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The formulations of existing free dendritic growth models were compared, and an extended
model was proposed that employs a subregular solution model to compute the driving force for
dendritic growth without Henrian restrictions. These models were also applied to a Ag-15 mass
pct Cu alloy to numerically compare their predictions. Models that address only the thermal,
solutal, and curvature supercoolings do not properly account for the interface kinetics, even
with modifications with the kinetic partition coefficient and liquidus slope. It is only in models
that account for the interfacial driving force, -DG*, that the kinetic supercooling is properly
addressed. All of the models in comparison yield numerically similar predictions for the solutal
growth regime, but models that employ the kinetic partition coefficient and liquidus slope, but
do not address the interfacial driving force, fail to correctly describe the thermal control regime.
The solutal-to-thermal transition is characterized by a rapid increase of interfacial driving force,
which causes the tip temperature T* to increase with increasing growth rate V. The criterion for
the transition stage is given as d lnð�DG�Þ=d ln V>1.
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I. INTRODUCTION

IN free dendritic growth, the latent heat of crystal-
lization is dissipated mainly by the thermal diffusion
into the supercooled liquid. Thus, the thermal gradient
ahead of the growing dendrite is negative. Such a
negative thermal gradient may be experienced by equi-
axed dendritic grains growing in the interior of a
solidifying ingot while competing with columnar den-
dritic grains growing from the mold wall. The interest in
producing ingots with predominantly equiaxed grains
initiated the study of free dendritic growth. Early free
dendritic growth models,[1,2] therefore, considered small
melt supercoolings and local equilibrium conditions at
the solid-liquid interface, as typically encountered in
conventional casting.

In the early 1980s, the need for predicting the
microstructural evolution in rapid solidification
prompted the development of models that more prop-
erly described the free dendritic growth in supercooled
melts. An early model of this kind was developed by
Lipton, Glicksman, and Kurz (LGK).[3,4] The LGK
model incorporates the Ivantsov function[5] to address
the coupled heat and mass transport around a parab-
oloidal dendrite tip in steady-state free dendritic
growth.[5] Another important feature of the LGK model
is the replacement of the extremum tip radius with one
determined on the Kurz–Fisher stability criterion.[6] The

model also adopts the linear liquidus approximation
from the earlier models, on which the total supercooling
is defined with three components, namely, the thermal,
solutal, and curvature supercoolings. The adoption of
the three-component total supercooling necessarily fixes
the interfacial liquid and solid compositions at the
liquidus and the solidus, respectively. Such a local
equilibrium interfacial condition, however, occurs only
at low supercoolings.
To account for the nonequilibrium interfacial kinetics

encountered in the free dendritic growth at higher
supercoolings, Lipton, Kurz, and Trivedi (LKT)[7]

replaced the Kurz–Fisher stability criterion in the
LGK model with the Trivedi–Kurz criterion,[8] which
applies to all values of Péclet numbers. However, the
LKT model inherits the straight liquidus and solidus
approximation and the three-component total superco-
oling, which limits its applicability to only low super-
coolings. To address the nonequilibrium solute
partitioning at high supercoolings, Trivedi, Lipton,
and Kurz (TLK)[9] extended the LKT model by incor-
porating the solute trapping equation presented by
Aziz.[10] The TLK model, as presented in Reference 9,
however, still keeps the total supercooling consisting
only of thermal, solutal, and curvature supercoolings, as
well as straight phase boundaries.
Boettinger, Coriell, and Trivedi (BCT) were the first

to correctly address the nonequilibrium solute parti-
tioning at the solid-liquid interface in a free dendritic
growth model.[11] While the BCT model also uses the
Aziz solute trapping model and the Trivedi–Kurz
stability criterion, and is built on straight liquidus and
solidus, it differs fundamentally from the previous two
models because of its consistency with the thermody-
namic requirement that the compositions at the solid-
liquid interface be in the range that gives a positive
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interfacial driving force, as addressed by Baker and
Cahn.[12] Also, the model satisfies the kinetic require-
ment that the interface migrate as the rate atoms attach
themselves to the growing solid, which, at relatively low
supercoolings, may be proportional to the interfacial
driving force.[13] The incorporation of the interfacial
driving force allows the BCT model to define the total
supercooling correctly with four components, namely,
the thermal, solutal, curvature, and kinetic supercoo-
lings. The BCT model can be extended for alloys of
binary systems with curved phase boundaries, as shown
by DiVenuti and Ando (DA).[14]

The LKT, TLK, and BCT models have been widely
used because of their relatively simple analytic formu-
lations, but not without limitations. The three-compo-
nent total supercooling assumed in the LKT and TLK
models in their original forms[7,9] fixes the interfacial
solute concentrations at local equilibrium values. The
Aziz solute trapping model, used in the TLK and BCT
models, has been instrumental but, as described in
Reference 10, applies only to dilute alloys, although it
can be readily replaced with an improved model.[15,16]

Henrian restrictions also apply to the Baker–Cahn
equation[12] for the interfacial driving force employed
in the BCT model. These limitations of the models have
led some of their users to contrive modifications. The
LKT and TLK models, originally defined only on the
thermal, solutal, and curvature supercooling, have been
used with the ‘‘kinetic liquidus slope’’[11] and/or a
‘‘kinetic supercooling’’ in an effort to address the
interface kinetics.[17–19] The BCT model itself has been
used with the kinetic liquidus slope in the Trivedi–Kurz
criterion.[20–22] The latter modification is also made in a
recent BCT-based model[23] in which the effects of non-
Fickian mass transport on solute partitioning are
addressed. Such modifications, however, have not been
validated.

One of the objectives of the present work was to
elucidate the differences among the formulations of the
existing free dendritic growth models (LKT, TLK, BCT,
DA, and modified models) and further provide a
numerical comparison of these models through applica-
tion to a Ag-15 mass pct Cu alloy. In addition, an
extended model is proposed in which the interfacial
driving force is directly computed with a thermody-
namic solution model to lift the Henrian restriction on
the Baker–Cahn equation. This modification, applied to
the DA model in the present study, is also numerically
tested by comparison with the existing models. The
effects of the non-Fickian mass transport[23] are not
addressed, as they are not essential to the arguments
presented in this article.

II. COMPARISON OF EXISTING FREE
DENDRITIC GROWTH MODELS

All of the existing models described here (LKT, TLK,
BCT, DA, and modified models) consider steady-state
growth of a dendrite, represented by a paraboloid of
revolution, into an alloy melt of composition C0

supercooled to T¥ below the liquidus temperature TL

(C0).

A. LKT and TLK Models

The original LKT model[7] considers the total super-
cooling, defined by DT ¼ T1 � TLðC0Þ, to consist of
three components, the thermal (DTt), solutal (DTc), and
curvature (DTr) supercoolings (Figure 1(a)). The three
supercooling components are given, respectively, by the
three terms on the right-hand side of

DT¼DTtþDTcþDTr ¼
DHf

cp
Iv Ptð ÞþmLðC0�C�LÞþ

2C
r

½1�

where DHf is the molar enthalpy of fusion, cp is the
specific heat, mL is the slope of the equilibrium liquidus,
C�L is the solute concentration in the liquid at the
interface, C is the Gibbs–Thompson coefficient, r is the
tip radius, Iv(Pt) is the Ivantsov function,[24,25] and Pt is
the thermal Péclet number. Equation [1], the total
supercooling equation, is solved for the tip velocity V
and the tip radius r with the aid of the Trivedi–Kurz
stability criterion,[8] which, for free dendritic growth
under the conditions of equal thermal diffusivity and
conductivity, gives

r ¼ C=r�

PtDH
cp

nt � 2mLPcC0 1�k0ð Þ
1� 1�k0ð ÞIv Pcð Þ nc

½2�

Fig. 1—Thermal and mass diffusion fields and supercooling compo-
nents in free dendritic growth. (a) Local equilibrium at the tip. The
total supercooling is comprised of three components, DTr, DTc, and
DTt. (b) Nonequilibrium compositions at the tip. The total superco-
oling is comprised of four components, DTr, DTc, DTt, and DTk.
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where r* is the stability parameter,[26–28] Pc is the solutal
Péclet number, k0 is the equilibrium partition coefficient,
and nt and nc are functions of, respectively, Pt and Pc

and k0, as defined in Reference 8. Despite the adoption
of the Trivedi–Kurz criterion, Eq. [2], which applies to
all ranges of Péclet numbers, the LKT model, defined on
the three supercooling components, only predicts local
equilibrium interfacial solute concentrations. For cases
where interface kinetic effects are important, LKT[7]

suggest to include in Eq. [1] a kinetic supercooling
expressed as V/l, where l is the interface kinetic
coefficient.[8] The validity of such a correction is
discussed later in this section.

The TLK model,[9] also built on the thermal, solutal,
and curvature supercoolings, adopts the kinetic parti-
tion coefficient k ¼ C�S=C

�
L given by[10]

k ¼ k0 þ b0V

1þ b0V
½3�

where C�S is the solute concentration in the solid at the
interface and b0 is the solute trapping coefficient. The
kinetic partition coefficient k replaces the equilibrium
partition coefficient k0 in Eqs. [1] and [2]. Although these
equations predict C�S � C�L � C0 at high V, such predic-
tions contradict the underlying assumption that the total
supercooling consists only of the thermal (DTt), solutal
(DTc), and curvature (DTr) supercoolings, which neces-
sarily requires that both C�S and C�L be fixed at the
curvature-corrected solidus and liquidus at T*, respec-
tively (Figure 1(a)).

B. BCT Model

The latter dilemma is overcome in the BCT model[11]

by invoking the need to address the response function
for the interface temperature and composition.[12] For
this purpose, BCT adopt a linear kinetic law:[13]

V ¼ �V0
DG�

RT�

� �
½4�

where T* is the interface temperature, DG* is the free
energy change across the interface, and V0 is the
maximum crystallization velocity.[13] Equation [4] states
that the interface velocity is singly dependent on the
driving force, i.e., -DG*, which is a function of T* and
C�L (Figure 2). Equation [4] is derived from the more
general form, V ¼ V0 1� exp ð�DG=RT�Þ½ �, for the
conditions where �DG=RT� is sufficiently small.[13]

Another key feature of this model is the adoption of
the analytical expression for DG* given by Baker and
Cahn:[12]

DG�

RT�
¼ ð1� C�SÞ� ln

ð1� C�SÞð1� C
eq
L Þ

ð1� C�LÞð1� C
eq
S Þ
þ C�S� ln

C�SC
eq
L

C�LC
eq
S

½5�

where C
eq
L and C

eq
S are the equilibrium solute concen-

trations in mole fraction defined at T*. Equation [5] is
obtained on Henrian conditions and, as such, applies
only to dilute alloys.[12] Therefore, BCT, in combining
Eqs. [4] and [5], apply further approximations by

neglecting the products of mole fractions, which, after
Gibbs–Thompson correction, yields

T� ¼ TM þm0LC
�
L �

2C
r
� V

l
½6�

where TM is the melting point of the pure metal,
l ¼ V0ðk0 � 1Þ=mL, and m0L is the so-called kinetic
liquidus slope, which is shown in Figure 1(b) and
defined by[11]

m0L ¼
1� k 1� ln k

k0

� �
1� k0

mL ½7�

Equation [6] permits defining another supercooling
component, DTk, the kinetic supercooling, which ac-
counts for the nonequilibrium interfacial kinetics, as seen
in Figure 1(b). While no ambiguity exists on the defini-
tions of the thermal and curvature supercoolings, liter-
ature indicates that the division between the solutal and
kinetic supercoolings has not always been clear to the
users of the model. This ambiguity originates from
Eq. [6], which, despite its correctness, may seem to
suggest that the solutal supercooling be defined with the
kinetic liquidus slope as DTc ¼ mLC0 �m0LC

�
L
[22,29,30] or

DTc ¼ m0LðC0 � C�LÞ.
[23] The correct expression, how-

ever, should be DTc ¼ mLðC0 � C�LÞ,
[4] because the

solutal supercooling by definition is the actual decrease
of liquidus temperature caused by the solute buildup at
the interface. With the latter definition of DTc, the kinetic
supercooling should be what is left of the total superco-
oling, which, based on Eqs. [6] and [7], is given by[14]

DTk ¼ �
mLC0 k0 � k 1� ln k

k0

� �h i
1� k0ð Þ 1� ð1� kÞIv Pcð Þ½ � þ

V

l

¼ mL �m0L
� �

C�L þ
V

l

½8�

Fig. 2—Schematic illustrating the tangent-to-curve rule[12] to deter-
mine the driving force, -DG*, for the growth of a dendrite with a
tip radius r.
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Thus, the V/l term does not solely represent the kinetic
supercooling except for pure metals,[8] for which the first
term in Eq. [8] is zero. For binary alloys, DTk

depends not only on V but also on C�L and varies
from zero at low growth rates where k = k0 and
V/l � 0 to mLC0 k0 � 1� ln k0ð Þ=ðk0 � 1Þ þ V=l, or
mL �m0Lðk ¼ 1Þ
� �

C0 þ V=l, at very high growth rates
where m0Lðk ¼ 1Þ is the slope of the T0 line between the
liquid and the solid, given by m0Lðk ¼ 1Þ ¼ mL ln k0=
ðk0 � 1Þ.[11] Thus, the first term in Eq. [8] can be
regarded as the kinetic supercooling required to restrict
solute partitioning at the interface.

Adding Eq. [8] to Eq. [1] gives the expression for the
total supercooling of the BCT model:

DTBCT ¼ DTt þ DTc þ DTr þ DTk

¼ DHf

cp
Iv Ptð Þ þmLC0 1� m0L=mL

1� ð1� kÞIv(Pc)

	 


þ 2C
r
þ V

l
½9�

The BCT model combines Eq. [9] with the Aziz solute
trapping kinetics, Eq. [3], and the Trivedi–Kurz crite-
rion, Eq. [2], given on the kinetic partition coefficient k
instead of k0, to solve them for V, T*, r, C�L, and k.

C. DA Model—an Extension of BCT Model

The BCT model can be made applicable to curved
liquidus and solidus that are often encountered in rapid
solidification. For this purpose, DiVenuti and Ando
(DA)[14] replace Eq. [6] with

T� ¼ TLðC�LÞ �
2C
r
� DTk ½10�

where TL(C) is the liquidus temperature as a function of
solute concentrationC. This permits writing Eq. [2] as[14]

r ¼ C=r�

PtDH
cp

nt �
2

dTL
dC

� �
C¼C�

L

PcC0 1�kð Þ

1� 1�kð ÞIv Pcð Þ nc

½11�

which rigorously accounts for the curved liquidus in a
manner consistent with the original Trivedi–Kurz crite-
rion.[8] We note that dTL/dC equals mL, and not m0L, for
a straight liquidus regardless of the value of C�L. Thus,
the BCT model, as it is, correctly incorporates Eq. [11].

DA keep the Aziz solute trapping equation, Eq. [3],
and, by eliminating the products of mole fractions,
rewrite the linear kinetic law, Eq. [4], for curved liquidus
and solidus as

C
eq
S T�þDTrð Þ�Ceq

L T�þDTrð Þþ2PcD

V0R

þ
Co 1�k 1�lnkþlnCeq

S T�þDTrð Þ�lnCeq
L T�þDTrð Þ

� �� �
1þ 1�kð ÞIv Pcð Þ

¼0 ½12�

Note that Eq. [12] is equivalent to Eq. [6] if
TLðCÞ ¼ TM þmLC. Thus, the DA model reduces to
the BCT model for linear liquidus and solidus.

D. Modified Models

The success of the BCT model has led some users of
previous models to use them with modifications based
on Eq. [6] in an effort to more properly address the
nonequilibrium interface kinetics at high Péclet num-
bers. These modifications are characterized by the
introduction of a ‘‘kinetic supercooling’’ V/l or the
replacement of the equilibrium liquidus slope mL with
the kinetic liquidus slope m0L defined by Eq. [7].[7,17–19]

For example, a TLK-based model with such modifica-
tions is described on

DTMod�TLK ¼
DHf

cp
Iv Ptð Þ þm0LðC0 � C�LÞ þ

2C
r
þ V

l

½13�

r ¼ C=r�

PtDH
cp

nt �
2m0

L
PcC0 1�k0ð Þ

1� 1�k0ð ÞIv Pcð Þ nc
½14�

both of which clearly differ from those of the BCT
model. Thus, such modifications fail to remedy the
previous models. This is also understood from the fact
that Eqs. [6] and [7], as we have seen earlier, come
from the linear kinetic law, Eq. [4], and the
Baker–Cahn equation, Eq. [5], neither of which
applies to the previous models. The modified Triv-
edi–Kurz criterion with m0L, Eq. [14], has been used
also with the BCT model,[20–23] but such a modifica-
tion is an unnecessary correction of the already
correct BCT model.[14,29–31]

III. EXTENTION FOR NONDILUTE ALLOYS

While the existing models have been useful and
widely used in rapid solidification studies, they are
still limited to dilute alloys due to the Henrian
restrictions placed on the Baker–Cahn and Aziz
equations. In the present work, a new approach to
calculating the interfacial driving force with a tem-
perature-dependent subregular solution model[32] is
introduced to circumvent at least the restriction on
the Baker–Cahn equation. The solution model devised
after Gaskell[33] and Murray,[34] but with a modifica-
tion to make the model more self-consistent, is
represented by

G ¼ C1G
o
1 þ C2G

o
2 þRTðC1 lnC1 þ C2 lnC2Þ þ GXS

½15�

GXS ¼ C1l
XS
1 þ C2l

XS
2 ¼ ðAþ BC2ÞC1C2 1� T

s

� �

½16�
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lXS
1 ¼ GXS þ C2

@GXS

@C1
¼ Aþ Bð2C2 � 1Þ½ � 1� T

s

� �
C2

2

½17�

lXS
2 ¼ GXS þ C1

@GXS

@C2
¼ ðAþ 2BC2Þ 1� T

s

� �
C2

1 ½18�

where G and GXS are, respectively, the Gibbs free energy
and excess free energy of binary solutions of compo-
nents 1 and 2; Ci and lXS

i are, respectively, the mole
fraction and the excess chemical potential of component
i; and A, B, and s are constants, which need to be
determined for the phases of interest. The terms G, GXS,
and lXS

i in these expressions are fully consistent with
each other, i.e., GXS ¼ C1lXS

1 þ C2lXS
2 .

Equations [15] through [18] permit calculating the
interfacial driving force -DG* by the tangent-to-curve
rule[12] illustrated in Figure 2; i.e.,

DG� ¼ GSðT�;C�SÞ þ
2CDS

r
� gLðT�;C�SÞ ½19�

where GSðT�;C�SÞ is the free energy of the solid at C�S, DS
is the molar entropy of fusion, and gL is the equation of
the line tangent to the GL curve at C�L. Substituting
Eq. [19] in Eq. [4] then yields an equation that replaces
Eq. [6] of the BCT model or Eq. [12] of the DA model.
We keep the Aziz equation, Eq. [3], in this model despite
its Henrian limitations, but it can be readily replaced
with an improved model such as the ones presented by
Aziz and Kaplan[15] and Abbaschian and Kurz.[16]

IV. NUMERICAL COMPARISON OF THE
MODELS

The existing models (Section II) and the extended DA
model (Section III) were numerically compared by
applying them to the free dendritic growth in a Ag-23
at. pct Cu (Ag-15 mass pct Cu) alloy. The choice of this
alloy was justified on the basis of the availability of
thermodynamic data[35–37] and the opportunity for
verification with the prior computation results presented
in Reference 11.

The value of mL required in the LKT, TLK, and BCT
models, and also in the modified TLK model defined by
Eqs. [3], [13], and [14], was determined on the Ag-Cu
phase diagram to be -520.6 in K/mole fraction using
the straight line between the melting point of Ag and the
point on the liquidus at C0 (15 mass pct or 0.23 in mole
fraction). The mole fraction–based value of k0 was then
determined to be 0.393 from the C

eq
S =C

eq
L at the eutectic

temperature. The curved equilibrium liquidus and sol-
idus and their metastable extensions required in the DA
and extended DA models were calculated with the
subregular solution model using the data in the litera-
ture.[35–37] Figure 3 shows the calculated equilibrium
and metastable phase equilibria. The values of the other
parameters used in the present study are shown in
Table I.

Figure 4 compares the values of V, r, k, C�S, and C�L
calculated with the six models. At supercoolings up to
about 85 K, all the models predict similar behaviors of
V, r, k, C�S, and C�L. This is expected at low to moderate
supercoolings where the kinetic supercooling is insignif-
icant and solute diffusion–controlled growth prevails. At
higher supercoolings, all the models, except the LKT
model, predict a sharp jump of V, r, and k to higher
values (Figures 4(a) through (c)). The corresponding
values of C�S and C�L also change abruptly, with both
converging to C0 (Figure 4(d)).
The abrupt changes in V, r, k, C�S, and C�L reflect the

transition from solute diffusion–controlled growth to
thermal diffusion–controlled growth,[9,11] which is veri-
fied in Figure 4(c) where the value of k increases sharply
from that of k0 to nearly unity. The BCT, DA, and
extended DA models predict similar transition behav-
iors over a relatively narrow range of DT beginning
approximately at 85 K. The TLK and modified TLK
models, however, yield nonunique values of V, r, k, C�S,
and C�L over a DT range from about 50 or 65 K to 85 K.
Previous studies also presented such nonunique
values of V.[9,20] The LKT model, which assumes local
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Fig. 3—Ag-Cu phase diagrams calculated with the subregular solu-
tion model.[32] Metastable extensions of liquidus and solidus and
metastable miscibility gap are also shown.

Table I. Parameters for Ag-23 At. Pct Cu Alloy Used
in the Present Work

TM 1234 K
mL -520.594 K/mol fraction
k0 0.393 mole fraction/mol fraction
DHf/cP 374 K
D 2.1 9 10-9 m2/s for TLK, modified TLK,

and BCT models
D(T*) = D0e

-E/(RT*) for DA and extended
DA models (D0 = 1 9 10-7 m2/s,
E = 36 9 103 J/mol)

a 6.6 9 10-5 m2/s
1/b0 2 m/s for TLK, modified TLK, and BCT models

D(T*)/a0 for DA and extended DA models
(a0 = 5 9 10-10 m)

V0 2000 m/s
C 1.53 9 10-7 mK
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equilibrium and no interface kinetic effects, predicts no
transition to thermal growth.

While the transition from solute to thermal diffusion
control is a well-understood phenomenon,[11] whether
these models correctly predict the transition still needs
to be verified. For this purpose, we examine if the
predicted values of C�S and C�L would actually give
the interface a positive driving force for migration at the
predicted value of T*.

Figure 5 shows T* vs DT predicted by the models in
comparison. Examine first the predictions by the TLK
model. At DT = 60 K, two values of T* are predicted,
i.e., T* may be 1054 or 1108 K. Suppose T* = 1054 K,
then the predicted value of partition coefficient k is 0.411
(Figure 4(c)), which is only slightly higher than k0. Thus,
solute diffusion–controlled growth would be predicted if
T* were 1054 K. For this condition, C�S and C�L are
predicted to be 0.137 and 0.333, respectively
(Figure 4(d)). The curvature-corrected values of C

eq
S
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Fig. 4—Predicted kinetics of free dendritic growth in Ag-15 mass pct Cu as a function of total supercooling: (a) tip velocity, (b) tip radius, (c)
partition coefficient, and (d) solute concentrations at tip.
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and C
eq
L at 1054 K are calculated from

T� ¼ TM þmLC� 2C=r with the predicted value of tip
radius (r = 4.73 9 10-8 m) and the equilibrium parti-
tion coefficient (k0 = 0.393) to be 0.131 and 0.333,
respectively. Thus, the interface remains essentially at
local equilibrium, as expected from the three-component
supercooling adopted in this model. When substituted in
Eq. [5], these values of C�S, C

�
L, C

eq
S , and C

eq
L at 1054 K

give -DG* = 0.23 J/mol, which gives V � 0.06 m/s
when substituted in Eq. [4], while the TLK model itself
predicts a similar value of V for the diffusion-controlled
growth at DT = 60 K (Figure 4(a)). Thus, for diffusion-
controlled growth, the TLK model yields predictions
that are numerically consistent with those by the models
that account for the interfacial driving force.

If T* were 1108 K at DT = 60 K, k would be 0.96
(Figure 4(c)). Thus, thermal diffusion–controlled growth
is predicted. The terms C�S and C�L are, respectively, 0.231
and 0.240 (Figure 4(d)). With the predicted value of tip
radius (r = 2.78 9 10-7 m), the curvature-corrected C

eq
S

and C
eq
L at 1108 K are calculated to be 0.094 and 0.240.

Thus, C�L ¼ C
eq
L (local equilibrium with respect to C�L) is

predicted, which contradicts the prediction of thermal
growth. This dilemma obviously results from the assumed
three-component supercooling,which necessarily fixesC�L
atC

eq
L . The value ofC

�
S (0.231), which is much larger than

C
eq
S (0.094), is predicted only because the predicted high

growth rate (Figure 4(a)) gives a high value of k (0.96)
through Eq. [3]. With these values of concentrations,
Eq. [5] yields -DG* = -741 J/mol, suggesting that no
growth by thermal control would actually be possible
under these conditions. Figure 6 schematically illustrates
how such a negative driving force would result at 1108 K.

At supercoolings above about 85 K, the TLK model
predicts only thermal diffusion–controlled growth
(Figure 4). Although the occurrence of growth by
thermal diffusion control itself is not argued, whether it
occurs in the manner predicted should still be examined.
As a test, we estimate -DG* at DT = 100 K, where
T* = 1110 K (Figure 5); k = 0.994 (Figure 4(c)); C�S
and C�L are, respectively, 0.231 and 0.232 (Figure 5(d));
and C

eq
S and C

eq
L at 1110 K corrected for the predicted

value of tip radius (r = 1.08 9 10-7 m) are, respec-
tively, 0.916 and 0.233. The same procedure with Eq. [5]
yields -DG* = -785 J/mol. Thus, thermal diffusion–
controlled dendrite growth is not possible in the manner
predicted. In fact, the predicted values of T* in Figure 5
are much higher than the T0 temperature of the alloy
(estimated, for the straight liquidus and solidus, to be
1050 K[11]); i.e., thermal diffusion–controlled growth
would not be possible at such a high T*.

The failure of the TLKmodel in properly predicting the
thermal control regime is caused by the inappropriate
adoption of the solute trapping equation (Eq. [3]) in a
model that is based only on DTt, DTc, and DTr, i.e.
(Eq. [1]). In such a model, C�L is necessarily fixed at the
curvature-corrected local equilibrium value at T*. Con-
sequently, the condition k � 1, required for thermal
diffusion–controlled growth, is satisfied only if T* �
TL(C0). For such a condition, C�S � C�L � C

eq
L ¼

C
eq
S =k0 � C0 ¼ 0:23 and Eq. [5] reduces to

DG�

RT�
� ð1� C0Þ� ln

ð1� CÞ
ð1� k0C0Þ

� C0� ln k0 ½20�

which yields -DG* � -803 J/mol; i.e., no thermal
growth is possible.
Figure 5 also suggests that the modified TLK model,

despite the adoption of the V/l term in Eq. [13] and the
kinetic liquidus slopem0L in Eqs. [13] and [14], also fails to
properly address the thermal diffusion regime as the
predicted values of T* exceed T0 (1050 K) at
DT < 155 K. In addition, Eq. [5] yields a negative
driving force. For example, the driving force at
DT = 100 K, where T* = 1080 K, k = 0.980, C�S =
0.231, C�L = 0.236, r = 2.02 9 10-7 m, Ceq

S = 0.115,
andCeq

L = 0.293, is calculated to be -382 J/mol. At
higher supercoolings, where T* < T0, DTMod-TLK, given
by Eq. [13], becomes similar to DTBCT, given by Eq. [9],
and the predictions by themodifiedTLKmodel approach
those by the BCTmodel, as seen in Figures 4 and 5. Thus,
themodifiedTLKmodel numerically agreeswith theBCT
model at very high supercoolings.
The BCT model predicts the T* values to be suffi-

ciently below T0 (1050 K for straight liquidus and
solidus) at all values of DT in the thermal diffusion
regime (Figure 5). The DA and extended DA models
also satisfy the condition T* < T0 for thermal diffu-
sion–controlled growth. (T0 = 1072 K if computed
with the subregular solution model.) Also, the BCT,
DA, and extended DA models all predict a positive
interfacial driving force for all values of DT (Figure 7).
The predicted values of driving force exhibit full
parallelism to those of growth rate shown in Figure 4(a),
reflecting the adoption of the linear kinetic law of Eq. [4]
in these models. The values of the driving force
predicted by the three models are smaller, by an order
of magnitude, than those estimated from the C�L and C�S
values predicted by the TLK and modified TLK models,
thus yielding lower and more reasonable values of V.

Fig. 6—Thermal growth at a tip temperature near the liquidus tem-
perature is not possible, since the interfacial driving force (-DG*) is
negative.
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The values of T* predicted by the TLK, modified
TLK, BCT, DA, and extended DA models decrease with
increasing V until the solutal-to-thermal transition sets
in, where T* increases to a maximum as full transition to
thermal control is achieved at a sufficiently high value of
V (Figure 8). Such a T� � V inversion has been pre-
dicted to occur during the transition from solutal
dendritic growth to planar thermal growth under
constrained growth conditions[38–40] and also during
the solutal-to-thermal transition in free dendritic
growth.[17,20] It should be noticed, however, that full
transition to thermal growth must occur such that the
maximum value of T* still stays below T0. The latter

condition is satisfied in the BCT, DA, and extended DA
models.
The origin of the T� � V inversion may be understood

by rewriting Eq. [4] as

T� ¼ V0 �DG�ð Þ
R

� 1
V

½21�

At low supercoolings where solutal growth prevails, the
increase in driving force is still insignificant (Figure 7)
and Eq. [21] predicts a nearly hyperbolic decrease of T*

with increasing V. At higher supercoolings, increased
solute trapping causes the values of C�L and C�S to
deviate from the local equilibrium values (Figures 4(d)
and 9) and the driving force begins to build up.
Equation [21] suggests that a T* – V inversion, i.e.,
dT*/dV > 0, would result if the driving force increases
more rapidly than V, or more specifically if
d �DG�ð Þ=dV>RT�=V0, or d lnð�DG�Þ=d lnV>1. Thus,
the latter condition defines the solutal-to-thermal tran-
sition stage. The calculated free energy curves in
Figure 10 show how the shift of C�L increases
gLðT�;C�SÞ, and hence -DG*, from a low value at the
beginning of the transition to a high value toward
the end of the transition. At yet higher supercoolings,
the growth rate increases rapidly as partitionless (mas-
sive) growth sets in, hence causing T* to decrease again.
Thus, the T* – V inversion, i.e., the solute-to-thermal
transition, can be understood properly only in a model
that addresses the interfacial driving force.

V. CONCLUSIONS

The differences in the formulations of existing free
dendritic growth models were discussed and an extended
model was proposed that employs a subregular solution
model to compute the driving force for dendritic growth.
These models were applied to a Ag-15 mass pct Cu alloy
to numerically compare their predictions. The following
are the major conclusions reached.
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1. Models that are based only on the thermal, solutal,
and curvature supercoolings (e.g., LKT and TLK)
do not properly account for the interface kinetics,
even with the inclusion of V/l in the total superco-
oling and the replacement of the equilibrium parti-
tion coefficient and liquidus slope, k0 and mL, with
the kinetic partition coefficient and liquidus slope, k
and m0L, defined, respectively, by Eqs. [3] and [7].

2. The BCT model and its extensions (DA and ex-
tended DA) correctly address the interface kinetics
by adopting a linear kinetic law. The kinetic super-
cooling, as well as the thermal, solutal, and curva-
ture supercoolings, is properly defined in these
models. The kinetic supercooling, defined by
DTk ¼ DT� DTt � DTc � DTr, has a component
that depends on C�L in addition to the V/l term, as
seen explicitly in Eq. [8] of the BCT model. The
DTk reduces to V/l only for pure metals.

3. Equations [6] and [7] for the interface (tip) tempera-
ture T* and the kinetic liquidus slope m0L given in

the BCT model are obtained by combining the lin-
ear kinetic law and the Baker–Cahn equation for
the interfacial driving force, and as such do not ap-
ply to models that do not properly address the
interfacial driving force.

4. The Baker–Cahn equation for the interfacial driving
force used in the BCT and DA models can be re-
placed with a thermodynamic solution model to cir-
cumvent the Henrian restrictions.

5. All the models in comparison yield numerically sim-
ilar predictions for the solutal growth regime. Mod-
els that employ T*, m0L, and k but do not address
the interfacial driving force can still predict the
occurrence of the transition from the solutal-to-
thermal control. However, the values of T* pre-
dicted for the thermal regime far exceed T0, and
those of C�L and C�S yield a negative driving force.
Models that account for the interfacial driving force
(BCT and its extensions) properly predict the ther-
mal growth regime.

6. The solutal-to-thermal transition stage is character-
ized by a rapid buildup of interfacial driving force,
which causes T* to increase with V. Based on the
linear kinetic law, the criterion for the transition
stage is given as d lnð�DG�Þ=d ln V>1.
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