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The formation, growth, and size distribution of precipitates greatly affects the microstructure
and properties of microalloyed steels. Computational particle-size-grouping (PSG) kinetic
models based on population balances are developed to simulate precipitate particle growth
resulting from collision and diffusion mechanisms. First, the generalized PSG method for col-
lision is explained clearly and verified. Then, a new PSG method is proposed to model diffusion-
controlled precipitate nucleation, growth, and coarsening with complete mass conservation and
no fitting parameters. Compared with the original population-balance models, this PSG method
saves significant computation and preserves enough accuracy to model a realistic range of
particle sizes. Finally, the new PSG method is combined with an equilibrium phase fraction
model for plain carbon steels and is applied to simulate the precipitated fraction of aluminum
nitride and the size distribution of niobium carbide during isothermal aging processes. Good
matches are found with experimental measurements, suggesting that the new PSG method offers
a promising framework for the future development of realistic models of precipitation.
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I. INTRODUCTION

THE demand for steels with higher strength, ductil-
ity, and toughness is always increasing. Many alloying
additions act to improve these properties through the
formation of precipitate particles. In addition to pre-
cipitation strengthening, precipitates often act by pin-
ning grain boundaries and inhibiting grain growth.
These effects depend on both the volume fraction and
size distribution of the precipitates.[1–4] Many small
particles are more effective than a few large particles. An
unfortunate side effect is a decrease in high-temperature
ductility and possible crack formation during processes
such as casting and hot rolling, caused by the growth of
voids around precipitate particles on the weak grain
boundaries. It is, therefore, important to control the
spatial distribution, morphological characteristics, and
size distribution of precipitates during all stages of steel
processing. These parameters are generally determined
by the alloy composition, and temperature history. In
high-deformation processes such as rolling, they also
depend strongly on strain and strain rate.

The accurate modeling of precipitate growth includes
at least two analysis steps: (1) supersaturation, based on
equilibrium precipitation thermodynamics and (2)
kinetic effects. Many models to predict equilibrium
precipitation are available in commercial packages based
on minimizing Gibbs free energy, including Thermo-
Calc (Thermo-Calc Software, Stockholm, Sweden),[5,6]

FactSage (Center for Research in Computational

Thermochemistry, Montreal, Canada),[7] ChemSage
(GTT-Technologies, Aachen, Germany),[8] JMatPro
(Sente Software, Guildford, United Kingdom),[9] other
CALPHAD models,[10,11] and other thermodynamic
models based on solubility products in previous litera-
ture.[12–16] A recent equilibrium model predicts the stable
formation of typical oxides, sulfides, nitrides and car-
bides in microalloyed steels efficiently by solving the fully
coupled nonlinear system of solubility-product equa-
tions.[17] The model has been validated with analytical
solutions of simple cases, results of a commercial
package, and previous experimental results. A useful
equilibrium model must predict accurately the occur-
rence and stability of precipitates, their equilibrium
amounts, and compositions for different steel composi-
tions, phases, and temperatures to calculate the super-
saturation/driving force for a kinetic model.
Theoretically, precipitates start to form when the

solubility limit is exceeded, but reaching equilibrium
usually takes a long time. For most steel processes,
especially at lower temperatures, equilibrium is seldom
approached due to limited time. Thus, kinetic models of
precipitate growth are a practical necessity for realistic
predictions.
An early effort to predict phase transformation

kinetics is the KJMA model, by Kolmogorov,[18] John-
son and Mehl,[19] and Avrami,[20] which is used widely to
study precipitation processes and to generate time-
temperature-transformation diagrams. The general
isothermal KJMA equation to describe transformed
fraction f as a function of time t is given by[21]

fðtÞ ¼ 1� expð�K � tnÞ ½1�

where K is the rate function for nucleation and growth
that depends on chemical composition and temperature
and n is the Avrami exponent, typically ranging from

KUN XU, Graduate Student, and BRIAN G. THOMAS, C.J.
Gauthier Professor, are with the Mechanical Science and Engineering
Department, University of Illinois at Urbana-Champaign, Urbana, IL
61801. Contact e-mail: bgthomas@illinois.edu

Manuscript submitted October 10, 2010.
Article published online October 19, 2011

METALLURGICAL AND MATERIALS TRANSACTIONS A VOLUME 43A, MARCH 2012—1079



1 to 4, which depends on growth dimensionality (one
dimensional, two dimensional, and three dimensional),
nucleation index (zero, decreasing, constant, or increas-
ing nucleation rate), and growth index (interface-con-
trolled or diffusion-controlled). The parameters K and n
are determined from experimental measurements at
different test temperatures and compositions, and often
they vary during precipitation. Although this model can
match many precipitated fraction measurements,[22,23]

its empirical nature prevents it from describing alternate
thermomechanical processes without refitting the
parameters with further measurements. Moreover, size
distributions are not predicted with this model.

Precipitates can form at many different stages and
locations during metal refining, casting, and thermal
processing, including in the liquid metal because of
collision, the mushy-zone between dendrites because of
rapid diffusion during solidification, and on the grain
boundaries or inside the grains because of slow solid-
state diffusion. This process results in different compo-
sitions, shapes, and size distributions of precipitates,
which greatly influence product quality. Precipitate
particles grow via two major mechanisms: (1) collision
in the liquid and (2) diffusion in both liquid and solid.
Both mechanisms have been studied extensively, and
better computational models are now available with fast
improved computer power in recent decades.

Collisions between particles and rapid diffusion in the
liquid phase increase the number of large particles and
enhance inclusion removal by flotation. The evolution of
particle concentration and size distribution because of
collisions has been modeled using the collision frequency
between particles per unit volume of liquid medium,[24]

and such models have been applied successfully for
various collision mechanisms, including turbulent colli-
sion,[25] Stokes collision,[26] Brownian collision,[27] and
gradient collision.[28]

The entire diffusion-controlled precipitation process
in the solid is separated classically into three stages:
nucleation, growth, and coarsening. The nucleation
stage includes an induction period to form stable nuclei.
It is based on the critical embryo size needed for the
volume-energy decrease to exceed the surface-energy
increase and a time-dependent Arrhenius relation to
describe the nucleation rate.[29] Such a classic model of
steady-state nucleation has been applied successfully to
predict the start times of strain-induced Ti(C,N) precip-
itation in austenite,[30] as measured via stress relaxation
experiments.[31]

After nucleation, particles of all sizes can grow
because of the high supersaturation that defines the
growth stage. After the nucleation and growth stages,
precipitates of various sizes are dispersed in the matrix
phase. Once the supersaturation has decreased to
equilibrium, the solute concentrations in the matrix
and at the particle/matrix interface are comparable and
capillary effects become dominant, causing coarsening
or Ostwald ripening.[32] Governed by the minimization
of the total surface energy, coarsening is driven by the
difference in concentration gradients near precipi-
tate particles of different sizes. The larger particles
are surrounded by low concentration; they grow by

diffusion from thehigh concentration surrounding smaller
particles, which are less stable and shrink. Thus, the net
number density of all particles now decreases with time.
Each of these three stages is dominated by different

mechanisms, and particle size evolution follows different
laws. Coarsening increases with time according to the
mean particle size cubed,[33,34] according to LSW theory,
which is slower than the square relation during the
growth stage.[35] More discussion is given elsewhere on
classic nucleation,[36] growth,[37] and coarsening[38] phe-
nomena.
Growth and coarsening are often treated as one

continuous and competing process, assuming a Gibbs-
Thomson exponential relation for interface concentra-
tion with particle size.[39] Together with a classic
nucleation model, these models describe the volume
fraction and size distribution of precipitates evolving
with time.[40] Such combinations of classic models have
been applied to simulate the precipitation of AlN in
matrix and grain boundary of low-carbon steels,[41] and
NbC on dislocation in ferrite.[42]

Taking advantage of faster computers, more compu-
tational models of precipitation kinetics have been
developed recently. The most fundamental method is
solving the quantum mechanics equations.[43,44] At the
atomic scale, kinetic Monte Carlo models describe
diffusion statistically through vacancy jumps and have
been applied to calcualte precipitation, such as Al3Zr
and Al3Sc in aluminum[45] and Y2O3 in ferrite.[46]

However, these small-scale models are only suitable
for fine particles, such as at the nucleation stage. Phase
field methods are based on minimization of free energy
and have been applied to calculate the interface dynam-
ics and effects such as strain, interface curvature, and
diffusivity on growth of an isolated preciptiate in a
supersaturated matrix,[47,48] such as M23C6 carbide in
steel.[49] Recently, a commerical precpitation-kinetics
software package, Matcalc, was developed based on
thermodymamic extremum principles, and it was
applied to simulate multiphase precipitation kinetics in
multicomponent systems, including separate models
within the matrix[50,51] and on grain boundaries.[52]

Cluster dynamics model precipitation using mesoscop-
ical clusters, also called ‘‘nanoparticles,’’ so these models
potentially can link between atomistic simulations and
macroscopic models. This method does not require
explicit laws for the nucleation, growth and coarsening
stages, and considers the condensation and evaporation
rates between neighboring clusters, based on a thermo-
dynamic model of the free energy of the system.[53–55]

Molecule-based models such as Smoluchowski[24] for
collision and Kampmann and Kahlweit[56] for diffusion
are attractive because (1) the particles evolve automat-
ically without any explicit laws for the different stages,
(2) particles of all sizes are tracked, and (3) the few
parameters are fundamental physical constants them-
selves. Unfortunately, these models encounter inevitable
difficulties when they are applied to simulate practical
processes, where the precipitate particle size ranges
greatly from a single ‘‘pseudomolecule’’ of ~0.1 nm to
coarsened particles larger than 100 lm. A pseudomol-
ecule (or called a ‘‘monomer’’ in collision models[57,58]) is
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a stoichiometric cluster of atoms that consists of as few
as a single metallic/interstitial atom pair. Random
thermal diffusion creates unstable clusters of chemically
bonded pseudomolecules called ‘‘embryos,’’ which grow
into stable ‘‘nuclei’’ if they exceed a critical size.
Realistic particles range in size over at least 6 orders
of magnitude and contain from 1 to 10[18] pseudomol-
ecules. With such an overwhelming linear scale, it is
impossible to solve realistic problems using traditional
models based on molecules.

Attempting to overcome this difficulty, the particle-
size-grouping (PSG) method has been introduced in
several previous studies and has proven to be effective in
calculating the evolution of particle size distributions for
collision-coagulation growth over a large size range.[59–
64] Rather than track each individual particle size, the
main idea of this technique is to divide the entire
possible particle size range into a set of size ‘‘groups,’’
each with a specific mean size and size range. Careful
attention is required to formulate the equations to
ensure proper interaction and mass conservation.[59]

Several researchers applied this PSG method to simulate
inclusion agglomeration in liquid steel caused by colli-
sions, coagulation, and removal. Such models have been
applied to RH degassers,[60] continuous casting tundish-
es,[61,62] and ladle refining.[63,64] To start these PSG
models, an initial size distribution is still required, which
can be found from either experimental measurements or
assumptions.

To make the PSG method more usable, Nakaoka
et al.[65] used different volume ratios between neighbor-
ing size groups, taking advantage of the exponential
increase in sizes that accompany powers of 2. This
innovation allows modeling from single pseudomole-
cules to realistic particle sizes with only 20 to 80 size
groups. Particle collisions were modeled considering
both intergroup and intragroup interactions, and
numerical results agreed well with experimental agglom-
eration curves. However, little work has been done to
apply the PSG method to diffusion, which is the
dominant mechanism for precipitate growth in many
processes including steel casting and rolling. One study
by Zhang and Pluschkell[66] coupled both collision and
diffusion into a PSG model, but inter-group diffusion
was not considered. Zhang and colleagues[57,58] included
a discrete-sectional technique by Gelbard et al.[67] and
Wu and Flagan[68] into the PSG model, but this weakens
the efficiency of the method and the accuracy of the
treatment of diffusion. The insurance of mass conserva-
tion has not been verified. No previous study has
demonstrated accurate simulation of diffusion using a
PSG method.

The purpose of the current study is to develop
accurate, robust, and versatile PSG methods to simulate
precipitate growth from both collision and diffusion
mechanisms. The standard PSG method for collision
problem is developed first, and then a new PSG method
for diffusion is created. Both methods are verified by
comparison with exact solutions of the primary popu-
lation equations in test problems. The new PSG method
is shown to be a time-efficient calculation with complete
mass balance and high accuracy. Finally, the new PSG

method is applied to simulate several practical precip-
itation processes in solid steels and is compared with
experimental measurements.

II. PARTICLE COLLISION MODEL

The population balance model for collision first
suggested by Smoluchowski[24] is

dni
dt
¼ 1

2

Xi�1

k¼1
Uk;i�knkni�k � ni

X1

k¼1
Ui;knk ½2�

where ni is the number of size i particles per unit vol-
ume or ‘‘number density’’ and Fi,j is the collision fre-
quency between size i and size j particles. The first
term on the right-hand side generates size i particles
because of the collision of two smaller particles, and
the second term decreases the number of size i parti-
cles by their collision with particles of any size to
become larger particles. The generation term is halved
to avoid counting collision pairs twice. However, when
two particles generating size i particles have same size,
the generation term should not be halved because the
collision pair is unique. Moreover, the loss term
should be doubly counted when size i particles collide
with themselves. The number of pseudomolecules
composing the largest agglomerated particle must be a
finite number iM in numerical computation. Mak-
ing these appropriate changes gives the following
improved expression:

dni
dt
¼ 1

2

Xi�1

k¼1
ð1þ dk;i�kÞUk;i�knkni�k � ni

XiM

k¼1
ð1þ di;kÞUi;knk

½3�

where di,k is the Kronecker delta, di,k = 1 for i = k,
and di,k = 0 for i „ k. When i = 1, the population
balance for dissolved single pseudomolecules simplifies
to

dn1
dt
¼ �n1

XiM

k¼1
ð1þ d1;kÞU1;knk ½4�

Thus, the number density of single pseudomolecules
always decreases with collisions. Evaluating Eqs. [3] and
[4] requires summing over and tracking every possible
size from 1 to iM pseudomolecules, so it is not practical
for realistic particle sizes. The results from these
equations, however, comprise the exact solution for
collision test problems.

III. PRECIPITATE PARTICLE DIFFUSION
MODEL

Kampmann and Kahlweit[56] suggested the following
diffusion-controlled model to treat the kinetics of
nucleation, growth, and coarsening as one continuous
and simultaneous process:
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dni
dt
¼�bin1niþbi�1n1ni�1�aiAiniþaiþ1Aiþ1niþ1 ði� 2Þ

½5�

where bi, ai, and Ai are the diffusion growth rate, dis-
sociation rate, and reaction sphere surface area for a
size i particle containing i pseudomolecules. The first
and second terms on the right-hand side account for
the loss and generation of size i particles from ‘‘diffu-
sion growth’’ by adding a single pseudomolecule to
size i and i – 1 particles, respectively. The third and
fourth terms account for the loss and generation of size
i particles from particle ‘‘dissociation’’ by losing a sin-
gle pseudomolecule from size i and i + 1 particles,
respectively. For single pseudomolecules, i = 1, the
special cases of double loss when two pseudomolecules
react with each other and double generation of single
pseudomolecules when size 2 particles dissociate are
not counted exactly in Kampmann’s initial work. Thus,
the following revised balance equation is suggested:

dn1
dt
¼ �n1

XiM

k¼1
ð1þ d1;kÞbknk þ

XiM

k¼2
ð1þ d2;kÞakAknk ½6�

Assuming a uniform spherical concentration field of
single pseudomolecules with a boundary layer thickness
approximated by ri around each size i particle, the dif-
fusion growth rate of size i particles is expressed by[56]

bi ¼ 4pDri ½7�

whereD is the diffusion coefficient in thematrix phase and
ri is the radius of size i particles. As precipitation reactions
always involve more than one element, this coefficient is
chosen for the slowest-diffusing element, which is assumed
to control the diffusion rate. Because the diffusion of
interstitial elements such as O, S, N, and C is much faster,
usually the diffusion rate is determined by the diffusion
coefficient of the alloying metal element in the precipitate.

The following relation is assumed for the dissociation
rate, which is the number of pseudomolecules lost per
unit surface area of size i particles per unit time, based
on a mass balance of a particle in equilibrium with the
surrounding matrix phase[56]:

ai ¼ bin1i=Ai ¼ Dn1i=ri ½8�

The concentration of single pseudomolecules n1i in
equilibrium around the surface of the size i particle is
needed to evaluate this equation. This is estimated using
the Gibbs-Thomson equation and decreases with
increasing particle size as follows[39]:

n1i ¼ n1;eq exp
2rVP

RgT

1

ri

� �
½9�

where n1,eq is the number density of dissolved single
pseudomolecules in equilibrium with a plane interface of
the precipitate phase, r is the interfacial energy between
the precipitate particles and the matrix phase, VP is the
molar volume of the precipitate, Rg is the gas constant,
and T is the absolute temperature. This equation

indicates that increasing particle radius causes the
nearby solute concentration to decrease greatly, by
several orders of magnitude.
Equations [5] through [9] include the effects of equi-

librium, diffusion growth, dissociation, curvature effects,
and mass conservation, with parameters all having
appropriate physical significance. The results from these
equations are regarded as the exact solution for diffu-
sion test problems.

IV. PARTICLE-SIZE-GROUPING (PSG)
METHOD

From a theoretical point of view, these molecule-
based population-balance models in the previous sec-
tions are accurate, and the integration of their set of
governing equations is straightforward. However, the
computational cost quickly becomes infeasible for
realistic particle sizes. The PSG method is introduced
here to overcome this difficulty. The fundamental
concept of the PSG method is shown schematically in
Figure 1. In this method, the particles are divided into
different size groups (size group number j) with charac-
teristic volume Vj and characteristic radius rj. The
number density of particles of size group j is defined as

Nj ¼
X

Vj;jþ1>V>Vj�1;j
nðVÞ ½10�

This summation covers all particles whose volume lies
between two threshold values. The threshold volume
that separates two neighboring size groups, Vj,j+1, is
assumed to be the geometric average of the character-
istic volumes of these two groups, instead of the
arithmetic average used in previous works[65,66]

Vj;jþ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VjVjþ1

p
½11�

If a newly generated particle has its volume between
Vj–1,j and Vj,j+1, it is counted in size group j. The
increase of number density of size group j particles is
then adjusted according to the difference between the
volume of the new particle and Vj to conserve mass.
The volume ratio between two neighboring size

groups is defined as

RV ¼
Vjþ1
Vj

½12�

Fig. 1—The schematic of particle size distribution in PSG method.
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To generate regularly spaced threshold values, RV is
usually varied. However, for constant RV, the PSG
characteristic and threshold volumes can be expressed as

Vj ¼ Rj�1
V V1; Vj;jþ1 ¼ R

ðj�1=2Þ
V V1 ½13�

where the volume of a single pseudomolecule V1 is
computed using the molar volume of its precipitate
crystal structure VP

V1 ¼
VP

NA
½14�

where NA is Avogadro’s number and the small effects
of temperature change and vacancies are neglected.
Because the particle volume is calculated from a bulk
property VP, consideration of the packing factor is not
needed. The number of pseudomolecules contained in
a given PSG volume is

mj ¼
Vj

V1
; mj;jþ1 ¼

Vj;jþ1
V1

½15�

In the PSG method, it is easy to introduce fractal
theory to consider the effect of particle morphology. The
effective radius of a particle can be expressed by

rj ¼ r1
Vj

V1

� �1=Df

½16�

where Df is the fractal dimension, which can vary from 1
(needle-shaped precipitates) to 3 (complete coalescence
into smooth spheres). Tozawa et al.[69] proposed
Df = 1.8 for Al2O3 clusters in liquid steel, and Df = 3
is adopted everywhere in this work for simplicity.

After the number of single pseudomolecules compos-
ing the largest agglomerated particles iM is determined,
the corresponding total number of size groups GM must
be large enough for the second largest size group to
contain the largest agglomerated particle iM. Thus, for
constant RV, GM must satisfy

GM � ceilðlogRV
iMÞ þ 2 ½17�

The largest size group is a boundary group that
always has zero number density. The accuracy of the
PSG method should increase with decreasing RV, as
more size groups are used. From the logarithm relation

shown in Eq. [17], it can be observed that the PSG
method is efficient for real problems with a large range
of particle sizes.

A. PSG Method for Collision

Applying the PSG method to model colliding particles
involves the following rules, affecting size group j:

(a) A size group j particle colliding with a small parti-
cle, from group 1 to kc,j, remains in group j and in-
creases the number density Nj.

(b) A group j particle colliding with a relatively large
particle, from a group larger than kc,j, generates a
particle in group j + 1 or higher.

(c) A group j – 1 particle colliding with a particle from
group kc,j to j – 1 generates a group j particle.

Combining these rules gives the following equation,
where the coefficients involving mean volumes are
needed to conserve volume

with kc;j ¼
j� 1 4:000>RV>2:148
j� 2 2:148>RV>1:755
j� 3 1:755>RV>1:587

8
<

: ½19�

The RV ranges in Eq. [19] are found by solving
the following equations, after inserting the Eq. [13]
expressions:

Vj þ Vkc;jþ1>Vj;jþ1 ½20�

Finally, the number density of single pseudomolecules
is calculated by

dN1

dt
¼ �N1

XGM

k¼1
ð1þ d1;kÞU1;kNk ½21�

Equations [18], [19], and [21] are integrated over time
for all size groups. The small number of size groups
enables the model to simulate practical problems.

B. PSG Method for Diffusion

Applying the PSG method to solid-state diffusion
processes would seem to involve fewer rules than the
particle collision method just presented because precip-
itate growth by diffusion involves gain or loss of only
one individual pseudomolecule at a time. However,
adding a single pseudomolecule to a particle rarely gives

[18]
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enough particle growth to count it in the next larger size
group. In addition, size groups j – 1, j, and j + 1 all
influence the evolution of size group j number density
during a given time interval. Thus, some knowledge of
the particle distribution inside each size group is
necessary, especially near the size group thresholds
where the intergroup interaction occurs. This requires
careful consideration of diffusion growth and dissocia-
tion both inside and between size groups.

All particles inside a size group jwill still stay in group j
even after a diffusion growth or dissociation event, except
for those ‘‘border sizes’’ that fall on either side of the
threshold sizes which define the neighboring size groups:
nLj (closest toVj–1,j) and nRj (closest toVj,j+1). Size group j
particles also can be generated if particles nRj�1 from size
group j – 1 jump into size group j by diffusion growth or
particles nLjþ1 from size group j + 1 fall into size group jby
dissociation.At the same time, size group jparticles canbe
lost if particles nRj jump to size group j + 1 by diffusion
growth or particles nLj fall to size group j – 1 by dissoci-
ation. These considerations are incorporated into a new
PSG method, taking care to conserve mass, as follows:

dNj

dt
¼m1

mj
bjN1ðNj�nRj Þ�

m1

mj
ajAjðNj�nLj Þ

þceilðmj�1;jÞ
mj

bR
j�1N1n

R
j�1þ

floorðmj;jþ1Þ
mj

aLjþ1A
L
jþ1n

L
jþ1

� floorðmj;jþ1Þ
mj

bR
j N1n

R
j �

ceilðmj�1;jÞ
mj

aLj A
L
j n

L
j ðj�2Þ

½22�

where nLj is the number density of those particles in size
group j that fall into size group j – 1 by losing one
pseudomolecule, and nRj is the number density of those
particles in size group j that jump into size group j + 1
by gaining one pseudomolecule. Function ceil calculates
the smallest integer that is not less than the given real
number, and floor calculates for the largest integer that
is not larger than the given real number. In Eq. [22], the
first and second terms on the right-hand side account for
the diffusion growth and dissociation inside size group j,
and the third and fourth terms account for the gener-
ation of size group j particles by intergroup diffusion
growth and dissociation of neighboring groups. The last
two terms are for the loss of size group j particles
because of the diffusion growth and dissociation of size
group j particles themselves.

Single pseudomolecules are a special case because they
comprise the only group that interacts with all other size
groups. Thus, the new PSGmethod for diffusion uses the
following population balance equation for j = 1:

dN1

dt
¼�N1

XGM

k¼1
ð1þ d1;kÞbkðNk � nRk Þ

þ
XGM

k¼2
akAkðNk � nLk Þ �N1

XGM

k¼1
ð1þ d1;kÞbR

k n
R
k

þ
XGM

k¼2
ð1þ d2;kÞaLkAL

k n
L
k ½23�

The diffusion growth rate bj and dissociation rate aj of
size group j particles needed to solve Eqs. [22] and [23]
are calculated with Eqs. [7] through [9] using the
characteristic (mean) radius given by Eq. [16]. The
radius, diffusion growth rate, and dissociation rate for
the border-sized particles are as follows:

rLj ¼ ceil mj�1;j
� �� �1=Dfr1; r

R
j ¼ floor mj;jþ1

� �� �1=Dfr1 ½24�

bL
j ¼ 4pDrLj ; bR

j ¼ 4pDrRj ½25�

aLj ¼
bL
j N1;eq

AL
j

exp
2rVP

RgT

1

rLj

 !
; aRj ¼

bR
j N1;eq

AR
j

exp
2rVP

RgT

1

rRj

 !

½26�

The particle number densities for the border sizes nLj
and nRj are estimated from a geometric progression
approximation

nLj ¼ nCj�1
nCj

nCj�1

 !ceilðmj�1;jÞ�mj�1
mj�mj�1

; nRj ¼ nCj
nCjþ1
nCj

 !floorðmj;jþ1Þ�mj
mjþ1�mj

½27�

To propagate particle growth, if nLj 6¼ 0 and
nCjþ1 ¼ 0; nRj is calculated by

nRj ¼ nLj
nCj

nLj

 !floorðmj;jþ1Þ�ceilðmj�1;jÞ
mj�ceilðmj�1;jÞ

½28�

The particle number density at the center of each size
group j is calculated by assuming two geometric
progressions inside each size group

nCj ¼
Nj

Pmj�ceilðmj�1;jÞ
k¼1 ð1=qLj Þ

k þ 1þ
Pfloorðmj;jþ1Þ�mj

k¼1 ðqRj Þ
k

½29�

with qLj ¼
�nj

�nj�1

� � 1
mj�mj�1

; qRj ¼
�njþ1
�nj

� � 1
mjþ1�mj

½30�

The average number density of size group j is
calculated as

�nj ¼
Nj

floorðmj;jþ1Þ � ceilðmj�1;jÞ þ 1
½31�

Because the boundary (ceil, floor) and mean values of
size groups are used directly and RV is not explicitly
found in these equations, this model is flexible to apply.
This allows arbitrary size increments between groups in
a single simulation, making it easy to improve accuracy
with smaller RV in size ranges of interest and to improve
computation with larger RV in other sizes. Alternatively,
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the group sizes can be chosen to produce linearly spaced
particle radius intervals, which are needed to compare
with experiments.

V. VALIDATION OF NEW PSG METHOD
WITH TEST PROBLEMS

A. Collision Test Problem

Saffman and Turner[25] suggested the turbulent colli-
sion frequency per unit volume of liquid medium to be

Uij ¼ 1:3aðe=tÞ1=2ðri þ rjÞ3 ½32�

where e is turbulent energy dissipation rate and t is
kinematic viscosity. The empirical coefficient a was
suggested by Higashitani et al.[70] and is assumed
constant here. This model has been applied often to
study inclusion agglomeration in liquid steel.[57,58,60–
64,66] It is chosen here as a test problem to validate the
collision model, using the complete integer-range equa-
tions in Section II as the exact solution.

Substituting into the dimensionless form of number
density and time

n�i ¼ ni=n0; t
� ¼ 1:3aðe=tÞ1=2r31n0t ½33�

where n0 and r1 are the initial number density and the
radius of single pseudomolecules. The initial condition is
given by ni

* = 1 for i = 1 and ni
* = 0 for i> 1. The size

of the largest agglomerated particle is iM = 12,000, so
that accuracy within 0.05 pct error in the total particle
volume is guaranteed up to t* = 1. The boundary
condition is always zero number density of the largest
agglomerated particle (exact solution) and for the
largest size group (PSG method). The Runge-Kutta-
Gill method is applied for time integration with a time
step of Dt* = 0.0025. Smaller time step sizes produce
negligible difference.

The total dimensionless number density of pseudo-
molecules and particles are defined as

N�M ¼
XiM

i¼1
i � n�i ; N�T ¼

XiM

i¼1
n�i for exact solution

N�M ¼
XGM

j¼1
mj �N�j ; N�T ¼

XGM

j¼1
N�j for PSG method

½34�

The mass balance requiresNM
* to be constant (equal to

1) through the entire calculation. Figure 2 shows the total
particle volume is conserved for both the exact solution
and PSG method. There is also good agreement between
both cases for RV = 3 and RV = 2 for the total particle
number density, which decreases with time because of
agglomeration. Figure 3 shows that the evolution of the
number densities of each size group with time from the
PSG method also agrees reasonably with the exact
solution for bothRV cases. With smallerRV, the accuracy
of the PSG method increases as expected.

Fig. 2—Comparison of collision curve calculated by PSG method
with exact solution for different RV.

Fig. 3—Comparison of collision curve of each size group calculated
by PSG method with exact solution for different RV. (a) RV = 3 (b)
RV = 2.
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As time increases, collisions form large particles,
leaving fewer smaller particles. For example, size group
N10 in RV = 2 contains all particle sizes from 363 to
724 pseudomolecules, with a central size of 512
pseudomolecules. The number density of intermediate
size groups increases at early times, reaches a maxi-
mum, and decreases at later times. The exact solution
has limited maximum time because of its prohibitive
computational cost. The tremendous computational
efficiency of the PSG method is observed by examina-
tion of Table I.

B. Diffusion Test Problem

To validate the PSG diffusion model, a test problem is
chosen where the total number density of single pseudo-
molecules in the system is produced by an isothermal
first-order reaction[56]

n�s ðt�Þ ¼ nsðt�Þ=n1;eq ¼
XiM

i¼1 i � n
�
i ¼ 9½1� expð�0:1t�Þ�

½35�

The number density of dissolved single pseudomole-
cules must be adjusted with time to match the increase
of ns

*. This increase with time can be interpreted as an
increase in supersaturation caused by the decreasing
temperature in a practical cooling process. The dimen-
sionless terms are defined as

n�i ¼ ni=n1;eq; t
� ¼ 4pD1r1n1;eqt ½36�

To calculate the dissociation rate in Eq. [9], 2rVP/
(RgTr1) = 3.488.[56] The initial condition is no particles,
or ni

* = 0 for i ‡ 1.
The boundary condition is always zero number

density for the largest agglomerated particle (exact
solution) or for the largest size group (PSG method).
The maximum size of agglomerated particle is chosen as
iM = 50,000 to ensure that mass conservation is satis-
fied up to t* = 10,000. The explicit Runge-Kutta-Gill
method was used for integration with time step size of
Dt* = 0.01 chosen for accuracy. The maximum time

Table I. Comparison of Computational Cost for Test Problems

Collision (t* = 1) Diffusion (t* = 10,000)

Exact PSG (Rv = 2) PSG (Rv = 3) Exact PSG (Rv = 2) PSG (Rv = 3)

Storage iM = 12,000 GM = 16 GM= 11 iM = 50,000 GM = 18 GM = 13
Computational time ~225 h ~0.8 s ~0.4 s ~27 h ~560 s ~390 s

Fig. 4—Comparison of diffusion curves calculated by PSG method
with exact solution for different RV.

Fig. 5—Comparison of evolving numbers of each size group calcu-
lated by PSG diffusion method with exact solution for different RV.
(a) RV = 3 and (b) RV = 2.
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step for stability is roughly Dt* = 0.04 for both
methods for this problem.

As shown in Figure 4, the total volume of particles is
conserved for both the exact solution and the PSG
method. This total increases with time and asymptotes
at 9, according to Eq. [35]. The number density histories
from all three cases also agree. Its behavior can be
explained by examining Figure 5.

Figure 5 shows how the particle size distribution
evolves because of the changing concentration gradients
near particles of different size groups. At early times, all
size group particles grow because of the driving force of
increasing supersaturation. At later times, the results
show Ostwald ripening. The large particles have low
concentrations that tend to grow at the expense of
smaller particles, which have high local concentrations,
and eventually shrink. For example, the size group N1

(dissolved single pseudomolecules) reaches its peak and
starts to decrease in number after t* = 20. There is
reasonable agreement for both total particle number
density and number densities of each size group between
the PSG method and the exact solution for both cases of
RV = 3 and RV = 2. The results for RV = 2 naturally
match the exact solution more closely.

C. Computation Times

The computation times for both test problems are
listed in Table I. All the calculations are run with
Matlab on Dell OPTIPLEX GX270 with P4 3.20GHz
CPU and 2 GB RAM to enable a fair comparison. The
computational cost decreases dramatically for the PSG
method. It is interesting to note that the computation
cost for the collision problem is proportional to iM

2 for
the exact solution or GM

2 for the PSG method, whereas it
is proportional to iM or GM, respectively, for the
diffusion problem. Because the details of particle distri-
bution inside the size groups must be captured to enable
an accurate solution in a diffusion problem, the time
saving is not as large. The savings increase exponentially
with increasing maximum particle size. This is enough to
make practical precipitation calculations possible, con-
sidering that less than 60 size groups cover particle sizes
up to 100 lm with constant RV = 2 for most nitrides
and carbides in microalloyed steels.

VI. PRACTICAL APPLICATIONS

When the PSG method is applied to model a real
precipitation process, additional models are needed for
the temperature history and for the mass concentrations
of each element dissolved at equilibrium. The current
work assumes the temperature history is given and uses
a 13-element and 18-precipitate equilibrium precipita-
tion model for microalloyed steels.[17] This model
includes solubility limits for oxide, sulfide, carbide,
and nitride precipitates in liquid, ferrite, and austenite;
the influence of Wagner interaction on activities; and
mass conservation of all elements during precipita-
tion. Mutual solubility is incorporated for appropriate

precipitates with similar crystal structures and lattice
parameters.
For a given steel composition and temperature

history, the first step is to use the equilibrium model
to compute the dissolved concentrations of every ele-
ment at every temperature and to identify the critical
element that restricts the number of single pseudomol-
ecules available to form the precipitate of interest, as a
function of time. The initial condition starting from the
liquid state is complete dissolution with the number
density of single pseudomolecules, N1(t = 0), equal to
the total number density ns of the precipitate of interest.
For a given steel composition containing M0 of element
M and X0 of element X, then ns for precipitate MxXy is

ns ¼ min
M0

100

qsteel

xAM
NA ;

X0

100

qsteel

yAX
NA

� �
½37�

where AM and AX are the atomic masses of elements M
and X, and qsteel is the density of the steel matrix
(7500 kg m�3). All other particle sizes have zero number
densities.
Sometimes, such as after a solution treatment, some

of the initial processing steps from the liquid state can be
ignored or replaced with a measured initial distribution.
Because the current model can handle only one precip-
itate, the initial composition must be the dissolved
concentration available for that precipitate after taking
away the other precipitates that form first. For example,
in the cases involving nitride AlN formation, a new Al
concentration is used after subtracting the more stable
oxide Al2O3.
The equilibrium number density of single pseudomol-

ecules of the precipitate in the steel n1,eq is calculated
from the dissolved mass concentrations [M] and [X] at
equilibrium in the same way

n1;eq ¼ min
½M�
100

qsteel

xAM
NA ;

½X�
100

qsteel

yAX
NA

� �
½38�

Although the current work only calculates size distri-
butions for a single precipitate, other alloys may affect
the results by forming other precipitates that change the
equilibrium dissolved concentrations of the elements in
the precipitate of interest. These effects are included
through the equilibrium model, in addition to Wagner
interactions.[17]

The PSG kinetic model is then run, knowing the
history of the equilibrium number density of single
pseudomolecules of the chosen precipitate. The diffusion
coefficients and dissociation rates in Eqs. [7] through [9]
and [24] through [26] are updated for each time step
according to the temperature history. This model
calculates how the particle size distribution evolves with
time.
When running the PSG model, time steps must be

large enough to enable reasonable computation cost,
while avoiding stability problems resulting from disso-
ciation exceeding diffusion growth. Thus, the implicit
Euler scheme is adopted here to integrate Eqs. [22]
through [31] through time
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mj
ajAjþ

floorðmj;jþ1Þ
mj

bR
j N

iþ1
1 þ

ceilðmj�1;jÞ
mj

aLj A
L
j Þ

� �

�Niþ1
j ¼ Ni

j þ Dt
m1

mj
bjN

iþ1
1 ðNiþ1

j � nRj Þ þ
m1

mj
ajAjn

L
j

�

þ ceilðmj�1;jÞ
mj

bR
j�1N

iþ1
1 nRj�1 þ

floorðmj;jþ1Þ
mj

aLjþ1A
L
jþ1n

L
jþ1

þ floorðmj;jþ1Þ
mj

bR
j N

iþ1
1 ðNiþ1

j � nRj Þ

þ ceilðmj�1;jÞ
mj

aLj A
L
j ðNiþ1

j � nLj Þ
�
ðj � 2Þ ½39�

where i is the time-step index. This implicit scheme
allows over 104-fold increase in time step size, compared
with the original explicit scheme, for realistic precipitate/
matrix interfacial energies ~0.5 J/m2. The preceding
equation system is solved with the iterative Gauss-Seidel
method until the largest relative change of Niþ1

j con-
verges to within less than 10�5 between two iterations.
The upper limits of nLj and nRj are Niþ1

j and are evaluated
at each iteration. Although this scheme is stable for any
time step size, its accuracy may deteriorate if the time
step is too large. Thus, a reasonable time step must be
chosen where results stay almost the same with a smaller
time step.

Having validated mass conservation with test prob-
lems, the number density of single pseudomolecules is
then computed as follows to save computation time
relative to Eq. [23]:

Niþ1
1 ¼ ns �

XGM

j¼2
mjN

iþ1
j ½40�

To postprocess the results, the total number density of
precipitate particles np, fraction precipitated fP, mean
precipitate particle radius �rP, and precipitate volume
fraction uP are computed from the number densities as
follows:

nP ¼
XGM

j¼GT

Nj ½41�

fP ¼
PGM

j¼GT
mjNj

ns
½42�

�rP ¼
PGM

j¼GT
rjNj

nP
½43�

uP ¼ fP
ns

ns � n1;eq

qsteel

qP

we
P

100
½44�

where size group GT, which contains particles just larger
than a ‘‘truncating’’ threshold radius rT–1,T, is introduced
to define the split between ‘‘dissolved’’ and measurable
particles. This parameter must be introduced because all
experimental techniques have resolution limits, whereas

the current PSG model simulates particles of all sizes
including single pseudomolecules. qP is the density of the
precipitate phase, and we

P is the mass concentration of
precipitate at equilibrium (wt pct).
The complete PSG model is applied in this study to

two different example precipitate systems, where mea-
surements are available for validation.

A. Precipitated Fraction for Isothermal AlN
Precipitation

The first validation problem for the PSG diffusion
model was to simulate the isothermal precipitation of
AlN in a 0.09 pct C, 0.20 pct Si, 0.36 pct Mn, 0.051 pct
Al, and 0.0073 pct N steel for the experimental condi-
tions measured by Vodopivec.[71] Specimens were solu-
tion treated at 1573 K (1300 �C) for 2 hours, ‘‘directly’’
cooled to the precipitation temperature of 1113 K or
973 K (840 �C or 700 �C), aged for various times, and
quenched. The AlN content in steel was measured using
the Beeghly method.[72]

The initial experimental measurements (zero and
short aging times) report 6.4 pct of the total N
(N0 = 0.0073 pct) precipitated as AlN, perhaps because
the cooling stages were not fast enough. The final
precipitated amounts of nitrogen as AlN do not reach
the predictions of the equilibrium model, even after long
holding times, when the precipitated fraction becomes
nearly constant. This might be because N was consumed
into other types of nitrides. Thus, the measurements are
normalized to zero at zero aging time, and (N0-[N])/N0

at long times.
As shown in Figure 6, the equilibrium model[17]

predicts AlN to start forming at 1509 K (1236 �C),
and the equilibrium dissolved concentration of nitrogen
in steel is ~0.00022 wt pct at 1113 K (840 �C) and
~0.0000031 wt pct at 973 K (700 �C). A sharp decrease
of equilibrium dissolved aluminum concentration can be

Fig. 6—Calculated equilibrium dissolved mass concentration of N
for Vodopivec case[71] and Nb for Perrard case[79] showing aging test
temperatures.
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observed over the cfia phase transformation, 1138 K to
988 K (865 �C to 715 �C), because of the lower solubil-
ity limit of AlN in ferrite predicted by the equilibrium
model.

Isothermal precipitation simulations of 1 hour at
973 K (700 �C) and 3 hours at 1113 K (840 �C) were
run, neglecting the cooling histories before and after,
which were not clearly reported. The molar volume of
AlN is 12.54 9 10�6m3/mol[73] and the diffusion
coefficient of Al in steel DAl(m

2/s) is taken as 2.51 9
10�4exp(–253400/RT)[74] in austenite, and 0.3 9
10�2exp(�234500/RT)[73] in ferrite. The interfacial ener-
gies for these two precipitation temperatures are calcu-
lated in the appendix, where the value is observed to be
10pct higher at 973 K (700 �C) in ferrite than at 1113 K
(840 �C) in austenite. The number densities of precip-
itate particles are calculated based on the nitrogen
concentration because this element is insufficient when
reacting with aluminum to form AlN for this steel
composition. Constant RV = 2 and 32 size groups are
used in the simulation, which covers particle radii up to
approximately 200 nm. The time step is 0.001 seconds
with ~1000 decreasing to ~100 iterations required within
each time step for convergence of the implicit method
with Gauss-Seidel solver. Because it has been suggested
that the Beeghly technique cannot detect fine precipitate
particles which could pass through the filter,[75,76] the
truncating precipitate radius is set to 2.0nm in the
simulation to match the measurements.

The predicted AlN precipitate fractions are shown
and compared with experimental measurements in
Figure 7. Reasonable matches are shown at both
temperatures. The calculation verifies the experimental
observation of much faster precipitation in ferrite than
in austenite because of the lower solubility limit of AlN
and the faster diffusion rate of aluminum in ferrite than
in austenite. The disagreement could be to the result of
AlN precipitation on the grain boundaries because the
physical properties assumed in the simulation are based

on homogeneous precipitation in the steel matrix. The
same mismatch in predicting AlN precipitation has been
found and discussed by other researchers.[77,78]

B. Size Distribution for Isothermal Niobium
Precipitation

The second validation problem is to simulate the size
distribution of niobium precipitate particles in steel
containing 0.079 pct Nb, 0.011 pct C, 0.001 pct N,
0.002 pct Mn, 0.0023 pct S, 0.001 pct P, 0.006 pct Al,
and 0.0013 pct O to compare the PSG simulation
predictions with the niobium precipitate distribution
measured in ferrite.[79] The alloy was vacuum induction
melted, cast into ingots, and hot rolled from 50 mm to
5 mm thickness. After homogenization at 1623 K
(1350 �C) for 45 minutes, the specimens were quenched
rapidly to an aging temperature of 973 K (700 �C) and
held for various times. Small-angle neutron scattering
(SANS) and transmission electron microscopy (TEM)
were used to measure precipitate size.
The equilibrium calculation in Figure 6 predicts that

the niobium precipitates in this steel first become stable
at 1327 K (1054 �C), and the equilibrium dissolved mass
concentration of the niobium is 0.0002506 wt pct at
973 K (700 �C).[17] For the PSG precipitation simula-
tion, the diffusion coefficient of Nb in ferrite is taken as
DNb(m

2/s) = 50.2 9 10�4exp(–252000/RT),[80] the mo-
lar volume of NbC is 13.39 9 10�6 m3/mol,[73] the
density of NbC is 7.84 9 103 kg/m3,[73] and the
interfacial energy is calculated in the appendix. The com-
position of the niobium precipitates in the simulation
was regarded as NbN0.08C0.80, according to the predic-
tions of the equilibrium model,[17] for this steel, where
pct C>pct N. This composition agrees with the
experimental observation of ‘‘niobium carbide’’ precip-
itates and the nonstoichiometric ratio of NbC0.87

measured in other work.[81] Lacking data for this
complex Nb precipitate, property data were taken for
NbC, which are believed to be similar, as the lattice
constants of NbC and NbC0.87 differ by only
~0.2 pct.[82]

To compare with the experimental measurements, RV

was set equal to 2 for particles with radius smaller than
0.3 nm and larger than 10 nm, and these values varied
to give constant 0.2-nm size groups for 0.3 to 8.5 nm,
and 0.5 nm size groups for 8.5 to 10 nm. A total of 50
size groups were used to model particle sizes up to
20 nm to cover the largest particle observed in the
experiments. The implicit time step was 0.01 seconds,
with less than 10 iterations needed for convergence at
most times, resulting in ~2.5 days of total CPU time on a
3.20 GHz processor PC for the 600,000 seconds (7 days)
simulation. Rapid quenching from solution treatment to
aging temperature and from aging to ambient is
assumed, so only an isothermal simulation at 973 K
(700 �C) was performed.
Predicted evolutions of precipitate mean size, size

distribution, and volume fraction results from the PSG
simulation are shown in Figures 8 and 9, and were
compared with available measurements.[79] Because
the many dislocations in the matrix from the prior

Fig. 7—Calculated and measured precipitated fraction of AlN in
0.051 wt pct Al-0.0073 wt pct N steel during isothermal aging at
1113 K and 973 K (840 �C and 700 �C) (experimental data from
Vodopivec[71]).

METALLURGICAL AND MATERIALS TRANSACTIONS A VOLUME 43A, MARCH 2012—1089



deformation may relax the lattice mismatch and
decrease the interface energy, they become favored
locations for precipitation. Figure 8 shows that lowering

the interface energy to 0.3 J/m2 and choosing a trun-
cating radius of 0.7 nm gives the best match of both
mean precipitate size and volume fraction with the
SANS measurements. These results also indicate that
decreasing interface energy makes the capillary effect
smaller, which makes large particles more difficult to
grow, so a finer precipitate size and slower precipitation
are predicted. All volume fraction curves eventually
reach the equilibrium value of 0.084 pct for aging at
973 K (700 �C). These calcaultions of decreasing inter-
face energy are qualitatively consistent with the exper-
imental observations of deforamtion-induced nanosized
Cu precpitation.[83] Increasing the truncating radius
from 0.5 nm to 0.7 nm significantly delays the apparant
precipitation, although it has only minor influence on
the calculated mean precipitate size and only during the
initial stage of precipitation.
The simulation results with the adjusted interface

energy 0.3 J/m2 are compared with the normalized TEM
measured particle size distribution/volume number fre-
quency in ferrite at 300 minutes in Figure 9. The
predicted mean radius of Nb precipitate particles of
1.93 nm compares closely with the measured 1.82 nm,
and the particle size distributions also match reasonably.
The simulated size distribution is missing the measured
tail of large particles, however. This is likely because of
easier nucleation and higher diffusion at the grain
boundaries, segregated regions, and other locations in
the steel microstructure, where larger precipitates can
form locally in the real samples. In addition, the
observed particles in TEM imaging have irregular aspect
ratio ~2.3,[79] which differs from the spherical assump-
tion of the model and suggests nonisotropic properties.
The calculated evolution of the size distribution of the

Nb particles is depicted in Figure 10. Each curve has
the same characteristic shape, which evolves with time.
The number densities decrease with increasing particle
size to a local minimum, increase to a peak, and finally
decrease to zero. With increasing time, the number
density of single (dissolved) pseudomolecules decreases
from the large initial value ns that contains all of the
particles to the small equilibrium value n1,eq. Small

Fig. 8—Comparison of calculated and SANS measured niobium pre-
cipitation during isothermal aging at 973 K (700 �C)[79] (a) Mean
precipitate radius �rP and (b) volume fraction precipitated uP.

Fig. 9—Normalized size distribution of niobium particles simulated compared with TEM measurements at 18,000 s (300 min)[79].
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particles in the first few size groups are unstable, as the
chance of gaining pseudomolecules is less than that of
losing pseudomolecules because of the high surface
curvature. Thus, their number densities decrease with
size because of the decreasing chance of a larger unstable
embryo of pseudomolecules coming together from the
simulated process of random thermal diffusion. With
increasing size above the critical size, pseudomolecule
attachment increasingly exceeds dissolution, so these
stable particles grow increasingly faster and become
larger. Very large particles are rare simply because of
insufficient growth time.

The entire size distribution grows larger with time.
Except for the small unstable embryos that decrease in
number, all other particle sizes increase in number
during this period. The maximum particle radius
increases from 1.4 nm at 20 seconds to 2.0 nm at
330 seconds, whereas the most common size (peak
number density) increases from 0.4 nm to 0.8 nm.

After this initial growth stage, single pseudomolecules
approach the equilibrium concentration. Smaller parti-
cles then decrease slowly in number because of dissolu-
tion, which provides single pseudomolecules for the slow
growth of large particles. This is the particle coarsening or
‘‘Ostwald ripening’’ stage. This final precipitation stage is
estimated to begin at ~330 seconds, based on the max-
imum total number of particles larger than 0.7 nm,
shown in Figure 11. This time matches with the decrease
in slope of precipitated volume fraction with time that is
both predicted and measured in Figure 8(b). The precip-
itate size evolution after 100,000 seconds roughly follows
the law of �rP / t0:3 in Figure 8(a), which agrees with the
value of 1/3 from classic LSW coarsening theory.[33,34] As
larger particles grow and smaller particles shrink during
coarsening, the total number of particles decreases. This
corresponds to the evolution of critical radius, included in
Figure 11. Starting smaller than themean size, the critical
size increases with time to approach the mean, as
supersaturation decreases toward 1 at equilibrium.

VII. DISCUSSION

The calculated precipitated fraction of aluminum
nitride and the mean size, volume fraction, and size

distribution of niobium carbide particles all match well
with experiments. This is significant because no fitting
parameters are introduced in this model. The match is
governed by the equilibrium dissolved concentration
(supersaturation) calculated from the equilibrium model
and the choice of the physical parameters: diffusion rate
and interfacial energy.
The model results quantify and provide new insight

into the classic stages of precipitate nucleation, growth,
and coarsening. For example, a critical radius rc can be
obtained by setting bin1i = aiAi, which means that the
rate of particle growth from the diffusion of single
pseudomolecules to the surface exactly matches the rate
of particle shrinking by dissociation, and from Eqs. [8]
and [9], leads to

rc ¼
2rVP

RgT lnðn1=n1;eqÞ
½45�

At this critical size, the surface concentration of
pseudomolecules n1i equals that at the far-field n1.
Although this relation holds at any time, it is consistent
with classic nucleation theory, which balances the
decrease in volumetric free energy DGV in forming a
spherical nucleous with the energy increase to form the
new interface r and gives the critical radius for a stable
particle rc of

[84]

rc ¼
2r

DGV
½46�

where DGV for a single precipitate system is:

DGV ¼
RgT

VP
lnP ½47�

where P is the time-dependent supersaturation, which
can be interpreted as n1/n1,eq in the current model. The
same trends of critical radius in Figure 11 are observed
with classic precipitation models.[40] The current PSG
method is more general, however, as the precipitation
evolves naturally according to the time-varying local
concentration gradients and cooling conditions.

Fig. 10—Calculated size distributions of niobium precipitate particles.
Fig. 11—Calculated number density and critical radius of niobium
precipitate particles.
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The main purpose of this work is to present a
numerical method that offers a fundamental framework
to model precipitation kinetics over the complete size
range from atomic-scale pseudomolecules to realistic
coarsened inclusion particles. This new PSG methodol-
ogy could be extended to other models, such as cluster
dynamics, where it could significantly reduce the single
cluster size and expand the simulation size range with
reasonable computational cost.

The results presented here are only approximate
because homogeneous nucleation of only one type of
precipitate was simulated, instead of the many that
actually form in steel, and only the physical properties
of the matrix phase were adopted. These are not
fundamental limitations of the method, however. Com-
petition between the different precipitates for the alloy
elements, such as different nitrides consuming nitrogen,
causes inaccuracies that can be addressed by generaliz-
ing the current model to handle multiple precipitates.
Such an enhanced multiphase precipitate model is also
needed to account for previously formed precipitates
that act as heterogeneous nucleation sites for new
precipitates of different composition. Heterogeneous
nucleation also needs consideration of grain-boundary
and dislocation effects on the interfacial energy.

Many other improvements are needed to transform
this new PSG-based precipitation model into an accu-
rate predictive tool for commercial metals-processing
applications. Microsegregation changes the alloy com-
position at grain boundaries, where increased vacancy
concentration also increases diffusion rates.[80] The
interfacial energy should evolve with temperature and
time according to the microstructure, precipitate com-
position and size, local strain field around the precip-
itate, coherency of the interface, and macroscopic
deformation. Strain and deformation influence precip-
itation kinetics by changing the microstructure and
lowering interfacial energy,[30,85] which possibly
increases the nucleation and growth rate,[86,87] leading
to a much finer particle size distribution.[87,88] These and
other effects on precipitation behavior should be
addressed in future improvements to this model.

VIII. CONCLUSIONS

1. The PSG population-balance method for modeling
particle collision was derived for an arbitrary choice
of size ratio RV and good agreement has been veri-
fied with exact solutions.

2. A new, efficient PSG population-balance method
for diffusion-controlled particle growth has been
developed. The method features geometrically-based
thresholds between each size group, reasonable esti-
mates of border values in order to accurately in-
clude intra-group diffusion, corresponding accurate
diffusion between size groups, and an efficient impli-
cit solution method to integrate the equations.

3. Results from this PSG method match the exact
solution for diffusion test problems very well.

4. For a given size range, the PSG method costs expo-
nentially less computational time than the original

population balance calculation. This enables accu-
rate and realistic modeling of nonequilibrium pre-
cipitation processes at reasonable computational
cost.

5. The new PSG method can simulate particle incuba-
tion, nucleation, growth, and coarsening from colli-
sion and diffusion over a wide size range, with no
explicit laws or fitting parameters for these stages.
Accuracy of the method increases with decreasing
RV as more size groups are used to cover the given
particle size range.

6. The new PSG method has been applied to two real-
istic validation problems. The computed fraction of
aluminum nitride precipitated and the mean size,
volume fraction, size distributions of niobium car-
bide precipitated show encouraging agreement with
previous experimental measurements in microal-
loyed steel. Precipitation in ferrite is found to be
greatly accelerated as demonstrated the lower solu-
bility limit and higher diffusion rate of these precip-
itates in this phase.

7. The predicted time evolution of the particle size dis-
tribution exhibits trends of critical size, number,
and slope that are consistent with classic nucleation,
growth, and coarsening theories.

8. The new PSG method presented here offers a versa-
tile and efficient framework for the development of
realistic models of nonequilibrium precipitation
behavior during metals processes, such as the con-
tinuous casting of steel, for arbitrary temperature
histories. To become useful, future work needs to
incorporate other important effects, such as multi-
ple precipitate phases, different behaviors at the
grain boundaries and matrix, interdendritic and
grain-boundary segregation, and other microstruc-
tural effects. Furthermore, better experiments and
fundamental models are needed to quantify the
model parameters (diffusion coefficients and interfa-
cial energies), which should evolve with temperature
and time according to the microstructure, local
strain field, coherency of the interface, and macro-
scopic deformation.

ACKNOWLEDGMENT

The authors thank the Continuous Casting Consor-
tium at the University of Illinois at Urbana-Cham-
paign and the National Science Foundation (Grant
CMMI-0900138) for support of this project.

APPENDIX: CALCULATION OF INTERFACIAL
ENERGY

According to Turnbull[89] and Liu and Jonas,[90] the
interfacial energy consists of two parts: a chemical part
(rc) and a structural part (rst), so that

r ¼ rc þ rst ½A1�
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The chemical interfacial energy is estimated from the
difference between the energies of bonds broken in the
separation process and of bonds made in forming the
interface, with only the nearest neighbors considered. As
given by Russell[36]

rc ¼
DE0NsZs

NAZl
ðXP � XMÞ2 ½A2�

where DE0 is the heat of solution of precipitates in a
dilute solution in the matrix, Ns is the number of atoms
per unit area across the interface, Zs is the number of
bonds per atom across the interface, Zl is the coordinate
number of nearest neighbors within the precipitate
crystal lattice, and XP and XM are the molar concentra-
tions of the precipitate-forming element in the precip-
itate (P) and matrix (M) phase, respectively. DE0 is
estimated to equal –DH, the heat of formation of the
precipitate. XP = 0.5 and XP >>XM.

Van Der Merwe[91] presented a calculation of struc-
tural energy for a planar interface. When the two phases
have the same structure and orientation but different
lattice spacing, the mismatch may be accommodated by
a planar array of edge dislocations. Including the strain
energy in both crystals, rst is given as

rst¼
lI�c

4p2
1þb�ð1þb2Þ1=2�bln 2bð1þb2Þ1=2�2b2

h in o

½A3�

with
2

�c
¼ 1

ceM
þ 1

ceP
; b ¼ 2pd

kþ
lI

;
2

lI

¼ 1

lM

þ 1

lP

;

d ¼
2 ceM � ceP
		 		
ceM þ ceP

;
1

kþ
¼ 1� mM

lM

þ 1� mP
lP

½A4�

where ceM and ceP are the nearest-neighbor distance
across the interface, which are estimated from the lattice
parameters cM, cP, and interface orientations; �c is the
spacing of a reference lattice across the matrix/precip-
itate interface; lM, lP, and lI are shear modulii in the
matrix (M), precipitate (P), and interface (I), respec-
tively; mM and mP are Poisson’s ratios; and d is the lattice
misfit across the interface.

The crystallographic relationships between the AlN
(hexagonal close packed [hcp]), NbC (face centered
cubic [fcc]), and steel matrix austenite phase (fcc) or
ferrite phase (base-centered cubic [bcc]) are chosen as
ð100ÞNbC==ð100Þa�Fe,

[92]ð0001ÞAlN==ð111Þc�Fe,
[93,94] and

ð0001ÞAlN==ð110Þa�Fe.
[95]

The physical properties used in the calculation are

�DHA1NðKJ/molÞ ¼ 341:32� 4:98� 10�2T� 1:12� 10�6

T2 � 2813=T,[96] �DHNbCðKJ/molÞ ¼ 157:76� 4:54 �
10�2T� 3:84 � 10�6T2,[97] lc�FeðGPaÞ ¼ 81 1� 0:91½
ðT� 300Þ=1810�,[98] mc�Fe ¼ 0:29,[99] cc�FeðnmÞ ¼ 0:357,[73]

la�Fe ðGPaÞ ¼ 69:2 1� 1:31ðT� 300Þ=1810½ �,[98] ma�Fe ¼
0:29,[99] ca�FeðnmÞ ¼ 0:286,[73] lAlNðGPaÞ ¼ 127,[100]

mAlN ¼ 0:23,[100] aAlNðnmÞ ¼ 0:311, cAlNðnmÞ ¼
0:497,[73] lNbC ðGPaÞ ¼ 134 1� 0:18ðT� 300Þ=3613½ �,[98]

mNbC ¼ 0:194,[98] cNbCðnmÞ ¼ 0:446.[73]

For c-Fe (111) plane, Zc�Fe
s ¼ 3 and Nc�Fe

s ¼
4=ð

ffiffiffi
3
p

c2c�FeÞ. For a-Fe, (110) plane Za�Fe
s ¼ 4; Na�Fe

s ¼ffiffiffi
2
p

=c2a�Fe, (100) plane Za�Fe
s ¼ 4, and Na�Fe

s ¼ 1=c2a�Fe.
For both fcc and hcp precipitate structures, Zl ¼ 12.
The calculated interfacial energy decreases slightly as
temperature increases and also decreases for NbC
(relative to AlN) because of lower heat of formation.
The values used in the current simulations are

rc�Fe
AlN ð840

oCÞ ¼ 0:908 J/m2

ra�Fe
AlN ð700 oCÞ ¼ 0:997 J/m2

ra�Fe
NbC ð700 oCÞ ¼ 0:432 J/m2

NOMENCLATURE

a empirical coefficient for turbulence
collision

cM; cP lattice parameter of the matrix and
precipitate phase (m)

ce
M; ce

P nearest-neighbor distance across the
interface for matrix and precipitate phase
(m)

f transformed fraction in phase
transformation

fP particle (or mass) fraction precipitated
(relative to 100pct at zero dissolved)

iM number of pseudomolecules for the largest
agglomerated particle in simulation

mj number of pseudomolecules contained in
PSG volume Vj

mj�1;j number of pseudomolecules contained in
PSG threshold volume Vj–1,j

n Avrami exponent in KJMA model
n0 initial total number density of single

pseudomolecules for collision problem
(# m–3)

n1;eq equilibrium concentration of dissolved
single pseudomolecules for diffusion
problem (# m–3)

n1i equilibrium concentration of single
pseudomolecules at surface of size i
particles (# m–3)

ni number density of size i particles (# m–3)
np total number density of precipitate

particles (# m–3)
ns released number density of single

pseudomolecules for diffusion problem
(# m–3)

nC
j number density of particles at the center of

size group j (# m–3)
nL

j number density of border particles,
representing the smallest particles in size
group j (# m–3)

nR
j number density of border particles,

representing the largest particles in size
group j (# m–3)
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ri ; rj characteristic radius of size i particles, or
size group j particles (m)

rj�1;j threshold radius to separate size group
j � 1 and size group j particles in PSG
method (m)

rc the critical radius for nucleation (m)
�rP average precipitate particle size (m)
t time (s)
Dt time step size in numerical computation (s)
we

P equilibrium mass concentration of
precipitate phase (wt pct)

Ai; Aj the surface area of size i particles, or size
group j particles (m2)

AM atomic mass unit of element M (g mol–1)
D diffusion coefficient of the precipitation in

the parent phase (m2 s–1)
Df fractal dimension for precipitate

morphology
GM number of size groups for the largest

agglomerated particle in PSG method
GT truncating size group in PSG method to

match experimental resolution
K rate function for nucleation and growth in

KJMA model
M0 total mass concentration of alloying

element M in the steel composition (wt pct)
½M� equilibrium mass concentration of alloying

element M (wtpct)
Nj total number density of size group j

particles in PSG method (# m�3)
NA Avogadro number (6.022 9 1023 # mol–1)
NM total number density of pseudomolecules

(# m–3)
Ns number of atoms per unit area across the

interface (# m–2)
NT total number density of all particles (# m–3)
Rg gas constant (8.314 J K–1 mol–1)
RV particle volume ratio between two

neighboring particle size groups
T absolute temperature (K)
Vi; Vj characteristic volume of size i particles or

size group j particles (m3)
Vj�1;j threshold volume to separate size group

j – 1 and size group j particles in PSG
method (m3)

VP molar volume of precipitated phase
(m3 mol–1)

XM; XP molar concentration of precipitate-forming
element in matrix and precipitate phases

Zs number of bonds per atom across the
interface

Zl coordinate number of nearest neighbors
within the crystal lattice

ai dissociation rate of size i particles (m2 s–1)
bi diffusion growth rate of size i particles

(m3 #–1 s–1)
d relative lattice misfit across the interface

between pairs of precipitate and matrix
atoms

di;k Kronecker’s delta function (di,k = 1 for i
= k, di,k = 0 for i „ k)

e turbulent energy dissipation rate (m2 s–3)
lM; lP; lI shear modulus of the matrix, precipitate

phase, and interface (Pa)
mM; mP Poisson’s ratio of the matrix and

precipitate phases
qsteel; qp density of steel matrix and precipitate

phase (kg m–3)
r interfacial energy between precipitated

particle/matrix (J m–2)
rc chemical interfacial energy between

precipitated particle/matrix (J m–2)
rst structural interfacial energy between

precipitated particle/matrix (J m–2)
t kinematic viscosity (m2 s–1)
uP volume fraction of precipitate phase
Ui;k collision frequency between size i and size k

particles (m3 #�1 s–1)
P supersaturation
DE0 heat of solution of precipitate in a dilute

solution of matrix (J mol–1)
DGV change of Gibbs free energy per unit

volume during precipitation (J m–3)
DH heat of formation of precipitate (J mol–1)

SUPERSCRIPTS

� dimensionless value
� average value
L, R, C left, right border-size, and center-size

particles in each size group

FUNCTIONS

ceilðxÞ the smallest integer which is not less than real
number x

floorðxÞ the largest integer which is not larger than
real number x
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