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A steady-state free dendritic growth model applicable to concentrated alloys was proposed as an
extension of Wang et al.’s model.[14] The present model adopted a realistic thermodynamic
model to replace the Baker–Cahn equation and included a generalized marginal stability cri-
terion and a nondilute solute trapping model to completely eliminate the dilute alloy limitation.
Comparative analysis shows that Wang et al.’s model is a very close approximation to the
present model at low undercoolings for dilute alloys. However, the difference appears at high
undercoolings even for dilute alloys. Furthermore, the difference of themodel predictions for both
models increases with nominal composition of alloys due to the inherent limitation of dilute alloys
inWang et al.’s model. A comparison with the experimental data for Cu70Ni30 alloy demonstrates
the applicability of the present model to nondilute alloys.

DOI: 10.1007/s11661-012-1189-2
� The Minerals, Metals & Materials Society and ASM International 2012

I. INTRODUCTION

THE free dendritic growth in anundercooled alloymelt
as amain subject in the researchof solidification theoryhas
fueled increasing attention in past decades.[1–3] In the
original free dendritic growth model (LGK model),[4]

Lipton et al. assumed local equilibrium condition with no
interfacial kinetic effect and adopted a morphological
stability criterion along with an equation for the total
undercooling to predict the radius of curvature and the
velocity at the tip. In order to describe high Péclet number
conditions, i.e., deviations from the local-equilibrium
state, somemodels[5–8] were proposed later. Among them,
the Boettinger–Coriell–Trivedi (BCT) model[7] received
wide acceptance due to its relative simplicity as well as the
ability to describe rapid solidification by introducing the
thermodynamic driving force, the kinetic undercooling,
and Aziz’s solute trapping model.

Several simplifying assumptions, however, restrict the
application of the BCT model. One of them is the
assumption of straight solidus and liquidus. It leads to a
significant discrepancy in model predictions for alloys
with the retrograde-type solidus and curved liquidus.
Divenuti and Ando eliminated this limitation and devel-
oped a model (DA model)[8] with curved (real) phase

boundaries, based on the BCT model. Another assump-
tion in the BCT model is the equilibrium solute diffusion
in bulk liquid. That is the BCT model does not take into
account the relaxation effect of nonequilibrium liquid
diffusion, which is supported by experiments[9–11] and
theories.[12] Galenko and Danilov (GD model)[13] and
Wang et al.[14] incorporated the relaxation effect into the
BCT model with and without linear phase boundary
assumptions, respectively. These twomodels have a finite
value for the solutal diffusion velocity in bulk liquid in
contrast with the previousmodels, in which the relaxation
time is neglected and thus the diffusion velocity is infinite.
All of the precedingmodels are restricted to dilute alloys.

Consequently, the range of application is limited. Most
importantly, the dilute assumption can bring on remark-
able deviations under certain conditions. This was demon-
strated for planar interface migration[15] and marginal
stability criterion.[16] Recently, Önel and Ando[17] modified
theDAmodel byusing a thermodynamic solutionmodel to
replace the Baker–Cahn equation limited by Henry’s law.
Also, Hartmann et al.[18] introduced a nondilute solute
trapping equation into the GD model to describe the
solidification behavior for Ti45Al55 alloy. However, these
modifications are partial and incomplete. In this study, a
steady-state free dendritic growth model, which is applica-
ble to nondilute alloys, was proposed as an extension of
Wang et al.’s model. The present model is self-consistent
since it revised all three parts of the free dendritic growth
model, namely, the interfacial driving force, the marginal
stability criterion, and the solute trapping equation. A
comparison with Wang et al.’s model and the available
experimental data was also made.

II. MODEL

A. Interfacial Driving Force

Founded on Galenko’s extended irreversible thermo-
dynamic analysis[19] for migration of a solid/liquid
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interface, the interfacial driving force (DGeff) applicable
to nondilute alloys can be derived as[15]

DGeff ¼ 1� C�ð Þ � Dl1 þ C� � Dl2 � cðC�l � C�s Þ
2

� ð1� C�l Þ
@ll

2

@C�l
þ C�l

@ll
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@ð1� C�l Þ

� �
V

VD
; V<VD

½1a�

DGeff ¼ 1� C�s
� �

� Dl1 þ C�s � Dl2; V � VD ½1b�

where subscripts 1 and 2 denote solvent and solute,
respectively, for a binary alloy solution; scripts l and s
represent liquid and solid phases, respectively; l is the
chemical potential; Dl is the change in l upon solidi-
fication (ls � ll); V is the interface migration velocity;
VD is the solutal diffusion velocity in bulk liquid; and C�s
and C�l are the solute concentrations at the interface and
C� ¼ ð1� cÞC�s þ cC�l , respectively. The parameter c is
introduced to unify both forms of DGeff without (c ¼ 0)
and with (c ¼ 1) solute drag. And the values 0 ~ 1 of c
indicate the forms with partial solute drag. The so-called
solute drag[20–22] refers to a phenomenon that a part of
total Gibbs free energy change in solidification is
dissipated by the solute-solvent redistribution and is
not available to drive interfacial motion. It leads to
slowing of the interfacial migration.

The last term in Eq. [1a] is the change of free energy
corresponding to local nonequilibriumdiffusion causedby
the relaxation effect. This term disappears when V � VD

due to the occurrence of partitionless solidification. For
dilute alloys, Eqs. [1a] and [1b] with c ¼ 1 reduce to
Galenko’s result[19] on the assumption of linear phase
boundaries and reduce to the following expressions used in
Wang et al.’s model with real solidus and liquidus:[14]

DGeff

RgTi
¼ Ceq0

s �C
eq0

l þC�l 1� kþ ln
k

k0e

� �
þ ð1� kÞ2 V

VD

� �
;

V<VD ½2a�

DGeff

RgTi
¼ Ceq0

s � C
eq0

l � C�l ln k
0
e; V � VD ½2b�

where C
eq0

l and Ceq0
s are the curvature modified equilibrium

solute concentrations in the liquid and solid, respectively,
at the interface; k

0

e is the curvature modified equilibrium
partition coefficient (k

0
e ¼ Ceq0

s =C
eq0

l ); k is the nonequilib-
rium partition coefficient; Rg is the gas constant; and Ti is
the interfacial temperature. In the two expressions, the
chemical potential differences, Dl1 and Dl2, were replaced
by the results from Baker and Cahn:[23]

Dl1 ¼ RgTi ln
ð1� C�s Þð1� C

eq0

l Þ
ð1� C�l Þð1� C

eq0
s Þ

¼ RgTiðC�l � C�s þ Ceq0

s � C
eq0

l Þ
½3a�

Dl2 ¼ RgTi ln
k

k0e

� �
½3b�

where an approximation (lnð1þ xÞ � x, in Eq. [3a]) is
adopted to further simplify Baker and Chan’s results.
Note that for the phase diagrams of most alloy systems,
the equilibrium solute concentration C

eq0

l is not suitable
for the approximation lnð1� C

eq0

l Þ � �C
eq0

l at high
undercoolings, i.e., low interfacial temperatures. There-
fore, the application of Wang et al.’s model is consid-
erably limited. For the interfacial driving force, a
detailed comparative analysis of the present model and
other typical models including Wang et al.’s model can
be found in Reference 15.
According to Turnbull’s chemical rate theory,[24]

DGeff can be related to V as

DGeffðV;Ti þ DTr;C
�
l Þ=RgðTi þ DTrÞ

� lnð1� V=fV0Þ ¼ 0 ð4Þ

where f is the site fraction for growth to occur at the
interface, V0 is the maximum crystallization velocity,
and DTr is the curvature undercooling caused by the
Gibbs–Thompson effect. Different from the planar
interface migration, the curvature correction is neces-
sary for dendritic growth.[7,8]

B. Marginal Stability Criterion

In previous work, a generalized marginal stability
theory for a planar interface during solidification was
proposed.[16] In this section, the aim is to describe the
curvature radius r at the tip (curved interface) during
dendritic solidification. This is also based on the
generalized marginal stability theory.[16]

For an unperturbed (planar) interface, the curvature
effect disappears and the interface response function,
Eq. [4], reduces to

DGeffðV;Ti;CfÞ=RgTi � lnð1� V=fV0Þ ¼ 0 ½5�

where Cf is the liquid composition at the planar inter-
face. Assuming this interface is subjected to an infini-
tesimal sinusoidal perturbation / ¼ dðtÞ sinxx, where
d is the perturbed amplitude, x is the perturbed wave
number, t is time, and x is the interfacial position,
Eq. [5] is then rewritten as

DGeffðV/;T/
i þ Cx2d sinxx;C/

f Þ=RgðT/
i þ Cx2d sinxxÞ

� lnð1� V/=fV0Þ ¼ 0 ½6�

where Cx2d sinxx represents the curvature undercool-
ing DTr; C is the Gibbs–Thompson coefficient; and
V/,T/

i , and C/
f are the migration velocity, the tempera-

ture, and the liquid composition, respectively, corre-
sponding to the perturbed interface. They are linearly
approximated by

T/
i ¼ Ti þ ad sinxx ¼ Ti þ a/ ½7a�

C/
f ¼ Cf þ bd sinxx ¼ Cf þ b/ ½7b�

V/ ¼ Vþ _d sinxx ½7c�
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Combining Eqs. [5] and [7] with the first-order
approximation to Eq. [6], one obtains the following
stability equation:

a ¼ �Cx2 þMðV;Ti þ DTr;CfÞb�
_d
d
1

l�
½8�

where MðV;Ti þ DTr;CfÞ is regarded as the kinetic liq-
uidus slope defined by

MðV;Ti þ DTr;CfÞ ¼
�C

B�Rg lnð1� V=fV0Þ
½9�

and the related parameters are given as

1

l�
¼ AþRgðTi þ DTrÞ=ðfV0 � VÞ

B�Rg lnð1� V=fV0Þ
½10�

A ¼ @DGeffðVx;Ti þ DTr;CfÞ
@Vx

����
Vx¼V

½11a�

B ¼ @DGeffðV;Tx;CfÞ
@Tx

����
Tx¼TiþDTr

½11b�

C ¼ @DGeffðV;Ti þ DTr;CxÞ
@Cx

����
Cx¼Cf

½11c�

The kinetic liquidus slope MðV;Ti þ DTr;CfÞ would
reduce to MðV;Ti þ DTrÞ, which is used in Wang et al.’s
model,[14] if Cf is separated.

Solving the steady-state thermal and non-Fickian
solutal diffusion equations (Eqs. [18] through [20] in
Reference 14) around a perturbed interface, and combin-
ing the boundary conditions on the perturbed interface
(transport balances (Eq. [34] in Reference 14)), one yields
the constant values of a and b. Consequently, from
Eq. [8], the marginal stability criterion for dendritic
growth can be obtained as (Cf is replaced by C�l )

�Cx2 � 1

2
Glnl �

1

2
Gsns þMðV;Ti þ DTr;C

�
l ÞGcnc ¼ 0

½12�

where

nl ¼ 1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðr�P2

t Þ
�1

q ½13�

ns ¼ 1þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðr�P2

t Þ
�1

q ½14�

nc ¼ 0; V � VD ½15b�

Gc ¼ C�l ðk� 1ÞV=Dw; V<VD ½16a�

Gc ¼ 0; V � VD ½16b�

in which w ¼ 1� V2=V2
D; r� is the stability constant

(r� � 1=4p2);[25] Pt ¼ rV=2a is the thermal Péclet
number; Pc ¼ rV=2D is the solute Péclet number; a
and D are the thermal diffusivity and solute diffusion
coefficient, respectively, in the liquid; and Gc is the sol-
utal concentration gradient at interface in the liquid.[14]

In addition, Gl and Gs are the thermal gradients at
interface in the liquid and solid, respectively. Gener-
ally, Gs is negligible; i.e., Gs ¼ 0. From the boundary
condition KsGs � KlGl ¼ DHfV, Gl is then given as

Gl ¼ �DHfV=Kl ¼ �2DHfPt=rCp ½17�

where Ks and Kl are the thermal conductivities of solid
and liquid, DHf is the latent heat of fusion, and Cp is the
heat capacity of liquid alloy.
According to Langer and Muller-Krumbhaar, the

radius of curvature r at the dendritic tip can be
approximated by the perturbed wavelength
k k ¼ 2p=xð Þ with the marginal stability.[25] Conse-
quently, from the marginal stability criterion Eq. [12],
the expression of r is obtained as follows:[8,14,25–27]

r ¼ C=r�

PtDHf

Cp
nt þ

2MðV;TiþDTr;C
�
l
Þðk�1ÞC�

l
Pc

w nc
; V<VD ½18a�

r ¼ C=r�

PtDHf

Cp
nt
; V � VD ½18b�

The expression of nt (nl) is the same as that used in the
previous models[5–8,13,14] except for the LGK model, in
which an approximation to a small thermal Péclet number
Pt is made. This is due to the fact that all the models are
based on the same thermal diffusion equation (Eqs. [18]
and [19] in Reference 14). However, there are differences
in nc between these models. In contrast withWang et al.’s
model, the present model includes an additional term
2C�l @k=@CjC¼C�l in nc. This is because the present model
considers the dependency of the nonequilibrium partition
coefficient k on the interface solute concentration C�l (Eq.
[20]). Furthermore, nc used inWang et al.’s model reduces
to that of the GD model on the assumption of the linear
phase boundaries (neglect the dependency of k onTi) and
reduces to that of the BCTmodel if the relaxation effect is
neglected further.

nc ¼ 1�
2kþ 2MðV;Ti þ DTr;C

�
l ÞC�l @k=@T T¼TiþDTr

þ 2C�l @k=@C C¼C�
l

������ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ wðr�P2

cÞ
�1

q
þ 2k� 1þ 2MðV;Ti þ DTrÞC�l @k=@T T¼TiþDTr

þ 2C�l @k=@C C¼C�
l

������
; V<VD ½15a�
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C. Solute Trapping Equation

For dilute alloys, including the relaxation effect of
nonequilibrium liquid diffusion, the modified Aziz
solute trapping equation is given as:[28]

k ¼ wk0e þ V=VDI

wþ V=VDI
; V<VD ½19a�

k ¼ 1; V � VD ½19b�

where VDI is the interfacial solute diffusive speed defined
by Di=a0, Di is the solute diffusion coefficient at the
interface, and a0 is the interface width.

For nondilute alloys, Eq. [19] used in Wang et al.’s
model needs to be extended. Galenko developed an
extended description of the solute partition coefficient,
which is well suitable for concentrated alloys:[29]

k ¼ wj0e þ V=VDI

wð1� ð1� j0eÞC�l Þ þ V=VDI
; V<VD ½20a�

k ¼ 1; V � VD ½20b�

where j0e is the curvature corrected partitioning param-
eter defined by[20]

j0eðC�l ;C�s ;Ti þ DTrÞ ¼
C�s ð1� C�l Þ
C�l ð1� C�s Þ

exp½�ðDl2 � Dl1Þ=

RðTi þ DTrÞ� ½21�

D. Ivantsov Treatments

Ivantsov assumed that the interface exhibits a den-
dritic morphology with a paraboloid of revolution (near
the tip), and the chemical composition and the temper-
ature are constant along the interface. Solving the
steady-state thermal and solutal diffusion equations in
the liquid phase from the interface to infinite, Ivantsov
obtained the dimensionless thermal undercooling Xt and
the dimensionless supersaturation Xc, respectively:

[30,31]

Xt ¼
CpðTi � T1Þ

DHf
¼ IvðPtÞ ½22�

Xc ¼
C�l � C0

C�l � C�s
¼ IvðPcÞ ½23�

where Iv is the Ivantsov function, T1 is the melt tem-
perature far from the tip, and C0 is the initial composi-
tion of alloys. Rewriting Eqs. [22] and [23], the
interfacial temperature Ti and the liquid composition
at the interface C�l can be given as

Ti ¼ T1 þ
DHf

Cp
IvðPtÞ ½24�

C�l ¼
C0

1� ð1� kÞIvðPcÞ
½25�

As defined explicitly in the DA model,[8] the present
work also considers the four parts of bath undercooling
(DT): the curvature undercooling (DTr ¼ 2C=r), the
thermal undercooling DTt defined by Ti � T1, the
constitutional undercooling DTc determined by
TlðC0Þ � TlðC�l Þ (Tl is the liquidus temperature), and
the kinetic undercooling DTk.
Up to now, the entire model has been established. In

the present model, the interface migration velocity V,
the radius of curvature at the dendritic tip r, the
interfacial temperature Ti, and the solute concentrations
at the interface C�s and C�l are chosen as five independent
variables. These variables can be uniquely determined
by solving the set of equations including Eqs. [4], [18],
[20], [24], and [25] with the iteration method, for a given
alloy system at a given bath undercooling DT (or T1).

III. COMPARATIVE ANALYSIS

In order to make a comparison between the present
model and Wang et al.’s model, the Pb-Sn alloy, a
typical eutectic system, was adopted in the computa-
tions. The detailed comparative analysis of Wang et al.’s
model and the previous models can been found in
Reference 14. The free energy functions of solid and
liquid phases are required as a main input, which are
described by the temperature-dependent subregular
solution model:[32]

GiðX;TÞ ¼ ð1� XÞGið0;TÞ þ XGið1;TÞ
þRgT½X lnXþ ð1� XÞ lnð1� XÞ�
þ Xð1� XÞ½Xi

0 þ Xi
1ð2X� 1Þ� ½26�

where X is the mole fraction of Pb, T is the temperature
(Kelvin), the superscript i denotes the solid phase (a, with
BCT structure) or liquid phase (L), and theX terms are the
interaction parameters. The related thermodynamic
parameters are given in Table I. The thermodynamic
model and the parameters are well based on Fecht et al.’s
experimental results[32] and optimized using the CALP-
HAD (calculation of phase diagram) method.[33] Other
parameters used in the model computations are given in
Table II. In addition, the hypercooling DHf=Cp is calcu-
latedwith classical thermodynamic formulas based on the
free energy data from Table I. As shown in Figure 1, it is
variable with temperature.

Table I. Thermodynamic Parameters Used in Computations
of the Interfacial Driving Force for the Pb-Sn System

Parameter Value (J/mole)

Gað0;TÞ�
GLð0;TÞ

�7103:1þ 14:0807T� 1:47031� 10�18T7

Gað1;TÞ�
GLð1;TÞ

�4183:13þ 11:2704Tþ 6:019� 10�19T7

Xa
0 19; 692:5� 15:8939T

Xa
1 0

XL
0 5367:64þ 0:93408T

XL
1 97:81þ 0:09353T
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The calculated model predictions with different nom-
inal compositions of alloys, C0, are shown in Figures 2
through 5. The driving force is calculated without solute
drag (c ¼ 0). Introducing c makes it possible to readily
discuss the influence of solute drag on the solidification
behavior and to search the solute drag effect. Based on
the present model, these works were carried out apply-
ing to Pb-Sn and Si-As systems. The corresponding
study for the diffusive interface model applicable to
concentrated alloys should also be undertaken. How-
ever, these studies are out of the scope of the present
article and will be published elsewhere.

Figure 2 shows the effective driving force DGeff as a
function of the bath undercooling for C0 = 0.01, i.e.,
dilute alloys. The difference increases with the underco-
oling, and it is significant at high undercoolings. The
difference of DGeff includes two parts. Part one comes
from the approximation to the realistic thermodynamic
driving force by using the Baker–Cahn equation[23] in
Wang et al.’s model. It is well known that the Baker–
Cahn equation is only suitable for an ideal solution. Part
two comes from the simplification for the Baker–Cahn
equation on the dilute assumption (Eqs. [3]). For a

dilute solution, the ideal solution approximation is
reasonable and part one of the difference is neglectable.
However, part two of the difference cannot be neglected
at high undercoolings. This is because Wang et al.’s
model adopts an approximation, lnð1� C

eq0

l Þ � �C
eq0

l ,
to simplify the Baker–Cahn equation (Eq. [3]). In the
equilibrium phase diagram of Pb-Sn alloy, it can be
clearly explicated that below the eutectic temperature,
this approximation is not suitable at all. Therefore, even
for dilute alloys, Wang et al.’s model is not suitable to
high undercoolings. As for concentrated alloys, compu-
tation indicates that part one of the difference also
appears owing to the ideal solution approximation in
Wang et al.’s model.
FromTurnbull’s growth law (Eq. [4]), the tip velocity is

strongly dependent on the driving force. This phenome-
non is also illustrated in Figure 2. For these two models,
velocities are calculated by using both linear
(DGeff=RgðTi þ DTrÞ þ V=fV0 ¼ 0) and exponential
growth laws to show the divergence resulting from the
linear approximation in Wang et al.’s model. In this
figure, it can be found that at high undercoolings, the
values ofV=fV0 (V0 ¼ 500m/s and f ¼ 1) reach about 0.5.
Thus, the linear approximation lnð1� V=fV0Þ 	 �V=fV0

is also not suitable at high undercoolings.

Table II. Thermophysical Data Used in Model Computations[8,13]

Parameter

Value

UnitPb-Sn Cu70Ni30

Capillarity constant C 1:0� 10�7[8] 1:3� 10�7[13] Km
Thermal diffusivity a 1:7� 10�5[8] 4:5� 10�6* m2/s
Diffusion coefficient D ¼ D0 expð�Q=RgTÞ D0 ¼ 2� 10�7[8] D0 ¼ 1:5� 10�7* m2/s

Q ¼ 20; 000[8] Q ¼ 40; 630* J/mol
Interface diffusion speed VDI 2:6[8] 19[13] m/s
Diffusion speed in bulk liquid VD 10* 20[13] m/s
Maximum solidification rate V0 500[8] 553[13] m/s
Sites fraction f 1* 0:65* —
Gas constant Rg 8:314 8:314 J/mol K

*Present work.

Fig. 1—Values of hypercooling DHf=Cp used in model computations
as a function of temperature T and alloy composition C0.

Fig. 2—Interfacial driving force DGeff and growth velocity vs bath
undercooling, calculated by the present model and Wang et al.’s
model[14] for C0= 0.01.
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The tip radius as a function of the bath undercooling
is shown in Figure 3. Compared with the present model,
Wang et al.’s model has a transition region that moves
rightward for C0= 0.05 and moves leftward for
C0= 0.12, while for C0= 0.01, the results for both
models are similar. Furthermore, computation indicates
that the positions of the transition region are also
similar for both models at about 0.09 for C0. This is just
a coincidence. Through numerical analysis, it was
concluded that the interesting phenomenon is attributed
to two main factors. The first is that Wang et al.’s model
universally overestimates the kinetic liquidus slope M
(Figure 4). From Eq. [18], the increase of M advances
the diffusion-controlled regime. The second one is that
Wang et al.’s model overestimates the tip velocity
(Figure 2), particularly at high undercoolings. It is well
known that the high solidification velocity suppresses
the solute diffusion and accelerates the solute trapping

to occur. Thus, the two opposite factors compete with
each other and result in the interesting phenomenon.
The relationship between the nonequilibrium parti-

tion coefficient k and the bath undercooling DT is shown
in Figure 5. The interfacial liquid solute concentration
C�l vs DT is shown in the insert. It implies that the
significant disagreement for k occurs mainly at under-
coolings where C�l values are larger than 0.1. This can be
understood through comparing the solute trapping
equations used in both models. For Wang et al.’s model
(Eqs. [19]), the simplification lies in omitting the term
ð1� j0eÞC�l in Eq. [20a], except replacing j0e by k0e.
Therefore, it is the simplification with the dilute alloy
assumption that brings the significant divergence for k
when C�l is larger than 0.1.
From the results of model computations, it should also

be highlighted that the difference of themodel predictions
for both models increases with the nominal composition
C0, by reason of the inherent limitation of dilute alloys in
Wang et al.’s model. So, it is necessary to examine the
applicability of the present model to nondilute alloys. A
comparison with the available experimental data for
Cu70Ni30 alloy was made. The thermodynamic model
and data are from References 34 and 35 for computation
and optimization of the Cu-Ni phase diagram. The
related values of the parameters used in the model
computation are also given in Table II. Figure 6 shows
the data points from the electromagnetic levitation
experiment,[9] and the calculated dendritic growth veloc-
ity as a function of the bath undercooling for the present
model, with (c = 0) andwithout (c = 0) solute drag, and
Wang et al.’s model. As can be seen clearly, the present
model with solute drag can give a satisfactory agreement
with the experimental data.

IV. SUMMARY

A steady-state free dendritic growth model applicable
to concentrated alloys was developed as an extension of

Fig. 3—Tip radius vs bath undercooling, calculated by the present
model and Wang et al.’s model[14] for different C0. The different
solidification regimes are separated into four regions shown at the
curves for C0 = 0.05. These regions indicate the mainly diffusion-
controlled, the transition, and the mainly and purely thermal-
controlled regimes, respectively, from low to high undercoolings.

Fig. 4—Relationship between the kinetic liquidus slope M and bath
undercooling, calculated by the present model and Wang et al.’s
model[14] for different C0. The vertical dot lines are the same as that
in Fig. 2.

Fig. 5—Nonequilibrium partition coefficient k vs bath undercooling
DT, calculated by the present model and Wang et al.’s model[14] for
different C0. The insert is the liquid composition C�l at the interface
as a function of DT. The vertical dot lines are the same as that in
Fig. 2.
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Wang et al.’s model.[14] The present model adopted a
reasonable thermodynamic model to replace the Baker–
Cahn equation and included a generalized marginal
stability criterion and a nondilute solute trapping model
to completely eliminate the dilute alloy limitation. It was
concluded by a comparative analysis that the difference
between the present model and Wang et al.’s model
increases with the nominal composition of alloys due to
the inherent dilute limitation in Wang et al.’s model.
Furthermore, Wang et al.’s model has a reasonable
approximation to the present model at low undercoo-
lings for a dilute alloy. However, the discrepancy
appears at high undercoolings even for dilute alloys. A
comparison with the available experimental data dem-
onstrates the applicability of the present model to
nondilute alloys.
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