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Functionally graded steels with graded ferritic and austenitic regions including bainite and
martensite intermediate layers produced by electroslag remelting have attracted much attention
in recent years. In this article, an empirical model based on the Zener–Hollomon (Z-H) con-
stitutive equation with generalized material constants is presented to investigate the effects of
temperature and strain rate on the hot working behavior of functionally graded steels. Next, a
theoretical model, generalized by strain compensation, is developed for the flow stress estima-
tion of functionally graded steels under hot compression based on the phase mixture rule and
boundary layer characteristics. The model is used for different strains and grading configura-
tions. Specifically, the results for abcMc steels from empirical and theoretical models showed
excellent agreement with those of experiments of other references within acceptable error.
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I. INTRODUCTION

FUNCTIONALLY graded materials (FGMs), which
have been developed widely in recent decades, can help
researchers overcome the shortcomings of composite
materials with jumps in material properties.[1] In this
area, functionally graded steels (FGSs) are a special
group of FGMs with elastic-plastic behavior. Some
researchers have studied the fracture characteristics of
specimens with this kind of material distribution.[2] For
example, Bezensek and Hancock obtained the fracture
toughness and the Charpy impact resistance of FGSs
produced by the laser welding process.[3] Aghazadeh and
Shahossini produced another type of FGSs from au-
stenitic stainless and ferritic steels by means of the
electroslag remelting (ESR) process.[4]

During the past decades, FGSs with different config-
urations have been produced and their tensile behavior
has been experimentally studied and simulated consid-
ering the Vickers microhardness profile of over the
material variation direction.[5] Recently, the Vickers
microhardness profile of abc FGSs was predicted using
the theory of mechanism-based strain gradient plasticity
(MSG).[6] In this regard, the dislocation density of each
layer in the graded region is related to the Vickers
microhardness of the layers. Afterward, the tensile
strength,[7] Charpy impact energy,[8] fracture tough-
ness,[9] and behavior of notched structures[10] made of
functionally graded steels were analytically obtained by
MSG theory. Nevertheless, limited work was done to

investigate the hot working characteristic of FGSs. Only
in Reference 11 is the mean flow stress of FGSs under
hot compression assessed based on a combination of
constitutive equations and a mixtures rule based model.
This work was related to the parameter of the compres-
sion strain to the strains of each individual layer of
FGSs considering the variation of volume fractions at
each layer. Even though this assumption was justified
for abc and cMc FGSs, the results were limited to a
compressive strain of 0.5.[11]

Hot deformation behavior of metals and their alloys
has major importance in the proper design of instrumen-
tations for large deformation processes such as hot
rolling, forging, and extrusion. Recently, the finite ele-
ment method was widely used to study the material
forming process. This numerical simulation may be
reliable when proper stress-strain relationships are used
to model the forging process of mechanical elements
under appropriated loading conditions.[12,13] It must be
noted that the forming temperature and strain rate change
the hardening and softening mechanisms during the
process. In general, higher strain rates and lower temper-
atures increase the resistance of plastic deformation and
make the flow stress higher. Accordingly, the effects of
these parameters are usually studied simultaneously.
Therefore, much effort has been put into predicting good
constitutive equations based on metallurgical factors to
describe the plastic deformation of materials during hot
deformation processes. This is always developed based on
the deformation parameters including the strain, the
strain rate, and the temperature.[14–17]

In this work, we tried to investigate the influence of
strain, strain rate, and temperature on the compressive
hot working behavior of FGSs with different grading
compositions. For this, an empirical model is presented
to obtain the flow stress of abcMc FGSs that considers
the strain compensation. In addition, a theoretical
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model is presented to assess the flow stress of FGSs
under hot compression based on the Zener–Hollomon
(Z-H) constitutive model and the mixtures rule. The
given data for the flow stress of abcMc steels from both
methods are verified with the experimental results of
other references.

II. PROBLEM STATEMENT

In dealing with hot compression modeling of an
isotropic material, some integrated constitutive equa-
tions were developed that relate the plastic stress to
working parameters such as the strain, strain rate, and
temperature.[15,18] The constitutive empirical equations
as semianalytical relations require a number of con-
stants, which are basically derived from fitting of
experimental data in a single equation to obtain a
general unique equation for the stress-strain curve of
materials in large strain domains. Because the experi-
ments are difficult to conduct and test instruments are
not precise in some cases, a wide range of theoretical
results have been obtained based on different constitu-
tive equations even for alloy materials.[19] Therefore,
establishing appropriate theoretical models for estimat-
ing the flow stress of advanced materials such as FGS in
hot deformation conditions regardless of empirical
results is very necessary in the design of advanced
engineering materials and structures for which the cost
of relevant experiments is considerable. In this study,
well common Z-H constitutive equations are employed
to establish appropriate empirical and analytical models
for FGS.

In the fabrication process of FGS by means of ESR,
the diffusion of alloy ingredients such as chromium,
nickel, and carbon atoms that occurs during the
remelting stage controls the distribution profile of the
final gradient material and leads to the production of

alternating regions with different transformation char-
acteristics. Consequently, the diffusing atoms in this
process produce ferritic a and austenitic c graded regions
together with different phases such as bainite b and
martensite M within the interface of the initial electrode
configuration.[4]

Beside the generalized framework developed in this
work, which is applicable for any type of FGSs under
hot deformation with a wide range of numerical results,
a special attempt is made for abcMc FGSs as a case
study with complicated configuration. This helps to
demonstrate the validity of the developed empirical and
analytical methods. Distribution of graded regions
together with bainitic and martensitic layers in the
mentioned composite under compression test loading is
schematically illustrated in the sketch in Figure 1(a).
Also, Figure 1(b) illustrates the hardness profile along
the height of abcMc specimens that is reported in a
previous study.[4] From this figure, it is seen that the
intermediate austenitic c¢ layer has a different hardness
than the primary austenitic c layer, which must not be
overlooked in the analyses.
In Section III, regarding the relationship between the

layers’ strain rates and considering the uniform com-
pressive stress distribution along the specimens
(Figure 1(c)), the stress-strain curve for each arbitrary
hot compression loading condition is obtained by
empirical and analytical methods.

III. CONSTITUTIVE EQUATIONS

A good constitutive relation between the strain rate,
the flow stress, and the temperature for the high-
temperature condition is the well-known Arrhenius
equation. In addition, the effects of the temperatures
and strain rate on the corresponding deformation

Fig. 1—Configuration of abcMc graded specimens: (a) the specimen under compression, (b) hardness profile along the specimen height, and
(c) layer’s distribution.
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behaviors can be described by the Z-H expression
introduced as follows[20]:

Z ¼ _e
Q
RT ½1�

in which _e, Q, T, and R are strain rate, deformation
process activation energy (J/mol), absolute temperature
(K), and the universal gas constant
(8.314 JÆmol�1ÆK�1), respectively. It should be noted
that Z is a parameter relating to temperature interac-
tions and strain rate, which is constant for constant
temperatures and strain rates. The term exp(Q/RT)
specifies the heat activation process and Q shows the
speed of atomic mechanism control. On the other
hand, some relations have been used to describe the Z
parameter as follows[21–25]:

Z1 ¼ A0rn;

Z2 ¼ A00ebr;

Z3 ¼ A sinhnðarÞ

8
><

>:
½2�

in which n, A, A¢, A¢¢, a, and b are material constants
and a = b/n. The first of these relations is suitable for
expressing the low stress condition (ar < 0.8), since in
this relation n does not depend on the temperature.
The exponential function is suitable for high stress
loadings (ar > 1.2), while the third case in Eq. [2] rep-
resents an appropriate description of flow stress in hot
deformation loading conditions with high strain rates
and also can take into account the creep in low strain
rates as a basic concept. It should be noted that the
stress-strain exponent in the constitutive equation, n,
has an inverse relation to the sensitivity of the problem
to the strain rate. The introduced hyperbolic sine func-
tion in Eq. [2] is shown to give better results, which
are in good agreement with the experimental ones.
Therefore, substituting from Eq. [2], Eq. [1] is reduced
to the following well-known form for the Z-H
expression:

Z ¼ _eeQ=RT ¼ A sinhnðarÞ ½3�

Note that this equation will be used later to characterize
the hot working behavior for FGSs.

IV. DEVELOPMENT OF EMPIRICAL
EXPRESSION FOR ABCMC FGS

First, it should be noted that in spite of the strain rate,
the effect of strain on the stress is not covered in Eq. [3].
In this study, the effect of strain on the material
constants of constitutive equations is investigated also
as a strain compensation concept. In former investiga-
tions, a compression test was carried out on the
specimens for abcMc FGSs in the temperature range
of 1273 K to 1473 K (1000 �C to 1200 �C) and strain
rates of 0.01, 0.1, and 1.0 s�1,[26] and we used these data
to establish the constitutive equation. The regression
analysis of data leads to the determination of Z-H
equation constants from the following equation, which
is a simplified form of Eq. [3]:

ln _e ¼ lnA� Q

RT
þ n ln sinhðarÞð Þ ½4�

Applying linear regression to the empirical data, the
slope of ln_e� lnðsinhðarÞÞ curves as representative
strain rate–stress curves from Eq. [4] gives the value of
n at a constant temperature (Figure 2(a)), which must be
determined for characterization of the materials. On the
other hand, by applying a simple optimization proce-
dure, the amount of a is calculated so that the empirical
lines become parallel, as shown in Figure 2(b). In
addition, as another required parameter in Eq. [4], the
activation energy Q can be simply obtained at a constant
strain rate condition from the following relation:

Q ¼ nR
@ ln sinhðarÞ½ �

@T�1

�
�
�
�
_e

½5�

By plotting lnsinh(ar) vs the inverse of temperature,
the average slope of the corresponding curves gives the
value of Q/nR. From another viewpoint, the intercept of
ln Z-lnsinh(ar) lines gives the values of ln A. Finally,
according to Eq. [3], the flow stress r can be written as a
function of Z parameter:

Fig. 2—Variation of flow stress for abcMc graded steels obtained
from empirical constitutive modeling vs (a) strain rate and (b) tem-
perature.
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A. Compensation of Strain Effect

In order to give a precise prediction with consider-
ation of the influences of compressive strain, here, the
material parameters Q, A, a, and n included in the
constitutive equations are calculated for different values
of strains within the range of 0.05 to 0.5 with increments
of 0.05. The values of flow stresses, corresponding strain
rates, and the temperatures are substituted into Eqs. [4]
and [5] for the strains of 0.1, 0.3, and 0.5 as examples to
introduce the solution method for determination of
other material constants included in the constitutive
model. Finally, the relation between ln_e and lnsinh(ar)
at constant temperature condition and between lnsin-
h(ar) and 1/T at constant strain rate condition is
obtained for abcMc FGSs, as shown in Figures 2(a) and
(b), respectively.

In Figure 2, it is seen that the slopes of the lines vary
slightly, and this illustrates that the values of n and Q
are not approximately dependent on the magnitude of
test temperatures and strain rate. This allows control of
the deformation mechanisms of abcMc FGSs in real
situations relatively similar to the experimental condi-
tion. In addition, the corresponding material constants
from the developed model are sorted in Table I.

On the other hand, from the results, a good correla-
tion is obtained from calculation of Z for the afore-
mentioned strains with the empirical data so that the
correlation coefficient is approximately equal to 0.988,
as shown in Figure 3. From this figure, it is observed
that the experimental data for flow stress at different hot
compression conditions are fitted to the hyperbolic sine
function satisfactorily.

Furthermore, the parameters Q, n, a, and ln A can be
related to the true strain of abcMc steels by conven-
tional polynomial functions by compensation of the
strain, as stated in Eq. [7a, 7b, 7c, 7d]. Next, the results
of such polynomial fitting are given in Table II.

Q ¼ C10 þ C11eþ C12e
2 þ C13e

3 þ C14e
4 þ C15e

5 ½7a�

n ¼ C20 þ C21eþ C22e
2 þ C23e

3 þ C24e
4 þ C25e

5 ½7b�

a ¼ C30 þ C31eþ C32e
2 þ C33e

3 þ C34e
4 þ C35e

5 ½7c�

lnA ¼ C40 þ C41eþ C42e
2 þ C43e

3 þ C44e
4 þ C45e

5

½7d�

From further numerical analysis, the plots of Figure 4
show the value of the mentioned constants vs true strain
of the specimens. Form this figure as an early general
conclusion; the decrease in Q at higher strains relates to
the fact that in this case, the stress increases to overcome
the hot deformation resistance of the material while n
increases to compensate the reduction of flow stress that
returns to the dynamic softening.

V. GENERALIZED CONSTITUTIVE-BASED
THEORETICAL MODEL

The primary objective of this section is to develop a
general framework for determination of the stress-strain
curve of FGSs under hot compression through an
analytical method. In this section, Z-H constitutive
equations and the rule of mixtures are employed to
establish an appropriate analytical model.
For this purpose, a FGS specimen is divided into

many layers in the material grading direction so that
each layer with finite thickness is considered as an
isotropic homogenous slice. On the other hand, it must
be noted that the stress is uniformly distributed along
the specimen under compression. The slice’s thickness is

Table I. Material Constants Calculated for abcMc
Composites Under Different Strains

Strain n Q (kJÆmol�1) A (s�1) a (MPa�1)

0.1 8.003 370.512 8.69 9 1013 0.0098
0.3 8.095 366.984 8.63 9 1013 0.0103
0.5 8.114 365.671 8.55 9 1013 0.0106

Table II. Coefficients of Polynomial Fit for Z Equation
Parameters of abcMc FGS

Q n a Ln A

C10 375.2 C20 7.183 C30 0.009 C40 34.41
C11 265.30 C21 16.35 C31 0.006 C41 20.287
C12 188.9 C22 �115.0 C32 20.015 C42 2.303
C13 2148.1 C23 387.5 C33 20.005 C43 29.055
C14 2417.4 C24 2620.8 C34 0.094 C44 15.80
C15 654.2 C25 379.7 C35 20.116 C45 �10.15

Fig. 3—Regression analysis of experimental data for abcMc FGSs
considering the Z-H equation of hyperbolic sine function between
flow stress and Z parameter for different strains.
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chosen so that does not violate 5 units rise or fall in the
Vickers hardness along its height. The mean value of
Vickers hardness of each slice will be calculated from the
following relation where i indicates the layer number:

VHðiÞ ¼ 1

2
½VHðxiÞ þ VHðxi�1Þ� ½8�

Here, it is assumed that the strain follows the Reuss
expression of the phasemixtures rule for FGSs as follows:

e ¼
XI

i¼1
eifvi ½9�

in which fvi is the volume fractions of the included
constituents in the ith layer. The time derivative of this
equation for calculation of the strain rate is given as
follows:

_e ¼
XI

i¼1
ð_eifvi þ ei _fviÞ ½10�

in which _e, _ei, and _fvi are the stain rate of the whole
specimen, strain rate of the ith layer, and volume frac-
tion variation rate, respectively. Here, it must be noted
that most of the researchers have neglected the volume
fraction variations in hot deformation processes, which
are a physically tangible concept also. Therefore, the

second term in each R would vanish in Eq. [10]. How-
ever, here in the case of FGSs, as demonstrated by
Abolghasemzadeh et al. especially because of the pres-
ence of a martensitic layer adjacent to the ferritic and
austenitic layers, the volume fraction variations along
the axial direction must not be neglected. Assuming
that the variation of the strain rate and the volume
fraction corresponding to each layer is constant during
the described hot deformation, a suitable expression
for _fvi according to the initial volume fraction is stated
by the following relation[11]:

_fvi ¼
_ei � _e
1þ e

fvi ¼ v _ei � _eð Þfvi v ¼ 1

1þ e
½11�

in which v is a constraint factor that depends only on
the specimen total true strain under compressive load-
ings. By substituting from Eq. [11] in Eq. [10] and
reformulating the relations with respect to the strain
rate, the following equation is obtained:

_e ¼
PI

i¼1 fvi _ei 1þ veið Þ
1þ v

PI
i¼1 fviei

½12�

The strain ei corresponding to the ith layer can now be
obtained from the Hollomon relation for plastic defor-
mation and Hook’s law for elastic deformation for the
relating stress-strain curves[5,7]:

Fig. 4—Variation of material constants of abcMc composites including (a) n, (b) Q, (c) a, and (d) A vs true strain using polynomial curve fitting.
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ei ¼ eyi
ri

ryi

� �n0i

¼ ryi

E

ri

ryi

� �n0i

½13�

where ri, ryi, eyi, and n0i are the ith layer’s true stress, yield
strength, yield strain, and strain hardening exponent,
respectively, where E is the Young’s modulus that is as-
sumed constant along the graded direction of FGSs equal
to 210 GPa. In the theoretical models for FGMs, it is
seen that the material properties such as elastic modules
are assumed to vary along the grading direction by expo-
nential, power, or linear functions.[27] Here, in this work,
according to the physics of the problem and for proper
description of the material grading, the strain hardening
exponent n¢ is considered to vary exponentially with re-
spect to the layer positions by the following characteristic
law in which the subscripts i, 1, and 2 correspond to the
ith, first, and last layers of region, respectively[5,7]:

n0i ¼
1

x2 � x1
e

xi�x1
x2�x1

ln
n2
n1 ln

n2
n1

½14�

In the previous study,[11] in order to determine the yield
strength distribution along the graded region of FGSs, it is
assumed that the yield strength is proportional to Vickers
hardness and varies exponentially with the layer position.
Next, in the latter works, it is shown that the yield strength ry
of each layer is related to the density of dislocations qS of
that layer regarding the MSG theory by the following
relation[7]:

ri
y ¼

ffiffiffi
3
p

Gab
ffiffiffiffiffi

qi
S

q

½15�

where G is the elastic shear modulus, which is taken
equal to 80 GPa. In addition, a is an empirical coeffi-
cient between 0.2 and 0.5, which is considered equal to
0.3 in this section. Finally, b is the Burger’s vector
with a constant value of 0.707a0 for fcc crystals such
as austenitic steels and 0.866a0 for bcc crystals such as
ferritic steels, which are the minimum values of the
corresponding Burger’s vector. In these parameters, a0
is the crystal lattice parameter equal to 2.828R for fcc
crystals and 2.309R for bcc crystals, where R is the
atomic radius, which is equal to 1.27 Å and for iron.
Now, by assuming the exponential characteristic law
in the graded region for qs, the yield strength of each
layer can be determined from the following equation[7]:

ri
y ¼

ffiffiffi
3
p

aGb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

x2 � x1
e

xi�x1
x2�x1

ln
q2
S

q1
S ln

q2
S

q1
S

v
u
u
t ½16�

Next, the density of statistically stored dislocations
corresponding to the first and last layers, i.e., q1

S and q2
S,

can be obtained simply from Eq. [15] as follows:

qj
S ¼

rj
y
ffiffiffi
3
p

Gab

 !2

j ¼ 1; 2 ½17�

The superiority of this approach (Eq. [16]) in com-
parison with previous ones[17] is that the hardness profile

is not required for determination of the yield strength
variation in the graded region.
On the other hand, the parameters of the Z-H

equation are assumed as a function of layer positions
that are defined from the material gradient. The
previously introduced parameter, i.e., distribution of ln
A, sensitivity of strain rate, and activation energy are
evaluated according to the exponential law similar to the
description given for the strain hardening exponent (Eq.
[14]). In addition, the value of the stress coefficient a is
assumed to be constantly equal to 0.01, while its
variation is neglected. Therefore, this parameter is
considered the same with the ferritic phase aa for all
the layers within the ferritic region (i.e. a-b region) and
with the austenitic phase ac for all the austenitic regions
(i.e., b-c and M-c regions) of FGS specimens in the same
manner as Reference 11.
It is worthy to note that the corresponding parameters

of the boundary layers must be chosen according to Eq.
[7a, 7b, 7c, 7d]. The values of these parameters are
determined for a-b and M-c regions in similar ways,
whereas they are known for boundary layers. In
contrast, the determination of the parameter for the b-
M region that consists of graded austenitic phase c¢
between martensitic and bainitic layers must be treated
in a different manner. For the considered configuration
of abcMc FGSs, the hardness distribution curve in b-c¢
andM-c¢ regions is taken similar to b-c andM-c regions,
respectively, as given in the following relation:

Pb�MðxÞ ¼
Pb�c; x<xc0

Pc�M; x>xc0

�

½18�

Here, Pb-M, Pb-c, and Pc-M represent the distribution
function of parameter P in b-M, b-c, and M-c regions,
respectively. As will be discussed later, this assumption
(Eq. [18]) is justified with excellent agreement with
experiments and demonstrates that in FGS structures,
mechanical property variation follows the pattern of
hardness variation precisely. In the next step, after
determining the parameters of the Z-H equation for each
layer and considering Eq. [3], the strain rate of every layer
can be expressed as a function of its corresponding
temperature and flow stress from the following relation:

_ei ¼ Ai sinh
niðairÞe�Qi=RT ½19�

By substituting Eqs. [13] and [19] into Eq. [12], an
equation with a single unknown is written for the
applied temperature Tap, strain rate _eap; and given
composite strain ecom as follows, which will be evaluated
for calculation of the flow stress for FGSs under general
material, loading, and environmental conditions:

_eap ¼ hðr; ecom;TapÞ ½20�

A wide range of numerical results for the developed
method are given in the next section for different types
of FGSs with satisfactory discussion about verification
of the method for a complicated system.
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VI. RESULTS AND VERIFICATIONS

A. Results for abcMc FGSs

As another important numerical example, the results of
the theoretical model for the flow stress rM of abcMc are
obtained by solving Eq. [20] for various temperatures and
strain rates at three different strains, the results ofwhichare
given in Figure 5. In addition, Eq. [8] is evaluated for
calculation of rM from empirical constitutive modeling.
From this figure, good agreement is observed between the
experimental data with the presented numerical results, as
shown in Figure 5.

In this case, the average errors corresponding to empirical
and theoretical models are obtained as less than 4 and 9 pct,
respectively. In addition, since the interfaces of FGSs
fabricated from the same primary electrodes save the
material properties,[4] thismodel can be generalized to other
kinds ofFGSs such as abc and cMc composites and can give
a good prediction of flow stress without having the required
empirical results for constitutivemodeling. Here, the results
are presented for other commonly used configurations of
FGS under hot compression to give a general viewpoint on
theirmechanical andmaterial behavior in severe conditions.

B. Results for abc and cMc FGSs

In this section, some examples are given for prediction
of the flow stress of FGSs from the developed analytical

method. As special cases, abc and cMc three-phase steels
are chosen. A similar procedure for calculation of flow
stress for abcMc is used. For more information,
comparison of the results for these examples can give
a general viewpoint for calculation of flow stress for
abcMc and verify the results by those of Section VI–A.
Figure 6 gives the variation of the flow stress vs the true
strain for abc and cMc steels for different thermal
conditions.
From this figure, it is seen that we have the maximum

value of flow stress at lower values of strain rates for any
applied temperature. As another conclusion, it is seen
that in general the flow stress is decreased at higher
temperatures. In this case, it should be noted that even
strain rates equal to unity predict some controversial
results, but in a manner, they can predict the impact
resistance of FGSs. In addition, from comparison of the
results in each plot for abc steels (solid lines) and cMc
(dashed lines), it is seen that the first case is lower
sensitive to temperature than the latter one. This
indicates a different behavior of FGSs at higher tem-
perature that must not be neglected in engineering
design purposes.
From figure 6, it is seen that, in general, a higher level

of stresses is obtained for cMc steels in comparison with
abc ones, which is related to the higher strength of
martensite phase in the former case. As an interesting
result, even if the martensite phase is brittle with low

Fig. 5—Flow stress for abcMc graded steels obtained from constitutive model (rZ), theoretical model (rM) and experiment at different strain
rates and temperatures.
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failure strains, the cMc steels undertake high level
strains that are comparable with those of steel phases.
Therefore, providing graded steel phases without step
changes in material distribution gives the opportunity to
design high strength specimens with higher values of
failure strains. In addition, since the abcMc steels
contain martensite and bainite layers, their compressive
strength is obtained between those of cMc and abc

steels. In this regard, it is shown that changing the
arrangement and thickness of the primary steel phases
used to set up the electrodes and heat treatment cycles
gives the desirable opportunity to control the material
gradient and thickness of the emerging phases during
the ESR process and to design an optimal specimen with
the required values of strength and yield strain.[4] This is
also achievable by changing the length of each grading
layer and using the appropriate combination of their
material properties.

VII. SUMMARY AND CONCLUSIONS

In summary, the hot compression behavior of FGSs is
investigated from both empirical and theoretical models
at various prevalent thermal and loading rate condi-
tions. Using experimental stress-strain data for abcMc
FGSs, the empirical constitutive model is presented so
that it includes the temperature and strain rate effects.
As a generalized application, this model is established
based on strain compensation to describe the plastic
flow stress of FGSs. The developed theoretical model
considers the boundary layer characteristics and the
strain contribution without using the empirical data as
an advantage. This model is applicable for any config-
uration of FGSs produced from the same electrodes.
Here, the results are given for abc, cMc, and abcMc
FGSs at different strains. In order to rely on the
presented models, the theoretical and empirical results
are verified with experiments of other references with
excellent agreement.
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