundary velocity vb (Eq. [12]) and the boundary
solute concentration cb (Eq. [13]) in function of FC are
unaffected. It also slightly modifies the expression of the
migration rate vb of a loaded boundary (Eq. [16]) which
now takes the form:

vb ¼ 2
j
nb3

CsbmDc
�1 Pb

3

kT
exp �Us þ 2U0

kT

� �
: ½18�

A. The Experiments of Gordon and Vandermeer

These researchers investigated the effect of adding
copper (range 2 to 250 ppm to zone-refined aluminum)
on grain boundary migration.[33–36] The experimental
procedure adopted was to cold roll the various compo-
sitions to a reduction of 40 pct and subsequently follow
the initial stage of recrystallization at various temper-
atures, carefully monitoring initial growth rate of the
largest grain. Great care was exercised to assure that this
initial stage of growth in all investigated conditions
occurred under constant driving pressure.[36] Their
results, in terms of migration rates vs solute concentra-
tion, are shown in Figure 8. From these results it follows
that in the extremes the boundary migration rates are
well represented by Eqs. [5] and [18]. Equation [5]
applies to zone-refined aluminum with an activation
energy Ub

SD ¼ 65 kJ/mol. The results in the ultimate
(high concentration) range satisfy Eq. [16] with Us+2
U0 = 131 kJ/mol. Further, it follows from the behavior
in these extremes that the two pre-exponential constants
can be identified as: CP ¼ 2:5� 109=P and
Cs ¼ 1:2� 1010j=P. A test of the current model now is
to find out if it is capable of accounting for the effect of
solute atoms on boundary migration also in between
these extremes.
In order to apply the current model to the results in

Figure 8, the driving pressure involved needs to be
quantified. Gordon andVandermeer estimated the driving
pressure on the basis of a relationship of the formP = 4Z/
Na0

3, where Z is the stored free energy per mole, N is
Avogadros number, and a0 is the lattice parameter. On the
basis of calorimetric measurements, Z was estimated to
16.7 J/mol which gives P = 1.7 MPa, which again corre-
sponds to a dislocation density estimate (P = 0.5 Gb2q,
where G is the shear modulus and q is the dislocation
density) at q = 1.6 9 1015 m�2. This is indeed a high
density tobe the result of a 40 pct rolling reductionof zone-
refined-grades of aluminum. In terms of a shear flow stress
estimate (s ¼ s0 þ 0:5Gb

ffiffiffi
q
p

), such a dislocation density

(a) (b)

Fig. 7—Model predictions for the variations in the boundary migration rate vb vs (a) the driving pressure P and (b) the inverse temperature 1/T.

METALLURGICAL AND MATERIALS TRANSACTIONS A VOLUME 44A, JULY 2013—3371



corresponds to a stress level of about 150 MPa, which is
about an order of magnitude larger than expected. In
commercial 5N grades of aluminum, the shear flow stress
(in multiple slip, at 40 pct elongation) is found to be about
15 MPa.[37] The typical value for s0 is about 5 MPa, which
again gives the following estimates for the dislocation
density and the stored energy: q = 7 9 1012 m�2 and
P = 7500 Pa, respectively. Gordon and Vandermeer,
however, investigated aluminum with Cu-contents in the
atomic fraction range from 2� 10�6 to 3� 10�4. This
variation in solute content will result in a corresponding
variation in flow stress and driving pressure at a constant
rolling reduction (Table I). This effect is illustrated in
Figure 9 where the driving pressure for three low solute
variants (5N, 4N, and commercial purity aluminum)
indicates an approximate power relationship in this solute
regime. The model predictions illustrated in Figure 8 are
based on this driving pressure relationship. Note that this
fit also requires j ¼ 0; 4 andU0 ¼ 3 kJ/mol, fromwhich it
follows that the activation energyUs becomes 125 kJ/mol,
which is also a reasonable value, close to the activation
energy for bulk diffusion of Cu inAl; 135 kJ/mol.[38] From
the diagram in Figure 8, vb vs 1/T-plots at constant
concentrations can be generated, from which the theoret-
ically predicted variation in the (partly apparent) activa-
tion energy in Figure 10 is obtained. In contrast to what is

observed, nomaximum in the apparent activation energy is
predicted by themodel. As this region does not correspond
to a simple physical mechanism, it is quite difficult to give
an explanation to this discrepancy. The conclusion
becomes that the current theory is able to adequately
account for the Gordon and Vandermeer observations by
means of a fitting parameter.

B. The Experiments of Aust and Rutter

These experiments pertain to the effects of small
additions of Ag, Au, and Sn on grain boundary
migration in melt-grown single crystals of lead,[25–28]

the driving pressure for boundary migration in this case
being the grown-in striation (subgrain) structure. The
claimed advantage of this approach is the thermal
stability of the substructure which assured a constant
driving pressure throughout the experiment. How accu-
rate this claim is will be further discussed below. The
authors did mention, however, the problems of repro-
ducing the striation structure from wire to wire and of
maintaining a constant structure along the wire. This
problem probably explains the considerable scatter (a
factor of 5) in the measured migration rates, especially
for low solute contents; see Figure 2.
Let us first consider the results on the effect of Sn in

Pb, given in Figure 11. The diagram gives the boundary
migration rate as a function of Sn-concentration at
573.15 K (300 �C) at a constant driving pressure P. By
applying the modeling approach described above using
j ¼ 1, Ub

SD ¼ 54 kJ/mol, U0 ¼ 5 kJ/mol and
Us þ 2U0 ¼ 100 kJ/mol the pre-exponential factors
become CP ¼ 4:4 105=P and Cs ¼ 218=P. As can be seen
from Figure 11, the best fit is obtained with a driving
pressure P = 15,000 Pa. This value is more than two
orders of magnitude larger than the driving pressure
estimate made by Aust and Rutter (400 Pa). Keeping
this low driving pressure and adjusting the fitting
parameter j lead to an extremely high value (j ¼ 32),
which seems unreasonable to adopt. However, before
considering the possible reasons for this discrepancy,

Fig. 8—Experimental[33] and theoretically predicted variation in
migration rate vs composition for the temperatures given (filled sym-
bols, actual data points; open symbols, extrapolated values). As
velocities for a pure metal could not be reported in a log–log plot,
they have been plotted at an arbitrary abscise of 2� 10�7.

Table I. Values of the Flow Stress and the Driving Pressure

for Different Purity Degrees of Aluminum at 40 Pct Elonga-

tion Taken from Ref.[37]

Purity of Aluminum re¼0:4 � r0 P ¼ 2
G

re¼0:4�r0ð Þ2
M2

Commercial purity 85 MPa 57� 103 Pa
4N 63 MPa 31� 103 Pa
5N 42 MPa 14� 103 Pa

G shear modulus in aluminum taken as 26 GPa and M Taylor
factor taken as 3. Fig. 9—Variation of the estimated driving force for recrystallisation

in function of the purity degree of aluminum.
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some other observations on the effects of Sn on grain
boundary migration in zone-refined lead need to be
brought to the attention. Some interesting results on
grain growth due to Bolling and Winegard[39,40] are
shown in Figure 12. These results are often quoted as
demonstrating that the effect of these solute elements on
the boundary migration rate increases in the order Sn-
Ag-Au. The effect of Sn is not included in Figure 12, the
reason being that these researchers apparently could not
find any effect of Sn on grain growth at all. It is difficult
to precisely quantify the driving pressure in grain
growth experiments, but at a grain size of about
1 mm, this pressure (P ’ 2cGB=R where cGB is the grain
boundary energy and R the average grain radius) is
expected to be of approximately the same order as in the
experiments of Aust and Rutter. It is, however, very
difficult to understand why an addition of around
100 ppm of Sn to Pb has only a marginal effect on grain
growth, but causing a 4 orders of magnitude change in
the migration rate in the experiments of Aust and
Rutter, Figure 11. A possible explanation will be offered
below, but first the effects of the other solute additions
need to be considered.

A total representation of the Aust and Rutter data is
given in Figure 2. Although the scatter in the Sn and Au
data is considerable, the trend seems clear, indicating a
several orders of magnitude drop in the boundary migra-
tion rate for a solute concentration larger than a few ppm.
Again, this is in total conflict with the grain growth
observations by Bolling and Winegard,[39,40] showing that
the average growth rates at a grain size of 1 mm are
7� 10�6 m/s, 4� 10�6 m/s, and 3� 10�6 m/s taken in the
order pure Pb, Pb-Ag and Pb-Au (Figure 12). While the
driving pressure in grain growth experiments is difficult to
assess, one cannot dispute the fact that these growth rates
all refer to approximately the same driving pressure. An
interesting speculation becomes to which extent, if at all,
the observations of Aust and Rutter really reflect a
constant driving pressure. An important argument in
favor of such a constant pressure has traditionally been
that the striation structure is stable during the migration

experiments.One has to bear inmind, however, thatwe are
here talking about experimentingwith single crystal wires a
few mm in radius and containing, according to Aust and
Rutter, an average dislocation density of about
7 9 107 m�2, i.e., handling thin lead wires having a shear
flow stress of about 0.5 MPa. Doing that without intro-
ducing dislocations in an amount many times larger than
those grown in will be a problem in itself. Bolling and
Winegard reported that as the solute content increased, so
did theflowstressof thematerial (of course).An interesting
speculation then becomes, if by increasing the solute
content, the lead wires become stronger and easier to
handle without introducing additional dislocations, and
accordingly the drop inmigration speed inFigure 2 or 11 is
partly due to a decrease in driving pressure. The studies by
Aust and Rutter provide no answer to such a speculation.
It is, however, the opinion of the current authors that the
observations of Bolling and Winegard cannot be over-
looked in this context. They have convincingly

Fig. 10—Activation energy (partially apparent) for boundary migra-
tion as a function of atomic fraction of copper, experimental data
from Gordon and Vandermeer.[33]

Fig. 11—Model predictions of the boundary migration rate as a
function of solute atom concentration for the given driving pres-
sures, as compared with the results on tin in lead by Aust and
Rutter.[25]

Fig. 12—Grain diameter vs annealing time at 573.15 K (300 �C) for
zone-refined lead (top), zone-refined lead with 100 ppm silver added
(middle), and zone-refined lead with 200 ppm gold added (bottom),
from Bolling and Winegard.[39,40]
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demonstrated that the effects of additions of about 100 ppm
of Sn, Ag, or Au on the grain boundary migration rates in
zone-refined lead at a constant driving pressure caused
migration speed reductions comparedwith thepuremetal of
at most a factor of 3. From these observations, it seems
appropriate toquestion themore spectacular results byAust
andRutter inFigures 2 and11.The current conclusion then
becomes that their results in general are not suited as a basis
for applications in quantitative modeling.

V. CONCLUDING REMARKS

The solute-pinning approach developed in the current
article rests on the assumption that solute atoms within
a migrating boundary perturb the collective rearrange-
ments of solvent atoms associated with boundary
migration, the consequence of which is cusping of the
boundary and a pinning force on the solute atoms. This
pinning force will promote thermal activation of solute
atoms out of the boundary, a reaction which is believed
to be the rate-controlling step for grain boundary
migration in solute-containing metals. It has been
demonstrated that this mechanism is capable of explain-
ing the known effects due to solute atoms on grain
boundary migration in relation to recrystallization and
grain growth phenomena. The experimental results on
the effect of copper on boundary migration in aluminum
due to Gordon and Vandermeer[33–36] have been
described successfully by this new model.

ACKNOWLEDGMENTS

The authors would like to acknowledge the financial
support from the Research Council of Norway KMB
project No. 193179/I40. The authors extend very spe-
cial thanks to Dr. O. Engler for useful discussions and
help in solving the computational problems.

APPENDIX

The information contained in Eqs. [6] through [15]
can be condensed into the following three analytical
expressions:

c¼ j
nb3

Pb3

kT � 2 Cs

Cp
exp �UsþU0�Ub

SD

kT

� 	
sinh xð Þ

� 	
exp xð Þ

x exp U0

kT

� �
þ 2sinh xð Þ

� �

cb ¼ c
nb

nbk
exp

U0

kT

� �
1þ 2exp �U0

kT

� �
sinh xð Þ

� �
exp �xð Þ

vb ¼ 2CsbmD exp �UsþU0

kT

� �
sinh xð Þ

where x¼ FCb
kT and j is the tuning parameter introduced

in the application section. The computational proce-
dure now becomes to find the value of x which satisfies
the first equation, and then the solute concentration in
the boundary cb and the interface velocity vb could be

deduced from the value of x. It should be noted that
the possible values of x are in the interval 0;xmax½ �
where xmax is obtained from the necessary requirement
that the nominator in the first equation has to be lar-
ger than 0. Making it equal to zero gives

xmax ¼ sinh�1
1

2

Cp

Cs

Pb3

kT
exp

Us þU0 �Ub
SD

kT

� �� �
:

Expression of the interface velocity where FCb
kT � 1:

This corresponds to the case of a low driving pressure
or a high solute concentration. If the expression of c is
expanded to the lowest order, then we obtain

c ¼ j
nb3

Pb3

kT

x exp U0

kT

� � :

From this expression we simply get the value of x:

x ¼ j
nb3

Pb3

kT

c exp U0

kT

� � :

By substituting the expression of x into the expression
of the boundary velocity and using the approximation
sinh xð Þ 	 x for small value of x, we easily obtain

vb ¼ 2
j
nb3

CsbmDc
�1 Pb

3

kT
exp �Us þ 2U0

kT

� �
:

It can also be easily demonstrated that
cb 	 c exp U0

kT

� �
nb
nbk

.
It should be noted that in this case, the pinning force

could be expressed in an analytical way:

FC ¼
nbk
nb

Pa:

Everything behaves as if the grain boundary is planar:
It is pinned in so many places that the curvature between
two pinning atoms is small.
Expression of the interface velocity where FCb

kT � 1:
This corresponds to the case of high driving pressure

or low solute concentration. In this case, x is close to
xmax:

x 
 xmax ¼ sinh�1
1

2

Cp

Cs

Pb3

kT
exp

Us þU0 �Ub
SD

kT

� �� �
:

The interface velocity is given by

vb xð Þ 	 vb xmaxð Þ ¼ bCsmD exp �Us þU0

kT

� �
2 sinh xmaxð Þ

vb xð Þ ¼ CpmDb4

kT
exp �Ub

SD

kT

� �
P:

This expression is the same expression of the velocity
of a pure boundary.
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For x� 1, sinh xð Þ 	 ex

2 � 1 and the solute concen-
tration in the boundary cb is given by

cb 	 c exp
U0

kT

� �
nb

nbk
2
1

2
exp �U0

kT

� �
exp xð Þ exp �xð Þ

cb 	 c
nb

nbk
:

For this case, there is almost no segregation at the
moving interface.
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10. K. Lücke and H.P. Stüwe: Acta Metall., 1971, vol. 19 (10),

pp. 1087–99.
11. M. Hillert: Acta Mater., 2004, vol. 52 (18), pp. 5289–93.
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