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A multiscale phase-field model was established on the assumption of an isotropic single-phase
system to simulate the realistic spatiotemporal process of grain growth for polycrystalline Mg-
Al-Zn alloy AZ31, especially to determine the mechanisms for unique nanostructure evolution.
The expression of the local free energy density function was improved according to different
driving forces. The grain boundary range and grain boundary energy were studied in each scale
to determine the correct gradient and coupling parameters, respectively. It is shown that the
grain boundary energy in nanoscales is lower down to about half that in the micron scale,
the time exponent n in the kinetic equation is varied from 5 to 2 from the nanograins to the
micrograins, and the grain growth rate in nanoscale is much slower in an order of magnitude
than that in the micron scale. These findings can be proven by the limited experimental results in
the literature. Simulations expose that the solute atoms like to segregate at the grain boundaries
much more severely in nanostructure than that in conventional microstructure, and this may be
the reason why nanostructure shows a low boundary mobility to result in a strange low grain
growth rate at up to an initial long annealing time.
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I. INTRODUCTION

NANOCRYSTALLINE materials were first defined
by Gleiter in 1981, who also presented ways to design
them. Since then, the research about nanocrystalline
materials and nanotechnology had been very active
because of their unique physical and mechanical prop-
erties.[1–4] Certain experiments revealed that the mea-
sured properties of materials explicitly exhibited size
dependence. For instance, the relationship of the
strength and grain size followed the Hall–Petch rela-
tionship (rs = r0 + Kd�1/2) for conventional polycrys-
talline materials, but it was not for the nanocrystalline
materials, depending on nanostructure features.[1] The
difficulties in experimental investigations are not only
the huge cost but also the diversity of the measurements
without physical models due to the different test
conditions among so many individual researchers. With
the advent of powerful modern material science, the
multiscale simulation techniques in which either multi-
ple time or multiple spatial scales are treated simulta-
neously may be the potential tool to deal with the
complicated problem of microstructural evolution.[5,6]

Multiscale computational methodology is an integra-
tion of many different computational methodologies,
and it is an intermediate tool to bridge from angstroms
to microns. Some authors thought the idea of multiscale
modeling bridged the analytical and numerical mod-
els;[7] others thought it should be extended to build up
bridges between microstructural simulation and prop-
erty predictions, and between processing modeling and
property predictions.[8] Reference 9 describes the devel-
opment of the quasi-continuum method linking atom-
istic and continuum models through the finite element
method. Reference 10 presents a demonstration of the
multiscale approach, which combined first-principles
calculations, a mixed-space cluster expansion approach,
and the diffuse-interface phase-field model. Many other
kinds of computer simulation methods are developed
vigorously, such as the first-principles (FP) calculation,
molecular dynamics (MD) simulation, Monte Carlo
(MC) method, and phase-field method. Generally, the
FP calculation, MD simulation, and MC method are
thought to be suitable for the analysis of nanostructure
and properties, since these three models are all the
typical simulation methods for material behaviors at
atom and molecular scales; however, FP calculation
only uses three basic physical constants, the Planck
constant, electron mass, and electronic volume, and
arrangement of atomic extranuclear electrons for the
sake of precision, to solve the self-consistent Schrodinger
equation,[11] which makes the calculation labor intensive
and only handles a limited number of atoms (about
1000 atoms) according to the computing capacity of
computers at present. MD simulation also requires
solution of the Newton’s equation for all particles, in
order to obtain the dynamic characteristics of the
system;[12] its typical simulation time is in the range of
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picoseconds. The MC method is a random method for
numerical integration; the classical MC method is not
related to trajectories, only calculates the equilibrium
thermodynamic quantities, and cannot predict the
dynamics of nanostructure materials.[13] Frost et al.
improved the Potts model to simulate the grain growth
process, but it still consumes a large amount of
computing time for the selection of random grid points.
The simulated time is usually represented by the MC
steps.[14] However, the variety of multiscale modeling
applications combine different types of models with
different principles, which may confuse the physical
nature of an application and may result in a numerical
fitting phenomenon without an understanding mecha-
nism. It may be ideal to find a multiscale grain growth
model based on one method, and the phase-field model
is probably the only possibility in analytical physics
nature.

Phase-field methods are based on microscopic and
continuum diffusion equations. However, the conven-
tional microscopic phase-field model uses the probabil-
ity of the solute atom occupying the given lattice sites at
a given time as the variable field and does not have an
expression of the local free energy density. The kinetic
parameters need to be related to the phenomenological
diffusion coefficient in the continuum model in order to
compare the simulated results with experimental mea-
surements, and the time and space scales of the
microscopic phase-field model after Fourier transfor-
mation are 10�9 to 10�6 m and 10�6 to 10�3 seconds,[15]

which cost much calculation time. However, for the
continuum phase-field model, due to the use of the
gradient of the conservation and nonconserved field
variables (such as concentration, structure, orientation,
long-range order, etc.) to describe the diffusion interface
between each phase, there is no sharp interface, which
truly achieves the description of the migration of the
diffusion boundaries. So the continuum phase-field
model is chosen in our article in an attempt to cover
multiple scales in grain growth.

After many researchers’ hard work, phase-field sim-
ulations became increasingly more sophisticated both in
numerical calculation and practical application; for
example, Karma and Rappel[16,17] developed the thin-
interface limit for modeling the solidification of a pure
material by phase-field method for efficient computa-
tions. Reference 18 shows that they formulated the first
phase-field model of evolution of a multidislocation
system in elastically anisotropic crystal under applied
stress. Reference 19 includes the attempted development
of a phase-field model into a quantitative tool to
simulate the microstructural transformation under a
certain heat treatment process. Böttger et al.[20,21]

applied the multiphase-field method coupled to thermo-
dynamic databases and experiments as an engineering
approach to describe equiaxed solidification and solid-
state transformation for technical AZ31 Mg alloy. Our
recent previous work already achieved a phase-field
model to simulate the grain growth process during
recrystallization of AZ31 alloy in real time and space,
and the simulated results agree well with the experi-
ments[22–26] by introducing a new concept of the grain

boundary range. It is believed that the model is the first
time a grain growth simulation of realistic spatiotem-
poral evolution of microstructure in industrial scale was
accomplished. However, as far as the authors know, no
phase-field model of the nanoscale grain growth process
in a real alloy has been reported.
In this article, a modification of our previous phase-

field model is reported to simulate the multiscale grain
growth in polycrystalline AZ31 Mg alloy in the realistic
spatiotemporal process. The driving force is discussed
again, and the parameters are varied systematically to
find the possibilities to form the expected structure in
order to model the grain growth from nanoscales to
micron scale. Comparisons of the simulated results with
the experiments at different temperatures are made to
explain the mechanisms of the grain growth especially in
nanostructure to establish references for the develop-
ment of the nanocrystalline materials.

II. PHASE-FIELD MODEL IN MULTIPLE
SCALES

A. Model Fundamentals

Magnesium alloys have gained great attention in
recent years for their high specific strength, high specific
stiffness, low specific weight, and low pollution, but they
have poor plasticity and strength. As we know, grain
refining is a general way to improve both mechanical
strength and ductility of metallic materials. A bulk
nanocrystalline Al-5 pct Mg alloy revealed that it has
4 times the strength of a conventional Al-5083 alloy
along with good ductility (8.5 pct elongation).[2]

In present simulations, AZ31 Mg alloy was chosen as
the study material with the concentration of (in mass)
w (Al) = 3 pct, w (Zn) = 1 pct with the remainder
magnesium.
Phase-field methods are based on thermodynamics

and kinetics. The temporal evolution of microstructure
can be determined by solving the time-dependent Allen–
Cahn equation and Cahn–Hilliard diffusion equations
as follows:[27,28]

@gjðr; tÞ
@t

¼ �L dF
dgjðr; tÞ

; ðj ¼ 1; 2; . . . ; nÞ ½1�

@cðr; tÞ
@t

¼Mr2 dF
dcðr; tÞ

where L and M are the structural relaxation and
chemical mobility parameters, respectively, gj (r, t) is
the long-rang orientation parameters, c (r, t) is a con-
centration field variable, F is the free energy of the sys-
tem, and its expression in isotropic single-phase system
is seen as follows:[29]
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where K2 is the gradient energy coefficient and f0 is the
local free energy density function.

B. Grain Boundary Range

Reference 29 claims that the sharp-interface models
were inappropriate for describing grains with sizes close
to the boundary width, and the diffuse-interface field
models have already been proposed to describe a
polycrystalline microstructure by many orientation field
variables.[29–32] In these models, grain boundaries are
assumed to be diffuse with finite thickness, and their
width is actually the range of field variables changed
across the flat grain boundary. However, limited by the
actual physical thickness of grain boundary thought to
be a few lattice parameters (for example, 20Å), the
parameters in the models were assumed as numerical
values. Later, as shown in References 19, 33, and 34, an
artificially diffuse interface at the length scale of
practical interest was produced, for example, an increase
the interface width from about 9 to 36 nm,[34] without
altering the kinetics and microstructure along the
evolutionary path. However, the interface width is still
too small for large grains on the order of micrometers
and long time for hours in engineering scaling scope.
The interface thickness condition was also discussed in
the phase-field model of solidification,[16,17,35,36] and
Karma etc. presented the thin-interface limit analyses,
which allowed the width of the diffuse interface to be
larger than about an order of magnitude of the capillary
length.[16,17]

Therefore, we proposed a new concept, called ‘‘grain
boundary range,’’[22–24] to define the distance of the
gradient variation of the long-range orientation param-
eters across an interface. The ‘‘interfacial width’’ in
phase-field simulation should be optimally chosen to
satisfy both the precision and required computational
efficiency, so that our grain boundary range is the same
as the interfacial width. However, the interfacial width

has a different meaning in material science: it is the
geometrical width of an interface in a scope of 3 to
5 atoms thickness. If we take the phase-field ‘‘interfacial
width’’ as 3 to 5 atoms, the phase-field simulation does
not have computational efficiency. We suggested that
the phase-field interfacial width can be as large as up to
micrometers, and we suggested the new term ‘‘range’’
instead of width for clearance. Moreover, our study[22–24]

finds that the range has a physical concept of the region
around an interface, which the interface affects via
interface energy and interfacial element segregation. The
boundary energy of a low-angle grain boundary, for
example, consists chiefly of elastic strain energy, and it is
formed by a series of dislocations whose effective elastic
field is up to a micrometer in size. The position of the
interface defined in our model is the geometric center of
symmetry of the grain boundary range. The variation of
g across a flat boundary was calculated by the present
multiscale model in micron grains, and it is shown in
Figure 1(a). The grain boundary range r in the micro-
structure can be measured from Figure 1(a), and it is
indicated by the scale bar in the figure and is about
1.2-lm wide.
The value of grain boundary range 1.2 lm is too large

for grains in nanoscales whose grain size is less than 1
lm, and the grain boundary range will have no physical
meaning if it covers more than two grains. The volume
fraction of grain boundaries increases dramatically
when the grain size decreases,[37] and Reference 38
shows that the nanocrystalline materials might consist of
over 50 pct of geometric boundary regions (interface
component) depending on the average grain size. There-
fore, we suggest that the nanocrystalline materials will
have a grain boundary range that covers up to nearly
two whole adjacent grains, as seen in Figure 1(b).
However, we only take one grain area when we calculate
the boundary energy so that any boundary energy will
not be counted twice for the neighboring boundaries,
although the boundary ranges of a grain share some
regions with their neighbors. The simulated results

Fig. 1—Characteristics of grain boundary in orientation parameters by simulations: (a) for micron scale model and (b) for nanoscale model.
p—grain boundary position; r—the grain boundary range.
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based on such a range model of variation of g across a
flat boundary are shown in Figure 1(b) in the nano-
structure by our present multiscale phase-field model.

It is also seen from Figure 1(a) that the values of gj
(j represents a certain orientation of the grains) vary in
one grain from 1 to 0 into another grain gradually
across the grain boundary range. However, the grain
boundary range covers its adjacent two grains in
nanoscale in Figure 1(b), which means that the attribu-
tion of the orientation of a grain may be influenced not
only by itself but also by its nearest neighbors. It is the
size and the physical character of the boundary range
that makes the key difference in our present model for
different scale applications.

The boundary range cannot be varied automatically
when the grain size increases with increasing annealing
time by the computing code of our present model. In
order to improve the computational efficiency, the
multiscale grain growth process for AZ31 Mg alloy
was divided into four stages from nanoscales to micron
scale. Simulations were carried out to find the proper
size of the range for each stage, and the results of the
grain boundary range r are listed as a function of grain
size in Table I. The computing code would be broken
several times automatically to check average grain size
to adjust the range values according to Table I if
necessary during the grain growth simulations.

C. Local Free Energy Density Function

The local free energy density function f0 represents the
figuration of a phase-field model, and the basic require-
ment for it is that f0 has p degenerate minima located at
(g1, g2, …gp) = (1, 0, …, 0), (0, l, …, 0), …, (0, 0, …,
1).[29] We adapt an expression to describe the local free
energy density function as follows:[22]

f0 ¼ Aþ A1ðcðr; tÞ � clÞ2 þ
A2

4
ðcðr; tÞ � clÞ4

� B1

2
ðcðr; tÞ � clÞ2

Xp
i¼1

g2i ðr; tÞ þ
B2

4

Xp
i¼1

g2i

 !2

þ K1

2

Xp
i¼1

Xp
j6¼i

g2i ðr; tÞg2j ðr; tÞ ½3�

where cl is the concentration at the lowest point of the
free energy curve as a function of concentration at a
certain temperature, K1 is the coefficient of coupling
item between gi and gj, and p is the possible number of
the grain orientations in the system and is taken as 32, as
suggested in Reference 29.

In order to keep f0 minimal at gi = 1 and gj = 0, the
derivation of Eq. [3] has to be zero, and the relationship
of B1 and B2 is B1 (c – cl)

2 = B2.
Assuming that g2j ¼ 1 with

Pp
i6¼j g

2
i ¼ 0represents the

orientations in grains and
Pp

i¼1 g2i ¼ 0 represents the
initial state that is amorphous solid, we suppose that
the initial state can be simplified as the large-angle
random grain boundary body. The f0

Pp
i¼1 g2i ¼ 0

� �
�fo g2j ¼ 1;

Pp
i 6¼j g

2
i ¼ 0

� �
represents the energy differ-

ence contained in a unit mole between the amorphous
solid and crystallization. The thickness of a unit random
boundary can be taken as the boundary range. Since the
grain boundary energy is the accumulation of energy in
the boundary range in the phase-field model, and only a
small part of the region in the boundary range contains
the large value of grain boundary energy, while in the
rest of the region, the energy is small, we actually
calculate the thickness with one-fourth boundary range.
Therefore, the constants can be determined as follows:

H ¼ f0
Xp
i¼1

g2i ¼ 0

 !
� fo g2j ¼ 1;

Xp
i6¼j

g2i ¼ 0

 !

¼ rM
ð1=4Þrq ¼

B1

2
ðc� clÞ2 �

B2

4
½4�

where r is the random grain boundary energy, M is the
molar mass of AZ31 Mg alloy, and q is the density. The
random grain boundary energy of 0.5 J/m2 is used only
for defining the initial state. The value of boundary
energy here has no relationship with grain size and with
real grain boundary energy in microstructure simulated
later. Therefore, B1 and B2 are obtained by relating to
the grain boundary energy and Eq. [4]. The calculated
results are listed in Table II as the range is varied
according to the average grain size.
On the other hand, in theMg-Al-Zn alloy system, the free

energy-concentration curves can be obtained by the
software THERMOCALC (Thermo-Calc Software AB,
Stockholm Technology Park, Stockholm, Sweden) at dif-
ferent temperatures according to the corresponding exper-
imental database;[22,23] the curves are given in Figure 2(a).
According to Figure 2(a), cl is obtained to equal 0.2 at

573 K and 623 K (300 �C and 350 �C), respectively. The
best values of A, A1, and A2 are obtained by fitting the
curves in Figure 2(a) with Eq. [3] when g2j ¼ 1 andPp

i 6¼j g
2
i ¼ 0 at each scale, and the optical results are

shown in Table III. The corresponding fitting curves are
given in Figure 2(b) by fitting Eq. [3] using the values of
the parameters listed in Table III, and they show a good
match with the experimental data in Figure 2(a).

Table I. Values of Grain Boundary Range r at Each Scale

Average grain size (nm) Grain Boundary Range, r (nm)

24 to 85 47
86 to 219 164
220 to 1000 434
Larger than 1000 1172

Table II. Values of B1 and B2

Average Grain Size (nm) B1 (kJ/mol) B2 (J/mol)

24 to 85 80.33 2321.51
86 to 219 22.95 663.29
220 to 1000 8.68 250.77
Larger than 1000 3.54 92.86

1602—VOLUME 44A, MARCH 2013 METALLURGICAL AND MATERIALS TRANSACTIONS A



D. Grain Boundary Energy

According to the theory of flat interface energy in the
isotropic system proposed by Cahn and Hilliard, the flat
grain boundary energy r between two grains whose
orientations are, respectively, i and j, can be expressed as
follows:[28]

r ¼
Zþ1

�1

f0 � fMin þ
KP

2

dgp
dx

� �2

þKq

2

dgq
dx

� �2
" #

dx ½5�

where f0 is the value of free energy density near the
boundaries, fmin is the constant in grains far away from
the boundaries, Kp and Kq are the gradient parameters
of p and q orientations, and Kp= –Kq = K2 is expressed
in our model here in the isotropic system. Our model
does not consider the anisotropic interface energy for
the simplification of the model. The anisotropic grain
boundary energy may lead to the abnormal grain
growth and have a great impact for the metastable
phase, but have only a small influence at high-temper-
ature aging.

The coupling item parameter K1 and the gradient
parameter K2 in the local free energy density function
are dependent on the grain boundary energy and the
grain boundary range. A bi-crystal figuration is used to

study the relationship between K1, K2, and the features
of the boundary range and grain boundary energy for
polycrystalline AZ31 Mg alloy. The simulated results
are shown in Figure 3. The first three columns of data
are the relationship of the grain boundary energy and
the grain boundary range with variations of K1 and K2

when the grain size is less than 85 nm. The second three
columns of data are for the grain size between 86 and
219 nm, and the rest of the columns of data are for the
grain size between 220 and 1000 nm.
In our previous work,[22–24] we obtained the phase-

field model for the process of grain growth for micro-
crystalline structure AZ31 Mg alloy, and the simulated
results showed that the boundary range was mainly
decided by K2. However, in our present model, the
boundary range is determined both by K1 and K2, and it
may be for that reason that the grid size set in our model
in nanoscales is 2.93 nm, which is much smaller than
that in the micron scale model with size of 293 nm.
Meanwhile, the micron scale model has a value of grain
boundary energy of 0.55 J/m2, and the grain boundary
range is a constant of about 1.17 lm. In our present new
model, when K1 = 141.24 J/mol and K2 = 3.54 9
10�12 m2J/mol, it can satisfy the requirements.
K1 and K2 have to be varied according to Figure 3 of

the simulated results to meet the different values of the

Fig. 2—Free energy-component curves of AZ31 Mg alloy obtained by the software THERMOCAL and fitting results: (a) for THERMOCAL
results and (b) for fitting results.

Table III. Best Fitting Values of A, A1, and A2 at Different Temperatures in Eq. [3]

Average Grain
Size (nm)

A (kJ/mol) A1 (kJ/mol) A2 (kJ/mol)

573 K (300 �C) 623 K (350 �C) 573 K (300 �C) 623 K (350 �C) 573 K (300 �C) 623 K (350 �C)

24 to 85 –22.67 –25.57 99.64 99.14 13.00 18.30
86 to 219 –22.25 –25.15 42.26 41.76 13.00 18.30
220 to 1000 –22.15 –25.05 27.99 27.49 13.00 18.30
Larger than 1000 –22.11 –25.01 22.52 22.02 13.00 18.30
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boundary range and the boundary energy in different
scales. The proper values of K1 and K2 in our multiscale
model are listed in Table IV.

It is seen in Table IV that values of the grain
boundary energy by simulations decrease significantly
with decreasing grain size down to nanoscales due to the
physical nature of the present phase-field model with a
small value of the boundary range when the grain size is
small. The simulated results are proved by the experi-
ments shown in Table IV, which not only indicates the
great success of our present model but also supplies an
explanation of the phenomena implied by very limited
experimental measurements. It may not be easy to
believe that the boundary energy is small when the grain
size is small unless one considers that nanoscale grains
are too small to accommodate Frank–Read dislocation
sources, which would lead to runoff of a part of the
distortion energy, which would contribute much less to
the boundary energy. In addition, Lu in Reference 40
suggested another possible reason for the phenomenon;
i.e., the grain boundary energy of the nanograined
copper by means of dynamic plastic deformation
decreases with decreasing grain size.

E. Other Model Parameters

L is the coefficient related to grain boundary mobility,
and it was explained in the micron scale model in detail
that the value was 1.15 9 10�2 mol/J s at 623 K
(350 �C) and 7.25 9 10�3 mol/J s at 573 K (300 �C)[22,23]

by matching the simulated results with the experiments.
We used the same method to obtain the values of L in
the nanostructure too. The average grain sizes mea-
sured[41] during grain growth at 623 K (350 �C) were
used as the target curves, and the simulated results by
our present model were carried out with different L to
match the curves. It was found that when L = 2.07 9
10�6 mol/J s at 623 K (350 �C), the simulated results of
grain size as a function of time can match the curves
shown in Figure 6(a). According to the Arrhenius
formula that L = L0exp(–Q/RT), where Q = 27.6 kJ/
mol as the Al segregation activation energy given by
References 22 and 23, it is calculated that L0 = 4.26 9
10�4 mol/J s by the preceding value of L at 623 K
(350 �C), and then the value L at 573 K (300 �C) is
calculated as 1.30 9 10�6 mol/J s.
In the mean field approximation, M is the diffusion

mobility, and according to Reference 31, it has a
relationship with the diffusion coefficient D in a dilute
solution that M = (1 – c0) c0D/RT, where c0 represents
the mean concentration of the alloy, R is the gas
constant, and T is the absolute temperature.
The diffusion coefficient of aluminum in themagnesium

matrix is D = 1.2 9 10�3 exp (–143,000/RT) m2/s, so
M = (1 – cAl) cAlD/RT = 6.91 9 10�21 m2mol/J s at
623 K (350 �C) and M = 6.75 9 10�22 m2mol/J s at
573 K (300 �C), respectively, for conventional grain
growth of micron scale. However, M has a relationship
with L so that x = M/Ll2, where l represents the grid
spacing,[31] so the values of M in nanoscales have to be

Fig. 3—Relationship between K1, K2, and the relevant grain boundary features in the nanoscales: (a) for the grain boundary energy and (b) for
the grain boundary range.

Table IV. Values of K1, K2, and r in Multiscale Model, Compared with Experimental Data

Average Grain
Size (nm) K1 (J/mol) K2 910�13 (Jm2/mol) r* (J/m2) Dm

** (nm) rm
** (J/m2)

24 to 85 2090.16 0.21 0.19 18.75 to 26.51 0.18 to 0.19[39]

86 to 219 1103.14 1.29 0.30 86 to 112 0.22 to 0.34[40]

220 to 1000 1045.08 6.23 0.50 225 to 260 0.48 to 0.52[40]

1000~ 141.24 35.37 0.55 1000~ 0.55[22,23]

*r is the grain boundary energy by our phase-field calculations.
**Dm and rm are the measured average grain size and grain boundary energy, respectively, in the references.
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adjusted. The mobility constant x controls whether the
grain growth is diffusion or interface controlled, and in
order to ensure interface-controlled growth in the case of
grain growth, the value of x has to be relatively large and
we take a proper value of 79 10�2 proved by our previous
work.[22,23] Therefore, the value of M is 1.24 9 10�24

m2mol/J s at 623 K (350 �C) and 7.81 9 10�25 m2mol/J s
at 573 K (300 �C) in nanoscales in our present model.

The parameter M is not dependent on L in our
simulation, and our model only tries to adopt all real
experimental parameters to simulate real grain growth.
We always used actual diffusion parameters found in the
references in our work, although there are comments in
our article citing that much of the research supposed a
dependent relationship between M and L.

F. Initial Condition Setup

The nucleation process of crystallization is simplified
by a phenomenological method, and the well-defined
grain microstructure is formed after a short time. The
initial state is given as the 4dx 9 4dx unit distributing
evenly in the simulated area, and the radius of the
nucleus is a random value between 0 to 2 grids. Our
simulations are conducted in the 512 9 512 two-
dimensional uniform grids.[29] The overall size of the
simulation cell is 1.5 lm 9 1.5 lm at nanocrystalline
structure with each grid size being 2.93 nm, whereas for
the micron scale model, the unit grid size is 0.293 lm
and the entire simulation area is 150 lm 9 150 lm. The
local initial composition is considered as 0.03. The value
of the time-step has to be relatively small in order to
obtain the convergence results; however, an extremely
small value of time-step will require more steps for
solving the kinetic equations. The values of 0.6 seconds
in the nanoscales model and 0.3 seconds in the micron
scale model for time-steps are chosen to balance the two
factors. The boundary condition of the differential
equations is defined as the periodic boundary, in order
to minimize the boundary effect on the grain growth
kinetics.

III. SIMULATED RESULTS AND DISCUSSION

A. Multiple Scale Grain Growth
in Different Temperatures

The morphology and evolution of the polycrystalline
structure in the AZ31 alloy were simulated by our
phase-field model during annealing time, and the results
are shown in Figure 4. The values of all simulated
parameters were obtained from physical analysis or
experiments in our model presented in Section II, so that
the results in Figure 4 are all in real time and real scale.
Therefore, the grain size can be compared with the
actually measured results by experiments directly.

It is seen in Figure 4 that the grain structures based on
the orientation field and the concentration field at the
same time are identical both in nanostructure and
micron structure, which is a proof of the validity of our
phase-field model. However, the concentration field

shows a variation pattern in large grains in Figure 4(h),
for example, and this suggests that a grain only large
enough to 10 lm in diameter can have the character that
the boundary energy may vary significantly with differ-
ent crystal orientation neighbors. There are some great
elongated grains in nanoscale, as given in Figures 4(a)
and (c) shown in circles, and they are proof of a grain
coalescence mechanism of coupling grain rotation dur-
ing grain boundary migration. On the other hand, the
grains in micron scale always show the round polygonal
shape, which exposes some differences of grain growth
mechanisms in nanoscale compared with micron scale.
Several large grains can be seen in the fine grains in
Figures 4(a) and (c) in nanostructure, and these grains
imply a tendency of easy abnormal grain growth in
nanostructure.
The distribution of grain size both in nanostructure

and micron structure was examined, and the statistical
results are shown in Figure 5. It is found by comparing
Figures 5(a) and (b) that the distribution of grain size in
nanostructure is symmetrically close to the average size
(66 nm) in the maximum content size (59 nm) with a few
very large grains, whereas the distribution of grain size
in the micron structure is a random narrow shape far
away from the average size (21 lm) in the maximum
content size (17 lm). The differences in the distribution
of grain size cause the differences in grain growth
kinetics between nanostructure and microstructure pre-
sented in Section III–B.
In order to check the reliability of the simulations, we

compared the simulated results of grain growth with the
experimental results at different temperatures, as shown
in Figure 6. It is seen that the simulated results are
matched well with the experimental data at 623 K
(350 �C). However, the simulated results are not
matched very well with the experiments at 573 K
(300 �C) in Figure 6(a) in nanostructure, which may
imply a different mechanism in activity energy at lower
temperature.

B. Grain Growth Kinetics

Conventional grain coarsening in single-phase poly-
crystalline materials is a migration process of grain
boundaries, driven by the mean curvatures. Generally, it
is thought to obey the parabolic kinetic equation, such
as Hillert’s theory,[42] which predicted a time exponent n
of the highly pure materials in grain growth as n = 2.
The equation is as follows:

Dn �Dn
0 ¼ kt ½6�

where t is the evolution time, D is the average grain size
in diameter, D0 is the initial average grain size, and k is a
temperature-dependent rate constant. However, the
time exponent n is often deviated from the value 2 for
practical reasons, Reference 41 showed n = 5 for the
grain growth in nanocrystalline AZ31 Mg alloy.
Our model has a particular advantage in examining

grain growth kinetics over a large size scale, because it
can simulate the growth from nucleation to an enor-
mous artificial annealing time at a low temperature.
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Such simulated results of AZ31 Mg alloy at 623 K
(350 �C) are shown in Figure 7 with some experimental
results[41,43] for comparison, as follows.

It is seen in Figure 7 that the increase of average grain
size is more obvious in microstructure than that in
nanostructure. The grain growth essentially obeyed the

power law at n = 5 in Eq. [6] in the early process of
grain growth. The grain growth rate is very slow in the
initial stage in nanostructure, and this is a surprising and
interesting result. Since n is a large value of 5 in the stage,
it is believed that the phenomenon has a sensitive
temperature dependence; i.e., the nanoscale grain growth

Fig. 4—Simulated results of grain growth both in nanostructure and microstructure when t = 200, 300, 2500, and 2550 min, respectively, at
623 K: (a) through (d) for nanostructure; (e) through (h) for microstructure; (a), (c), (e), and (g) in orientation field; and (b), (d), (f), and (h) in
concentration field.
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Fig. 6—Simulated average grain size evolution in nanoscale and micron scale as a function of annealing time compared with the experiments in
Refs. [41] and [43] for AZ31 Mg alloy.

Fig. 7—Simulated average grain size evolution of nanoscales and micron scale as a function of the annealing time compared with the experimen-
tal results in Refs. [41] and [43]: (a) for the evolution of nanoscales and (b) for the evolution of the micron scale. r is the boundary range.

Fig. 5—Distribution of grain size for nanostructure and microstructure by simulations at 623 K and the annealing time t = 200 and 2550 min,
respectively: (a) for nanostructure and (b) for micron structure.
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kinetics is affected more significantly by the annealing
temperatures than by micron scale. It is also seen that n
decreases with the increase of the average grain size
during grain growth, and it becomes the normal to 2
when the growth enters the conventional grain coarsen-
ing stage of micron scale. This indicates that the
mechanisms of the grain growth are not the same at
different grain size scales. These findings are also proven
by the limited experimental results[44] that the grain
growth curves were fitted much better to the kinetic
equation in two separate parts with different n values
than that in a single n value part in nanocrystalline Fe
produced by high-energy ball milling.

Table IV has shown that the values of K1 and K2 are
different at different grain size scale stages and K2 is
smaller in nanoscales than that in micron scales. The
grain boundary energy is decided by K1 and K2, and the
calculated grain boundary energy in nanoscales is lower
down to about a half that in the micron scale.
Meanwhile, the coefficient L related to the grain
boundary mobility in nanostructure is also smaller than
that in micron structure. The two kinetic and thermo-
dynamic aspects may lead to the slower grain growth
rate for nanoscale polycrystalline AZ31 Mg alloy.

C. Alloying Element Segregation at Grain Boundaries

In order to explain the physical reasons for the slower
growth rate of grains in nanostructure than that in the
micron structure, the behaviors for alloying element
segregation at the grain boundaries are further studied
by simulations. The distribution of the concentration of
element Al in AZ31 Mg alloy was studied across a flat
grain boundary at different temperatures with grain size
about 85 nm and 35 lm. The results are shown in
Figure 8.
It is seen in Figure 8 that the concentration of Al is

much higher in the grain boundaries than that in the
grains, and the segregation range of grain boundaries for
grains inmicron scale is larger than that in nanoscale. The
simulations expose that the solute atoms would prefer to
segregate at the boundaries much more severely in
nanostructure than in microstructure, though the depen-
dence of segregation on the temperatures is the same in
both structures. The phenomenon that the segregation
level would decrease with the increase of grain size was
reported by an experimental study of phosphorus segre-
gation in nanocrystalline Ni-3.6 pct P alloy investigated
with the tomographic atom probe.[45] The simulation

Fig. 8—Simulated results for segregation of Al element at grain boundaries in nanostructure and microstructure for AZ31 Mg alloy at different
temperatures: (a) nanostructure at 573 K, (b) nanostructure at 623 K, (c) microstructure at 573 K, and (d) microstructure at 623 K. p—grain
boundary position.
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results show that the AZ31 magnesium alloy polycrystal-
line has the size effects of boundary segregation. The
nanostructurematerials showhigher segregation, because
there are a large number of interfaces to provide extra free
energy to promote diffusion and a high density of short
circuit diffusion paths. The adsorption capacity is quite
high (high solute solubility) and the solute atomsmay trap
easily and, therefore, diffuse less through the bulk in
nanostructure materials.[46] Nevertheless, the phase-field
model has the advantage of showing the nature of
microstructural evolution, including diffusion, which
gives a much higher value to the results of the size effect
obtained by our simulation. Our model simulates diffu-
sion phenomena based chiefly on thermodynamics. The
uphill diffusion of the segregation in our simulation is not
only affected by the kinetic diffusion coefficient, but also
mainly affected by the contribution of the diffusion
driving force. In fact, the diffusion coefficient in ourmodel
is the same both for micron meter and nanometer
microstructures but different local free energy functions.
Therefore, our simulation indicates that the size effect is
due to thermodynamic driving force rather than dynamic
mobility. Essentially, the expression of the local free
energy density function leads to the occurrence of severe
uphill diffusion, because the nanostructure has higher
local free energy density contributed by multiple gradient
terms of long-range orientation field parameters. The
solute atoms segregated to the boundaries will lead to the
retarding force on the boundary migration,[47] which
finally results in the slower grain growth in nanostructure.

Apart from the low grain boundary energy and
different growth dynamics, the mechanisms of nano-
grain growth include that diffusion plays an important
role. This can be explained by the finding that the
volume fraction of grain boundaries increases dramat-
ically when the grain size decreases, which will result in
high diffusion path and short diffusion distance to
realize element segregation at boundaries by low-tem-
perature diffusion during the age annealing in our
simulation, and the segregation will significantly change
the boundary mobility.

IV. CONCLUSIONS

1. A multiscale phase-field model is established to sim-
ulate the realistic spatiotemporal grain growth for
AZ31 Mg alloy by varying the local free energy
density function and the gradient parameters
according to different growth driving forces. The
simulated results agree well with the experiments
both in nanoscale and micron scale.

2. Simulated results show that the grain boundary
range for grains in nanoscales covers no more than
two adjacent grains from about 40 to 400 nm, while
the range should be a constant large value of about
1.2 lm for grains in micron scale.

3. The modeling shows that the grain boundary energy
in nanocrystalline alloy is lower down to about a
half that in microcrystalline alloy and the time
exponent n in the kinetic equation is varied from 5
to 2 from the nanostructure to the microstructure.

These findings can be proved by the limited experi-
mental results found in the literature.[41,43]

4. It is found that the grain growth rate in nanoscales
is much slower in an order of magnitude than that
in the micron scale, and it is inconsistent with the
experimental results. The lower grain boundary
mobility and lower grain boundary energy in the
nanostructure are suggested as the reasons.

5. Simulations expose that solute atoms segregate at
the grain boundaries much more severely in nano-
structure than in conventional micron structure,
though the dependence of segregation on tempera-
tures is the same in both structures. This may be
the reason why nanostructure shows a lower bound-
ary mobility, resulting in a strange low grain
growth rate at up to an initial long annealing time.
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Fetzer, I. Steinbach, and A. Bührig Polaczek: Adv. Eng. Mater.,
2006, vol. 8 (4), pp. 241–47.
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