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The estimation of orientation distribution functions (ODFs) from discrete orientation data, as
produced by electron backscatter diffraction or crystal plasticity micromechanical simulations,
is typically achieved via techniques such as the Williams–Imhof–Matthies–Vinel (WIMV)
algorithm or generalized spherical harmonic expansions, which were originally developed for
computing an ODF from pole figures measured by X-ray or neutron diffraction. These tech-
niques rely on ad-hoc methods for choosing parameters, such as smoothing half-width and
bandwidth, and for enforcing positivity constraints and appropriate normalization. In general,
such approaches provide little or no information-theoretic guarantees as to their optimality in
describing the given dataset. In the current study, an unsupervised learning algorithm is pro-
posed which uses a finite mixture of Bingham distributions for the estimation of ODFs from
discrete orientation data. The Bingham distribution is an antipodally-symmetric, max-entropy
distribution on the unit quaternion hypersphere. The proposed algorithm also introduces a
minimum message length criterion, a common tool in information theory for balancing data
likelihood with model complexity, to determine the number of components in the Bingham
mixture. This criterion leads to ODFs which are less likely to overfit (or underfit) the data,
eliminating the need for a priori parameter choices.
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I. INTRODUCTION

THE connection between crystallographic preferred
orientations (texture) in polycrystalline specimens and
anisotropic material response/properties is widely recog-
nized, and research into the quantitative analysis of
texture has a long history in materials science and
geology.[1,2,3,4,5,6,7] The relative frequency of crystal
orientations within a sample is described mathematically
via the orientation distribution function (ODF). Exper-
imental techniques for the estimation of the ODF can be
categorized as either macrotexture (or bulk/sample)
texture techniques, such as X-ray or neutron diffrac-
tion,[8,9] where the relative frequency of orientations is
averaged over hundreds of thousands of grains, or meso/
microtexture techniques, such as electron backscatter
diffraction (EBSD)[10,11] or high-energy X-ray diffraction
microscopy (HEDM),[12] which provide spatially resolved
2D or 3D orientation maps of a much smaller number of
grains (hundreds to tens of thousands).

Techniques for the estimation of orientation statistics
from discrete orientation data grew organically out of
the existing direct, such as the Williams–Imhof–Mat-
thies–Vinel (WIMV) algorithm, and spherical harmonic

techniques for macrotexture analysis, and rely on
building up the ODF from the superposition of contri-
butions from the individual orientations.[1,3,13,14,15,16]

The most common method for ODF estimation from
discrete measurements is based on the generalized
spherical harmonics championed by Bunge.[1] In the
harmonic method, the Fourier coefficients for the ODF
are estimated from the superposition of the Fourier
coefficients of the individual orientations convolved with
a smoothing kernel. This procedure relies heavily on
assumptions made a priori on the type and degree of
smoothing. In addition, ad-hoc methods are required
both for choosing the bandwidth of the spherical
harmonics as well as to enforce positivity constraints
(to make a proper ODF). The degree of smoothing and
bandwidth as well as the number of discrete orientations
required for accurate ODF estimation has a long history
of debate in the literature.[17,18,19,20] A recent advance,
on this front, is the development of automatic smooth-
ing kernel optimization available in the MTEX Quan-
titative Texture Analysis Software,[21] which assists the
user in determining the appropriate level of smoothing
and issues a warning if too low a bandwidth is used.
Despite this advance, neither the direct nor harmonic
approaches provide information-theoretic guarantees as
to their optimality in describing a given dataset. As will
be shown in the case studies, even with optimized kernel
selection, these methods can produce ODFs which are
quite sensitive to the choice of initial parameters, and
overfitting is a constant concern.
In the current study, we model the ODF as a finite

mixture of Bingham distributions. The Bingham distri-
bution is a very flexible distribution defined on the unit
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hypersphere.[22] It was first applied to texture modeling
by Schaeben and Kunze,[23,24,25,26] who demonstrated
that the Bingham distribution could accurately represent
individual texture components including fibers, sheets,
and anisotropic spreads around individual orientations.
For unimodal ODFs, a single Bingham distribution will
usually suffice to fit the observed data. For more realistic
and complicated ODFs, we use a mixture of Bingham
distributions. We solve the resulting ODF estimation
problem with an unsupervised learning algorithm to
estimate the parameters of a Bingham mixture, where
the quality and quantity of the discrete orientation data
are explicitly taken into account to greatly reduce the
chance of under- or overfitting the data, while eliminat-
ing the need to make a priori decisions about smoothing.
The ‘‘correct’’ number of mixture components in the
Bingham mixture distribution is selected based on a
minimum message length criterion which balances the
goodness of fit to the data against the complexity of the
resulting ODF.

Historically speaking, the main advantage of using
spherical harmonics over analytic distributions (such as
the Bingham) to model texture was computational
simplicity and speed. The Bingham distribution was first
described in 1974,[22] long after the theory of generalized
spherical harmonics, and efficient computational schemes
for Bingham parameter estimation were not available
until recently. The prime computational difficulty in
working with the Bingham distribution is that the
normalization constant is complex and costly to compute
in real time. To circumvent these problems, we make use
of a new open-source software library called the Bingham
Statistics Library which has recently been developed in
the robotics community and provides efficient and accu-
rate maximum-likelihood fitting and statistical inference
tools for the Bingham distribution.[27]

With the current generation of EBSD cameras,
capable of taking and indexing>100 diffraction patterns
per second in ideal materials, the generation of detailed
orientation maps that contain tens or hundreds of
thousands of grains is now fairly routine. It is a fair
question to ask why a radically different approach to
ODF estimation is even required; as when the number of
orientations are increased, the ODFs produced from
EBSD via harmonic analysis converge to the macrotex-
ture ODFs produced from diffraction experiments.
However, there are many instances where we are
interested in a true microtexture measurement, for
example, when studying highly localized phenomena
such as duplex microstructures and macrozone forma-
tion in a / b Ti alloys,[28,29] ridging and roping in rolled
Al,[30] orientation clustering due to texture memory in
HDDR-produced magnets,[31] localized plastic defor-
mation at crack tips,[32] etc. The description of texture
gradients[33,34] and other nonhomogeneous materials
pose a challenge particularly if the gradients are steep
and transitory regions are of interest. There is also a
critical need for quantitative analysis of texture on
mesoscale volumes resulting from crystal plasticity
simulations. The comparison of macrotexture ODFs
with those resulting from crystal plasticity (CP)-based

micromechanical simulations is often a primary method
of model validation and verification. Typically, these
simulations are performed on statistical volume ele-
ments that contain a few hundred to a thousand grains
for full field simulations, such as CP-FEM,[35] and a few
thousand grains for homogenized or mean-field models,
such as self-consistent models.[36] Quantitative compar-
ison of the simulated textures with experimentally
measured ODFs is difficult, as the intensity values are
strongly dependent on the degree of smoothing and
bandwidth selection as well as the resolution on which
the ODFs are computed.
The main focus of this article is the introduction of

the unsupervised learning algorithm, the discussion of
its main features, and the demonstration of its effective-
ness via some simple case studies. The selected case
studies are all examples of ODF fitting in materials with
triclinic crystal symmetry (C1 Point group). The scope of
the article is restricted to the triclinic case to maintain
focus on the unsupervised learning algorithm rather
than on the substantive additional material that would
be required for a meaningful extension of the Bingham
distribution to arbitrary crystallographic and sample
symmetries. The key difficulty extending the Bingham
model to higher symmetry materials is in the develop-
ment of computationally efficient tools for the estima-
tion of the symmetrized distribution parameters. The
description of a symmetrized Bingham distribution and
its inclusion into the unsupervised learning framework
will be presented in a future publication.
Three main ideas are presented in this article: (1) the

Modeling of ODFs as a finite mixture of Bingham
distributions, (2) an unsupervised learning algorithm for
fitting ODFs given the mixture model that maximizes
the probability of measuring the set of discrete orienta-
tions, and (3) a minimum message length (MML)
criteria to determine the appropriate number of Bing-
ham distributions or texture components necessary to
represent an arbitrary ODF. The unsupervised learning
algorithm combined with the MML represents a signif-
icant advance over traditional approaches to texture
estimation from discrete orientations as it removes the
need to make a priori decisions about the fitting
procedure and gives a formal information theoretic
guarantee of an optimal (in some sense) solution given
the available data.
It should be noted that the model chosen to represent

the ODF can be completely decoupled from the unsuper-
vised learning algorithm andMMLcriteria for number of
components. Any mixture model, such as the represen-
tation of textures via texture components,[37,38,39,40] can
replace the Bingham distribution-based model presented
here. The Bingham distribution was chosen as it is the
maximum entropy distribution of unit quaternions thus
minimizing the amount of prior information built into the
distribution or the shape of the ODF.

II. NOTATION AND CONVENTIONS

This section serves to set the notation, definitions, and
conventions used throughout the rest of this article and
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is by necessity very brief. For a comprehensive review of
crystallographic orientations, texture, and the orienta-
tion distribution function, the reader is referred to the
following standard references.[1,4,3,41] A crystallographic
orientation, g 2 SOð3Þ is defined as a proper rotation
which maps the macroscale sample or laboratory basis
vectors onto the local crystal lattice basis. SO(3) denotes
the special orthogonal matrix group of proper rotations
in three dimensions members of which are the 3 9 3
orthogonal matrices with determinant +1. g accepts
multiple equivalent parameterizations including Euler
angles, unit quaternions, Rodriguez vectors, and angle–
axis pairs (for a review of the different parameteriza-
tions, see[42] and the references contained within).

Parameterization of SO(3) by unit quaternions was
found to be particularly convenient for the current
study. Working with the quaternion parameterization
offers significant advantages over other orientation
representations, such as Euler angles, including a simple
and computationally efficient multiplication rule for the
composition of rotations, a continuous group space with
nondegenerate representation of all rotations, and a
simple and intuitive physical interpretation.[42,43] A unit
quaternion can be thought of as representing a point on
the surface of the unit sphere in four dimensions,
S3 � R4: Visualizing quaternions and equivalently ori-
entations as points on S3 allows for a straightforward
extension of directional statistics on the unit circle and
sphere to the more abstract notion of statistics on
rotations. The mapping from quaternions to orienta-
tions is two to one in that each orientation has an
equivalent representation by antipodal quaternions.
This antipodal symmetry allows any hemisphere of S3

to be considered as a fundamental zone or fundamental
region of orientations. However, when considering
directional statistics on the hypersphere, it is convenient
to consider the whole space and work with a distribution
that is also antipodally symmetric, such as the Bingham,
to avoid introducing jumps or discontinuities at the
equator.

The Haar measure, or invariant measure, is required
to ensure invariant integration over the rotation group.
If we denote the uniform random ODF as fURðgÞ , then
it is customary to normalize the ODF by choosing the
invariant measure dg such that

R
SOð3Þ dg ¼ 1: This

normalization implies that fURðgÞ ¼ 18g; which is con-
sistent with the custom of expressing fðgÞ in terms of
multiples of the uniform random ODF (MRD). In order
to avoid confusion with normalization, fðgÞ will be used
to denote an ODF in units of times random with
measure dg and pðgÞ will be used to denote a ‘‘proper’’
probability distribution (p.d.f).

For convenience, the freely available MTEX Matlab
Toolbox for Quantitative Texture Analysis[21] will be
utilized to make all plots in orientation space. The
ODFs will be plotted as r-sections which are derived
from Matthies–Euler angles denoted [a, b, c] as
[a, b, r = a+ c]. r-section plots eliminate many of
the distortions present in more commonly used plain
sections through the Bunge–Euler orientation space,
which facilitates the visual comparison between scatter
plots of discrete points in the orientation space and

continuous ODFs fit to those points. The MTEX
toolbox will also be used to produce comparison ODFs
fit by spherical harmonic analysis. In order to make
comparisons to be as objective as possible, comparison
ODFs will be produced using the MTEX automatic
half-width selection with a bandwidth of l = 32 unless
specifically noted otherwise.
Finally, information entropy, or texture entropy, will

be employed as a scalar description of the sharpness or
peak intensity of a given ODF. Texture entropy was
chosen over the more well-known texture index[1] as it
has a more rigorous connection to information and
estimation theory.[44,45,46] The entropy of an ODF is
defined as

H fðgÞð Þ ¼ E � log fðgÞ½ � ¼ �
Z

SOð3Þ

fðgÞ log fðgÞdg ½1�

The information entropy can be understood as a
measure of the unpredictability of a random variable,
in the same way that thermodynamic entropy is a
measure of disorder.
The information entropy has important theoretical

connections to probability theory that are relevant to
the discussion of texture estimation. In particular, the
principle of maximum entropy states that given some set
of testable data about a system, the probability distri-
bution that best represents the current state of the
system will be the one that maximizes the information
entropy. The principle of maximum entropy is also
useful in developing prior distributions for Bayesian
inference and in choosing candidate distributions for
modeling purposes. Applying the principle of maximum
entropy to model selection suggests that if nothing is
known about the true distribution that generated some
testable information, except that it belongs to a certain
class of distributions, the distribution with the largest
entropy should be chosen as the prior or candidate
distribution. The reasoning is that by maximizing the
entropy of the candidate distribution, we are maximiz-
ing the unpredictability of g; thus minimizing the
amount of prior information or equivalently minimizing
the assumptions about the data built into the candidate
distributions. In the case of our proposed model, the
testable information is the set of statistics sufficient to
estimate distribution parameters from a measured set of
orientations G. Given the second-order statistics com-
putable from a discrete list of unit quaternions, the
Bingham distribution (defined below) is the maximum
entropy distribution on the unit hypersphere.

III. THE BINGHAM DISTRIBUTION

The Bingham distribution is an antipodally symmetric
distribution on the unit hypersphere Sd � Rdþ1. For
orientations parameterized by unit quaternions d = 3,
and the p.d.f. is given by

pðg; K;VÞ ¼ 1

FðKÞ exp
X4

i¼1
ki v

T
i g

� �2
( )

½2�
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where g is a unit quaternion representing a rotation,K is a
vector of concentration parameters ki, V is a matrix, the
columns of which, vi; are orthogonal unit quaternions
representing the principal directions of the distribution,
and F is a normalization constant. Normalization of
pðg; K;VÞ to multiples of uniform random is trivially
achieved by pðg; K;VÞFðK ¼ ½0; 0; 0�Þ ¼ fðg;K;VÞ. The
terms Bingham distribution and Bingham ODF will be
used interchangeably to denote fðg; K;VÞ;while Bingham
p.d.f will refer to pðg; K;VÞ:

The concentration parameters, K are unique only up
to an additive constant, and for the current study, the
convention k1 £ k2 £ k3 £ k4 = 0 is chosen to resolve
the ambiguity.* We will denote K as a 3-vector and

ignore the implied k4 = 0. The Bingham distribution is
a very flexible distribution on the hypersphere and was
first used to model ODFs by Kunze and Schaeben,
where they demonstrated that the Bingham distribution
could be used to model single component, fiber, or
surface textures in the case of triclinic crystal symmetry
depending on the concentration parameters.[23,24,2526]

The sharpness of the texture is determined by the
magnitude of the concentration parameters.

A key difficulty in working with the Bingham distri-
bution is computation of the normalization constant
FðKÞ. Following Bingham,[22] it can be seen that the
normalization constant is proportional to a hyper-
geometric function of matrix argument (a multivariable
generalization of the confluent hyper-geometric function

1 F1) with a series expansion

FðKÞ ¼ 2 � 1F1ð
1

2
;
dþ 1

2
; KÞ ¼

2
ffiffiffi
p
p X1

a1; _s;ad¼0

Cða1 þ 1
2Þ � � �Cðad þ 1

2Þ
Cða1 þ � � � þ ad þ dþ1

2 Þ
ka1
1 � � � k

ad
d

a1! � � � ad!

½3�

The series expansion in Eq. [3] can be approximated by a
recursive relation and precomputed to a lookup table
for a discrete grid of K values. Interpolation is then used
to quickly estimate normalization constants on the fly
for arbitrary K values.[47]

The parameters K and V can be estimated by a
maximum likelihood approach. Given a set of N discrete
orientations, G ¼ fgð1Þ; . . . ; gðNÞg; finding the maximum
likelihood estimate (MLE) V̂ can be formulated in terms
of the eigenvalues of the scatter matrix, S ¼ 1=NP

i g
ðiÞgðiÞ

T ¼ E½ggT�: Notice that the scatter matrix is
equivalent to the covariance of mean-centered data inRn;
and can be understood as a measure of dispersion of the
measured orientations. The MLE mode of the distribu-
tion is the eigenvector of S corresponding to the largest
eigenvalue, while the columns of V̂ are the eigenvectors
corresponding to the 2nd, 3rd, and 4th eigenvalues.

The MLE K̂ is found by setting the partial derivatives
of the data log-likelihood function, log fðGjK;VÞ ¼PN

i¼1 log fðgijK;VÞ; with respect to K to zero yielding

1

FðKÞ
@FðKÞ
@kj

¼ vTj Svj ½4�

The values of the derivatives of F with respect to K are
precomputed and stored in a lookup table in the same
manner as was done for F. Since the lookup tables for F
and � F are indexed by K; a kD-tree can be used to find
the nearest neighbors for a computed � F /F to compute
K̂ by interpolation.[47]

Notice that S is a sufficient statistic for the Bingham
distribution, in the sense that both K̂ and V̂ can be
estimated from only the scatter matrix. While a proof is
beyond the scope of this article, it can be shown that the
Binghamdistribution is themaximumentropydistribution
on the unit hypersphere of all possible distributions which
match the scatter matrix (second-order statistics of orien-
tations).[48] As discussed previously, this max entropy
property gives us an important theoretical justification for
choosing the Bingham distribution to model texture.

IV. UNSUPERVISED LEARNING FRAMEWORK

A. Mixture Model and Expectation
Maximization Algorithm

Being a maximum entropy distribution on SO(3) makes
the Binghamdistribution a logical choice tomodel texture.
However, in practice, many important textures contain
multiple components and cannot be accurately described
by a single unimodal distribution, and so a more complex
model is required. For this purpose, we propose a finite
Bingham mixture model. Finite mixture models are
commonly utilized in many areas such as pattern recogni-
tion, computer vision, signal and image analysis and
machine learning.[49] In the field of statistical pattern
recognition, finite mixture models provide a formal (i.e.
probabilistic) approach to unsupervised learning prob-
lems, such as clustering. Here, we visualize the existence of
preferred crystallographic orientations as clustering on the
unithypersphereand frame thefittingof thefiniteBingham
mixture model as an unsupervised learning problem.
Mathematically, the Bingham mixture model can be

expressed as

fðgjHÞ ¼
Xk

m¼1
amfðgjhmÞ ½5�

where k is the number of components in the mixture,
am represents the mixing probabilities, hm ¼ fKm;Vmg
is the set of parameters for the mth Bingham compo-
nent, and H ¼ fh1; . . . ; hk; a1; . . . ; akg is the complete
set of parameters necessary to specify the mixture
model. As the am are probabilities, they must satisfy

am � 0 for all m

Xk

m¼1
am ¼ 1

½6�

Given a set of n independent and identically distributed
orientations, G ¼ fgð1Þ; . . . ; gðnÞg and a potential set of

*This convention is different than the one adopted by Kunze and
Schaeben; in their study, they choose

P
i=1
4 ki = 0[24]
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parameters H; the likelihood function fðGjHÞ gives the
probability of measuring G given H; and is used as a
measure of how well the mixture model parameters fit
the measured data. As the Bingham p.d.f Eq. [2] con-
tains an exponential, it is convenient to replace the like-
lihood with the log likelihood given by

log fðGjHÞ ¼ log
Yn

i¼1
fðgðiÞjHÞ

¼
Xn

i¼1
log
Xk

m¼1
amfðgðiÞjhmÞ

½7�

While the log likelihood is no longer a true probabil-
ity, it is still a valid measure of how well the parame-
ters fit the data; as the natural logarithm is a
monotonically increasing function and log fðxÞ and
f(x) achieve maxima at the same value. The common
approach to fitting a mixture model is to seek an esti-
mate of H (in this case the ML estimate) which maxi-
mizes the likelihood of measuring the data:

ĤML ¼ argmax
H
flog fðGjHÞg ½8�

Unfortunately, an analytic solution to Eq. [8] does not
exist and a numerical algorithm must be employed to
solve the optimization, given the constraints imposed by
Eq. [6].[50] The expectation maximization (EM) algo-
rithm is the usual choice for obtaining ML estimates of
mixture parameters. The EM algorithm is an iterative
procedure to find maxima of fðGjHÞ. For this study, we
adopt a modified EM-type algorithm first proposed by
Figueiredo and Jain which provides a selection criteria
to determine the number of components in the mixture
model, avoids some convergence problems associated
with boundaries of the parameter space and is less
sensitive to initial values.[51] The mechanism for esti-
mating the number of components will be discussed in
Section IV–B, and while discussing the basics of EM-
type algorithms, we will assume the number of compo-
nents is known and fixed at some value k.

For fitting mixture models, EM-type algorithms are
predicated on interpreting the measured data, G; as
incomplete. The missing component is a k 9 n binary
label matrix Z ¼ fzð1Þ; . . . ; zðnÞg where themth element of
vector zðiÞ; z

ðiÞ
m ; takes the value 1 if mixture m produced

sample iand0otherwise. IfZ could somehowbemeasured,
then finding ĤML would be reduced to the trivial estima-
tion of the Bingham parameters for each component. The
complete data log likelihood is then given by

log fðG;ZjHÞ ¼
Xn

i¼1

Xk

m¼1
zðiÞm log amfðgðiÞjhmÞ

h i
½9�

and is understood as the function from which ĤML

could be computed, if the complete data were known.
The EM algorithm maximizes Eq. [9] by alternately
estimating Ẑ given the current guess at Ĥ (The E-step of
the algorithm), then using the result to produce an
updated guess of Ĥ (the M-step of the algorithm),
proceeding until a convergence criterion is met.

In the E-step, at the jth iteration, the conditional
expectation of the complete log likelihood Eq. [9] is
computed, given G and the current estimate ĤðjÞ. As
Eq. [9] is linear with respect to Z; this is accomplished
by computing the conditional expectation W ¼ E ZjG;½
ĤðjÞ�; and plugging it into fðG;ZjHÞ. In the EM
literature, this is termed the Q function

Q H; Ĥ
� �

¼ E log fðG;ZjHÞ
�
�G; Ĥ

h i

¼ log fðG;WjHÞ
½10�

Bayes Law is then used to update the values of zm
(i).

As the elements of Z are binary, W can be computed
via

wðiÞm ¼ E zðiÞm jG; ĤðjÞ
h i

¼ P zðiÞm ¼ 1jgðiÞ; ĤðjÞ
h i

¼
âmðjÞf gðiÞjĥmðjÞ

� �

Pk
l¼1 âlðjÞf gðiÞjĥlðjÞ

� �
½11�

where P indicates probability, and am is interpreted as
the prior probability that zm

(i) = 1. wm
(i) is then under-

stood as the posterior probability after observing gðiÞ:
In the M-step, the parameter estimates are updated

via

Ĥðjþ 1Þ ¼ argmax
H

QðH; ĤÞ ½12�

under the constraints given by Eq. [6]. As we will see in
the next section, this step will involve fitting a set of k
Bingham distributions to k weighted datasets, with
dataset weights for the mth Bingham being given by wm

(i).

B. Determining the Number of Components

In the above discussion, it was assumed that the number
of components was known when applying the EM algo-
rithm to estimate ĤML. In practice, the number of mixture
components is not known a priori and must be found as
part of the fitting procedure. Determining the number of
components requiresmanaging a trade-off between amore
complex model, which may overfit the data, and a more
simplistic model with too few components to accurately
represent the true texture. Figueiredo and Jain[51] proposed
anEM-like algorithm, where Ĥ is chosen in such amanner
as to maximize the efficiency of the mixture model
representation by employing a minimum message length
criteria (MML). MML is a powerful tool for model
comparison in information and communications theory,
and was first explored byWallace in 1968.[52] If one wishes
to sendcompressedor encodeddata over a communication
channel, and the recipient does not a priori know the code,
themessage sentmust consist of twoparts: (1) the encoding
or compression key followed by (2) an efficient compressed
representation of the data. MML asserts that the ‘‘best’’
compression scheme minimizes the total message length
(the code lengthplus the lengthof the encodeddata), rather
thanonly the lengthof the compresseddata.Here,G are the
data to be encoded as a Bingham mixture ODF with
parameter H. Let LðXÞ denote the length of X . Then
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according to Shannon’s coding theorem, the shortest
possible length for G; encoded as a Bingham mixture with
given parameters H; is LðGjHÞ ¼ � log fðGjHÞ: The total
length of the data and Bingham mixture model is then
LðH;GÞ ¼ LðHÞ þ LðGjHÞ

The functional form for the code length, or equiva-
lently the length of the Bingham mixture model, LðHÞ is
derived by Figueiredo and Jain, and the interested
reader is referred to.[51] For a mixture with k components,
the total message length is explicitly given by

LðH;GÞ ¼ N

2

Xk

m¼1
log

nam
12

 !

þ k

2
log

n

12

þ kðNþ 1Þ
2

� log fðGjHÞ

½13�

where n is the number of discrete orientation measure-
ments, and N is the number of independent scalar
parameters necessary to specify each Bingham compo-
nent.

Eq. [13] represents a balance between the number of
mixture components and the accuracy of the texture fit.
A poorly fitting model, i.e., small fðG; jHÞ; will never be
chosen, but a high likelihood is not sufficient to be the
optimum either. The likelihood function is a measure of
the probability of generating the data from the model,
and not strictly a measure of the quality of the model
itself. Consider that for a dataset of 500 orientations, the
mixture model that maximizes the likelihood is an equal
weighting of 500 delta distributions, which is obviously
a very poor model. The MML criterion is a formal
information theoretic invocation of Occam’s Razor, in
that it asserts that the simplest/shortest explanation of
the data is usually the best. The estimate of the optimal
mixture parameters is then

Ĥ ¼ argmin
H

LðH;GÞ ½14�

Implementing the MML criterion into the EM algo-
rithm is accomplished through a modification of the M-
step, Eq. [12]. First the mixing probabilities are esti-
mated for the (j+1)th iteration via

âmðjþ 1Þ ¼
max 0;

Pn
i¼1 w

ðiÞ
m

� �
� N

2

n o

Pk
l¼1 max 0;

Pn
i¼1 w

ðiÞ
l

� �
� N

2

n o ½15�

for m ¼ 1; 2; . . . ; k: Followed by

bhm ¼ argmax
hm

QðH; ĤðjÞÞ for m : âmðjþ 1Þ>0 ½16�

The Q function is understood as the conditional
expectation of the complete log likelihood, evaluated
for the data G and the updated label matrixW; given the
current guess of the parameters. Thus, the optimization
in Eq. [16] is accomplished by simply performing a
weighted ML fit of the Bingham parameters for each
component, where the weight of the ith orientation for
the mth component is given by wm

(i).

Notice that the Bingham parameters are only esti-
mated for the components with nonzero mixing prob-
abilities. Thus, the M-step, as described by Eq. [15],
serves as an explicit rule for component annihilation. As
the support of a component becomes too weak, meaning
that its continued inclusion is not supported by the data,
it is removed from the mixture and k(j+1) = k(j) � 1.
Direct implementation of Eq. [15] does have one
potential failure mode, namely, if the initial number of
components is large enough that no individual compo-
nent has enough initial support (i.e.

Pn
i¼1 w

ðiÞ
m <N=28m),

then all the components could be annihilated at the first
iteration. This has been prevented by implementing the
algorithm in a component-wise manner. Rather than
simultaneously updating all am and hm; they are updated
in a sequential manner; i.e., compute W update a1 and
h1; recompute W update a2, and h2; and so on. When a
component is killed in this manner, the mixing proba-
bilities of the remaining components are immediately
renormalized increasing their chance of survival. This
allows for the initialization of the algorithm with an
arbitrarily large number of components and removes
much of the sensitivity of traditional EM algorithms to
starting conditions.

C. Algorithm Completion and Implementation

At each iteration, the E-step and M-step are per-
formed until the relative decrease in LðĤ;GÞ falls below
a threshold value, e. However, convergence of LðĤ;GÞ
for a k component mixture does not guarantee that the
minimum has been reached. It is possible that a smaller
values of LðĤ;GÞ could be obtained with a k � 1 or
smaller component mixture. This must be checked by
sequentially removing components that were not killed
by Eq. [15]. This is achieved by annihilating the
component with smallest am, re-normalizing the remain-
der and re-starting the EM algorithm and running until
convergence is again achieved. This is repeated until
only one component remains when the algorithm is
terminated. The mixture from the iteration that pro-
duced the minimum LðĤ;GÞ is selected as the best
possible representation of the ODF.
Pseudo-code showing the implementation of the

algorithm is given in Appendix A. Demonstration
Matlab[53] code reproducing the case studies presented
in the following sections has been made available from
the authors as part of the Bingham Statistics Library.[27]

The Bingham Statistics Library contains an implemen-
tation of the Bingham distribution written in C and
Matlab for directional statistics on S1;S2; and S3.
Optimized library functions for the EM Bingham
mixture model described above will also shortly be
included into the Bingham Statistics Library for use and
testing by the larger texture community.

V. CASE STUDIES

In this section, case studies demonstrating several ODF
fits for triclinic crystal systems (triclinic crystal and
triclinic sample symmetries) are presented to demonstrate
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key features and operation of the above unsupervised
learning approach. As a first example, a relatively
strong texture (maximum 14 times random, H =
� 0.6282) was generated as an equal-weighted four-
component Binghammixture with uniform, sheet, fiber,
and unimodal components. The concentration param-
eters and texture entropy of the individual components
are given in Table I. This mixture served as a ground
truth from which the fit textures were compared and is
shown in Figure 1(a). A discrete set of orientations G
was generated by sampling 1000 orientations from the
ground truth ODF. It should be kept in mind that 1000
points in the triclinic fundamental zone represents a
fairly sparse sampling. For 1000 orientations sampled
from a perfectly uniform random triclinic texture,
the expected angle between a sampled orientation and
its closest orientation is � 15 deg; for this texture the
average angular separation between orientations was
12 deg. For contrast, if one were to sample 1000
orientations from a uniform cubic-triclinic ODF, then
the expected angular separation would be <5 deg.
Figure 1(b) shows the sampled orientations projected
onto the ODF sections shown in Figure 1(a) and
highlights this sparseness.

The texture was then fit from the sampled orientations
by the unsupervised learning algorithm and via a
generalized spherical harmonic expansion up to l = 32
allowing MTEX to optimize the smoothing kernel. For
this case, the chosen kernel was a de la Vallée Poussin
kernel with a half-width of 24 deg. The large degree of
smoothing required in the harmonic ODF is a direct
consequence of the sparseness of sampled orientations.
The unsupervised learning algorithm was initialized with
20 randomly generated Bingham mixture components.
The convergence tolerance for the change in LðĤ;GÞ; �;
was taken as 0.001 (See Section IV–C).

For this example, the algorithm completed in 116 EM
iterations. Key details of the progression of the unsu-
pervised learning algorithm are shown in Figure 2.
Figure 2(a) is a scatterplot showing the combination of
description length as a function of number of compo-
nent k; each iteration is represented by a data point. As
can be seen, a distinct minima in description length
occurs with a four-component mixture. The concentra-
tion parameters and weights of the fit mixture agree
reasonably well with the ground truth mixture as is
shown in Table I. The evolution of the description
length is shown in Figure 2(b) along with the iterations
at which a mixture component was killed. The vertical
lines in Figure 2(b) show where components were killed

either by loss of support (solid lines) or by intentional
removal of the weakest component after the conver-
gence of the component-wise EM steps (dashed lines). In
this case, the number of components was reduced down
from 20 to 15 by loss of support before EM convergence
was reached. Typically, when a component loses support
and is removed, the description length will continue to
decrease; however, when a component is killed after
convergence of the component-wise EM, the description
length will sharply jump as the orientations assigned to
the killed components are reassigned.
The resulting ODFs are shown in Figures 1(c) and

(d). As can be seen in Figure 1(c), the unsupervised
learning algorithm does an excellent job of capturing the
features of the texture as well as the minimum and
maximum ODF values. The texture entropy for the fit
texture was H = � 0.6264 which compared excellently
with H = � 0.6282 for the ground truth ODF. The
MTEX spherical harmonic ODF also does an excellent
job of capturing the main features of the ODF but
owing to the high degree of smoothing, the maximum
intensity of the fit texture is roughly 1/2 of the ground
truth maxima. The texture entropy for the harmonic fit
with automatic kernel selection is accordingly higher at
H = � 0.4331.
As another point of comparison, a second spherical

harmonic texture fit was performed (also taking l = 32),
this time narrowing the smoothing kernel half-width to
10 deg so that the resulting texture had the same
maximum intensity as the ground truth ODF and
unsupervised learning ODF. This example is not a true
performance comparison as typically neither the texture
intensity nor the optimum smoothing is known a priori.
However, this example serves to highlight some of the
difficulties associated with fitting ODFs from limited
discrete orientation data. While the maximum intensities
are the same the 10 deg half-width ODF had a texture
entropy of H = � 0.8022 which was � 30 pct lower
than the ground truth value indicating the harmonic
texture had sharper peaks. The resulting ODF is shown
in Figure 1(e). As can be seen from the figure, the fit
ODF also shows significant Gibbs oscillations with
regions of nonphysical negative intensity (minimum
values �0.2 time random). The fit ODF is also ‘‘spotty’’
in the sense that local peaks can be seen that correspond
to individual sampled orientations. A comparison
between 24-deg half-width ODF (Figure 1(d)) and the
10-deg half-width ODF (Figure 1(e)) highlights the
difficulty in choosing appropriate smoothing parameters
when fitting ODFs from discrete data using the common

Table I. Comparison of Ground Truth vs Fit Mixture Components

Type

Ground Truth Mixture Fit Mixture

K Entropy H K Entropy H

Uniform [0 0 0] 0 [�2.41 �1.52 �1.38] �0.135
Sheet [�20 0 0] �0.903 [�30.25 �1.39 �0.32] �1.183
Fiber [�15 �15 0] �1.708 [�20.25 �14.44 �1.16] �1.883
Unimodal [�10 �10 �10] �2.313 [�10.62 �7.76 �7.76] �2.031
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harmonic or direct methods. If the smoothing is too
high, then the texture intensity is washed out as tight
peaks are spread out into neighboring regions. If the

smoothing is too low, then the resulting ODF is over-fit
and spotty and for harmonic expansions, nonphysical
negative intensities can be obtained. Eliminating the
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Fig. 1—Ground truth ODF, discrete sampled orientations, and fit ODFs for strongly textured triclinic symmetry case study. All ODFs are normal-
ized to multiples of the uniform random distribution and colored to a linear color scale shown in (f). Contour lines indicate integer multiples of uni-
form random 0; 1; . . . ; 14: ODFs are shown as spherical projection of r-sections produced by the MTEX texture software (Color figure online).
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need to a priori choose the degree of smoothing while
simultaneously avoiding nonphysical features when
fitting ODFs from sparse orientation data is a prime
gain of the proposed unsupervised learning algorithm.

Examining the evolution of the data log likelihood
provides some insight into why an EM-type algorithm
with minimum message length criteria was selected for
the texture algorithm. As stated before, selecting the
number of mixture components based on minimum
description length allows for a trade off between how
well the model matches the measured data (maximizing
the data log likelihood Eq. [7]) and model complexity

(minimizing the number of components). Figure 4(c)
shows the evolution of the data log likelihood, and
shows that the best fit (highest likelihood) to the
discrete orientation data occurs at much higher number
of components than are actually present in the ground
truth texture. Typically, the log likelihood actually
reaches its maximum value when initial EM conver-
gence is reached, in this case with a 15-component
mixture, and decrease with the removal of each
subsequent component. Remember the likelihood is a
probability measure on the model producing the data,
not a direct description of the quality of the model, and
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Fig. 2—(a) Message length as a function of number of componets, k. Each iteration is represented by a data point. (b) Evolution of message
length with increasing iterations. Iterations where a component was killed are indicated by vertical lines. Solid lines indicate that a component
was killed by loss of support. Dashed lines indicate where the EM steps converged and a component was forcibly removed. (c) Log likelihood as
a function of mixture components. It can be seen that the highest likelihood occurred at a 15-component. However, the four-component mixture
had a shorter message length and was chosen as the best ODF (Color figure online).

Table II. Comparison of the Various ODF Estimates for the Strongly Textured Case Study

Log Likelihood Message Length Entropy

Ground Truth 612.69 �510.76 �0.628
Unsup. Learning MML k = 4 625.37 �523.45 �0.626
Unsup. Learning Max Log Like k = 15 695.32 �399.53 �0.696
Harmonic MTEX Kernel 652.34 NA �0.433
Harmonic 10 deg Kernel 1260.34 NA �0.802
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an overfit model will often have a higher likelihood
than the correct model. This is shown in Table II,
which compares the log likelihood, message length
(where applicable), and texture entropy for the ground
truth texture and all of the various fits described above.
Despite being a poor approximation of the ground
truth texture, the harmonic ODF with 10 deg smooth-
ing has a log likelihood of 2 9 the minimum message
length fit and the ground truth texture. In a similar
manner, the 15-component mixture has a high likeli-
hood, as it has more degrees of freedom to more closely
fit the data points. However, the larger message length
tells us that the model is overly complex and that

‘‘better’’ models can be developed by reducing this
complexity.
Two final notes before moving onto the next example:

(1) It is interesting that the ground truth ODF had a
slightly lower likelihood and longer message length than
the fit four-component mixture, implying the minimum
message length ODF is in some way ‘‘better’’ than the
true ODF. It is important to remember that the fit ODF
represents a point estimate of the mixture parameters,
given the sampled orientations G. If a different set of
orientations were sampled and then fit, a second point
estimate ODF would be obtained. If repeated point
estimates were obtained from independent trials, then
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Fig. 3—Ground truth ODF, discrete sampled orientations, and fit ODFs for weakly textured triclinic symmetry case study. All ODFs are nor-
malized to multiples of the uniform random distribution and colored to a linear color scale shown in (f). Color scale and contour lines are
shown in (e). ODFs are shown as spherical projection of r-sections produced by the MTEX texture software (Color figure online).
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we would expect that, when averaged over all trials, the
ground truth ODF would be a better fit than any single
ODF fit to an independent trial. 2) The fact that the
texture entropy is virtually identical for the ground truth
and minimum message length ODFs provides anecdotal
confirmation of its value as a scalar measure for texture
comparison.

Accurate ODF estimation for weakly textured mate-
rials is generally more difficult than for strong textures.
As a second case study, an ODF for a weakly textured
material was generated by dividing the concentration
parameters of the four components from the strongly
textured example by 5 (see Table I). The resulting ODF is
shown in Figure 3(a). While the peaks of this weaker
ODF appear in the same place, they are much more
diffuse and exhibit a much weaker maximum intensity of
2.4 times random. As in the first example, 1000 orienta-
tions were sampled from the mixture (Figure 3(b)) and fit
using the unsupervised learning algorithm and as a
harmonic series, again allowing MTEX to select the
smoothing kernel half-width. In addition, the conver-
gence criterion was maintained at 0.001, and kmax = 20
arbitrary components were used as the initial configura-
tion. The resulting fits are shown in Figure 3(c), unsu-
pervised learning, and 3(d), harmonic. As can be seen in
the figure, an excellent match with the ground truth ODF
is achieved with the unsupervised learning algorithm,
both in terms of peak location and intensity. In contrast,
while the maximum intensity values are well captured by

the harmonic fit, the peak locations are visibly shifted
relative to their ground truth locations. This is likely due
to an artificial overlap of peaks due to the high
smoothing, as when the extent of the smoothing kernel
is reduced in extent, the peaks rotate back to their correct
location, but with very high intensities (>5 times
random), and significant oscillation is evident (resulting
ODF not shown).
As can be seen in Figures 4(a) and (b), the unsuper-

vised learning algorithm progressed quite differently
than in the previous strongly textured example. Most
striking is that the single component solution had much
shorter message length than either: (1) any potential
four-component solutions found by the algorithm or (2)
the ground truth mixture. The evolution of the message
length and transitions are shown in Figure 4(b).
In contrast to the strongly textured example (see
Figure 2(b)), most of the transitions for this case study
are due to loss of support rather than being forcibly
killed after convergence of the EM steps. There is also
an interesting, and unexpected, large jump in message
length at the transition from three to two components.
Since it is caused by lack of support, one would expect a
relatively smooth transition due to the dependence of
code length on volume fraction (see Eq. [13]). This spike
was cause by an interesting rearrangement of the
mixture as the third component lost support. The first
two (surviving components) were very similar (in terms
of weights and parameters) and heavily overlapped. As

Table III. Comparison of the Various ODF Estimates for the Weakly Textured Case Study

Log Likelihood Message Length Entropy

Ground Truth 89.22 +12.94 �0.082
Unsup. Learning MML k = 1 88.50 �57.41 �0.090
Unsup. Learning MML k = 4 117.16 �44.96 �0.120
Harmonic MTEX Kernel 180.87 NA �0.092
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Fig. 4—(a) Message length as a function of number of componets, k. Each iteration is represented by a data point. (b) Evolution of message
length with increasing iterations. Iterations where a component was killed are indicated by vertical lines. Solid lines indicate that a component
was killed by loss of support. Dashed lines indicate where the EM steps converged and a component was forcibly removed (Color figure online).
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support was removed from the third component, and
added to the other two, the surviving components
suddenly diverged, completely changing the character of
the mixture. This rearrangement caused the temporary
drop in likelihood as the remaining two components
were in flux.

The message length, log likelihood, and texture
entropy for the ground truth mixture, the best fit, the
best four-component mixture, and the MTEX fit are
shown in Table III. Quite surprisingly the message
length for the ground truth mixture is much greater
than the best fit, while the log likelihood values are
almost identical. In fact, the message length for the
ground truth is positive, indicating that the positive code
length contribution to the message length overwhelms
the negative encoded data length. This implies that there
is a redundancy in the original description and not all
the four components were required to express the
ground truth texture accurately.

Whether a material is truly random or weakly
textured is difficult to determine from limited discrete
points by either direct methods or harmonic analysis. In
both approaches, the ODF is represented as the
superposition of the individual orientations convoluted
with a smoothing kernel. Under such conditions,
particularly when the number of orientations is limited,
it is difficult to resolve statistically expected clustering in
the samples from actual weak peaks in the ODF. As a
final example, the ability of the unsupervised learning
approach to fit uniform random textures is examined.
Sets of orientations were sampled from uniform
random ODFs, and fit by both the unsupervised
learning approach and by harmonic analysis via MTEX
with automated kernel selection. 100 independent trials
were completed for ensembles of 100, 500, 1000, 2000,
5000, and 10000 orientations. It can be seen in Figure 5
that the entropy of unsupervised learning ODFs were
significantly closer to zero than the harmonic textures
for all ensemble sizes indicating that the fit textures
were closer to uniform. Example fits for 1000 orienta-
tion are shown in Figure 6.

VI. DISCUSSION AND CONCLUDING
REMARKS

While significant effort and space has necessarily
been spent on the details and implementation of the
unsupervised learning algorithm and the underlying
Bingham mixture model, the central message of the
current study is that there is a fundamental difference
between the traditional problem of estimating an ODF
from a series of incompletely measured pole figures,
obtained from X-ray or neutron diffraction, and the
estimation of ODFs from individual orientation mea-
surements from EBSD or as the output from microm-
echanics simulations. The primary goal of the current
study was to develop a completely new approach to
texture analysis, specifically for discrete orientation
data, that minimizes the number of assumptions or a
priori decisions that must be made in ODF estimation,
while at the same time eliminating the possibility of

nonphysical artifacts in the resulting ODF. In the
development of the unsupervised learning approach
only two assumption have been made, (1) that an
arbitrary ODF can be accurately represented as a finite
Bingham mixture and (2) that the individual orienta-
tion measurements are independent and identically
distributed (i.i.d.). Some consequences of these
assumptions are discussed hereafter.
The starting point for the development of the

unsupervised learning algorithm was the hypothesis
that the ‘‘best’’ ODF was the one that (1) maximized, in
some sense, the probability of generating the discrete
orientation data; and (2) where the level of detail
(fluctuations) was a reflection of the uncertainty due to
the quality/quantity of the measured orientations.
These requirements naturally lead to the minimum
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message length criterion presented here. The end
product is a data-driven approach to ODF estimation,
based on well-developed concepts from information
theory, that requires no a priori decisions on the part of
the user. Another key advantage of this approach is the
ability to produce reasonable ODF estimates from
limited data on the scale of the statistical volumes
commonly used in crystal plasticity finite elements or
other full field micromechanics simulations (a few
hundred grains).

The assumption that an arbitrary ODF can be
represented by as a finite Bingham mixture is expected
to hold for most textures of interest. There are some
uncommon ODFs for which this assumption is clearly
violated. These include the ‘‘cone fiber’’ texture as
explored by Grewen and Wasserman and Matthies
et al.[54,55] In order to capture these textures with a
Bingham mixture model, a very large number of radially
symmetric unimodal components would need to used.
However, as mentioned in the introduction, the ODF
model and the unsupervised learning approach are fairly
decoupled. In this case, another mixture model such as a
texture component basis could be substituted for the
Bingham model,[37,38,39,40] and the minimum message
length unsupervised learning approach can be applied
without change.

The more restrictive assumption is that the discrete
orientation measurements are i.i.d.. This assumption is
likely to hold true when analyzing the output from
homogenized or effective medium crystal plasticity
simulations such as the well-known visco-plastic self-
consistent model. The output of such simulations is an
effective orientation for each grain and a weighting
factor to account for the size of a particular grain. Each
data point can be thought of as independently sampling
a grain from a large polycrystal. In contrast, the
individual orientations from an EBSD map exhibit a
high degree of spatial correlation (e.g. within the spatial
extent of a grain all sampled orientations will be
clustered in some region of orientation space), this
assumption clearly breaks down. For discussion pur-
poses, one can imagine two extreme cases: (1) where a
statistically significant number of grains are mapped,
and (2) where a limited number of grains are mapped
but each grain contains a large number of measurement
points.

In the case of mapping a large number of grains, an
approximate correction can be made by randomly sub-
sampling points from the EBSD map. By sub-sampling
uniformly over the EBSD map, the effects of local
spatial correlations within grains can largely be re-
moved. An ideal sampling density will be dependent on
the grain size and spatial resolution of the original map.
This is roughly equivalent to the common practice of
measuring a ‘‘texture scan’’ via EBSD where the spatial
step size is increased to roughly the grain size, so that a
large number of grains are sampled with one or two
measurement points per grain.

The second case, where an EBSD map contains a
very limited number of grains, represents a very local
microtexture measurement. In this case, one is often

interested in the orientation spread within a single
grain or in the understanding of highly localized
orientation gradients and sub-structure formation
rather than an estimate of the macrotexture ODF. In
studying intragranular orientations, the unsupervised
learning approach can potentially offer significant
benefits over harmonic analysis as the resulting mea-
sured orientation spread is going to be highly depen-
dent on the degree of smoothing and bandwidth
selected. The advantage of the Bingham mixture model
presented is two-fold: (1) no a priori information on the
orientation spread is needed to properly estimate the
peak widths, and (2) the minimum message length
criteria gives an objective data-driven criteria for
determining if the orientation spread within a grain is
unimodal (single Bingham component) or multimodal
(Bingham mixture) which could potentially be useful in
studying active deformation modes or substructure
development within a grain.
It is also important to note i.i.d. orientation mea-

surements is also a central, but often neglected,
assumption made in the application of direct methods
(such as WIMV) and spherical harmonic techniques.
The automatic kernel selection algorithm within
MTEX can serve as a highlighting example. It has
been documented that when performing half-width
estimation from spatially correlated orientations (such
as a list of orientations from an EBSD map) the
recommended kernel will be overly sharp. The recom-
mended approach is to remove the spatial correlation
by estimating the kernel half-width from a weighted
mean or effective orientation for each grain (See
MTEX documentation and[21]). The degree to which
the proposed unsupervised learning algorithm is
affected by spatially correlated data is being investi-
gated and will presented in a future publication.
In conclusion, this study represents a proof-of-

concept application of the unsupervised learning algo-
rithm. The main focus of this article was to lay out the
details of the Bingham mixture model, the unsuper-
vised learning approach, and the minimum message
length criteria in a self-contained manner, and perform
some simple demonstrations on ‘‘toy’’ texture estima-
tion problems. Another study is ongoing on the
development of efficient parameter estimation ap-
proaches for the Bingham distribution in the presence
of arbitrary crystallographic and sample symmetry
The application of these concepts to actual experimen-
tally measured textures and predicted texture from
crystal plasticity simulations is reserved for a future
publication.

APPENDIX A: IMPLEMENTATION OF THE
EXPECTATION MAXIMIZATION ALGORITHM

Pseudo-code detailing implementation of the com-
plete EM-type algorithm for the fitting of finite Bingham
mixtures is shown in Algorithm 1.
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