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A heterogeneous finite element model with randomly distributed inhomogeneities has been developed
for the determination of the forming limit diagram (FLD) for thin aluminum sheet material based on
the prediction of localized necking. The strength difference between the inhomogeneities and the
matrix is ascertained either from the fluctuation of the experimental stress-strain curve or from a
micromechanical analysis that uses a representative particle field. By changing the specimen geom-
etry and friction conditions, different stress states (or strain paths) are achieved. A plot of the critical
Oyane fracture parameter is used to identify the limit strain state. Also, a plot of equivalent plastic
strain rate is used to distinguish the boundary of intense shear bands and hence to identify where to
take the measurement point. Both a plane stress model and a three-dimensional (3-D) model are
adopted to predict the shear banding phenomenon and hence the FLD. The predicted FLD agrees well
with the measurements from a recent round robin experimental FLD involving several independent
research laboratories. The Taguchi method is applied to assess how the various parameters involved in
the heterogeneous model affect the calculated forming limit strain.

I. INTRODUCTION

KNOWING the limits of formability is important for
full utilization of any material’s capabilities. The forming
limit diagram (FLD) is perhaps the most accepted means of
characterizing formability. The FLD defines the extent to
which a sheet material can be deformed over a wide mon-
otonic range of strain paths. This capability is limited by
the occurrence of localized thinning in the form of an
intense shear band, as shown in Figure 1 for both aluminum
alloys and steel under uniaxial tension, and in Figure 2
under biaxial loading. However, the measurement of FLDs
is tedious and time-consuming. Thus, many attempts have
been made to predict FLDs.[1–6] One challenge lies in relat-
ing the way in which the FLD is determined experimentally
to the methodology used in the numerical predictions. For
example, the deterministic parameters used to get the pre-
dicted FLD lead to a single curve in major-minor strain
space, while experimentally measured FLDs often show a
large scatter.[7] Such a pronounced difference adds to the
discrepancy between the experimental and numerical
FLDs.

One of the major sources of the scatter in the determi-
nation of an FLD comes from the selection of measurement
points near the fracture plane. There are two generally
accepted rules: (1) the grids (square or circle) must still
be intact and (2) the grids must be imminently adjacent
to the fracture surface. A combination of these two rules
implies that, in Figure 2, points A, B, and C are all valid
measurement points while point D is invalid.

In sheet materials, an intense shear band is frequently
observed ahead of fracture. Once the band forms, the strain
value within the band increases dramatically. If a complete
grid is partially located within the intense shear band (point
E in Figure 2), the validity of the grid strains becomes
somewhat questionable. The relative position of the FLD
will then change depending on whether such grids are
included. There is no generally accepted evaluation strat-
egy.
From the experimental method, it is clear that the FLD is

associated with the localized necking. Specifically, the
forming limit corresponds to the onset of localized necking.
It is often difficult to experimentally stop the test just at this
point due to the test control and signal measurement limi-
tations of formability test machines. Hence, highly necked
or fractured specimens are generally used to obtain the
forming limit strains. Numerical simulation is not subjected
to the same restrictions, and a suitable localization criterion
(Hill,[8] for example) can be applied to evaluate the occur-
rence of shear localization.
It is well known that the FLD is affected by a material’s

microstructure. With this in mind, we have recently devel-
oped a microstructurally based model that incorporates the
influence of a spatially inhomogeneous distribution of local
strengths on localized necking.[9] This has now been incor-
porated into a two-scale (micromacro) model in order to
consider the effect of the distribution, size, and morphology
of particles on the postnecking mechanical behavior of var-
ious Al-Mg alloys such as AA5182-O aluminum alloy. This
alloy was chosen because it was used in a recent round robin
experimental FLD program involving several research labo-
ratories.[10] Both an in-plane plane stress model and a three-
dimensional (3-D) model of the Nakajima test[11] are used.
Four major local microstructural parameters (local strength
difference and the volume fraction of soft and hard phases)
involved in the heterogeneous models are studied by the
Taguchi method[12] to determine their individual contribution
to the calculated forming limit strain.
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II. FINITE ELEMENT MODELS

Summarizing the work on the numerical prediction of
FLDs in the literature, two kinds of finite element models
can be categorized: an in-plane plane stress model and a 3-
D model with complex contact and friction. Because we are
interested in thin sheet material, an in-plane plane stress
model is commonly used, which ignores the thickness
stress distribution. Although it is experimentally difficult
to apply perfect in-plane biaxial loading, it is easy to do
so in the numerical simulation. As the contact and friction
algorithm are not involved in this type of in-plane plane
stress model, the required computing resource is minimum.
However, if the predicted FLD is compared with the meas-
urements obtained by the most commonly used Nakajima
test, which uses a hemispherical punch, no matter how

accurate the predicted FLD is, one will still question the
feasibility of such a comparison because contact stress and
friction are unavoidable in the real test. Hence, it would be
of interest to compare the predicted FLDs from these two
models.

A number of heterogeneous finite element models have
been developed to treat the effect of local microstructure
(i.e., texture, grain size, particle distributions, etc.) on the
forming limit strains. For the in-plane plane stress model,
the different strain paths can be determined by changing
either the specimen geometry such as the notch radius R
(defined in Figure 3) or by changing the loading ratio r =
a2/a1, as shown in Figure 4 where a1 and a2 are the applied
displacements in two orthogonal directions of the sheet. A
typical setup for a Nakajima test is shown in Figure 5. By
changing the width of the blank (Figures 6(a) through (d)),
different strain paths on the left side on the FLD could be
obtained. To acquire the limit strain of the right side of
FLD, different friction conditions are applied to the full
circular blank (Figure 6(e)). For reasons of clarity, the
spatial distribution of inhomogeneities is not presented in
Figure 6.

In the simulations presented in this work, the von Mises
yield criterion is used. The general purpose FE package
MSC.Marc is used as the analysis tool. Based on prior
analyses,[13] four-node full integration elements with
assumed strain formulation are adopted for the in-plane
plane stress model. The shell element with reduced integra-
tion is used for the 3-D simulation.

III. INHOMOGENEITIES

Most commercially produced alloys have inhomogene-
ities present at different length scales. At the mesoscale,
texture is a major source. In AA5182, for example, the
cube-oriented grains are weaker while the Goss-oriented
grains are stronger. The volume fraction of each component

Fig. 1—Experimental observed intense shear bands under (a) plane stress deformation mode and (b) plane strain deformation mode for Al alloys. (c) Crossed
shear bands in dual-phase steel DP600.

Fig. 2—Illustration of selecting valid measurement points for a specimen
deformed by hemispherical punch.
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in an alloy has been easily measured using X-ray
diffraction or electron backscattered diffraction (EBSD).
The strength difference between the regions with average
behavior that we call the ‘‘matrix’’ and the inhomogeneities
can also be quantitatively calculated by the use of the Four-
ier transformation from measured EBSD data.[14] In this
work, we simplify the analysis and treat inhomogeneity
phenomenologically by assigning regions that have a
slightly higher or lower strength than the matrix. The
matrix, which forms the majority of the material, is
assumed to have the average stress-strain response (Figure
7). The stress-strain curves for the ‘‘hard’’ and ‘‘soft’’ com-
ponents are simply obtained by slightly shifting the stress-
strain curve for the matrix up or down 62 pct. Thus, the
work-hardening rate for all three phases is maintained the
same. All stress-strain curves are fitted into the Voce equa-
tion.[15] The stress-strain curves determined from Figure 7
are termed phenomenological stress-strain curves. One can
see that the strength differences fall within the range of
experimental error. The stress-strain curves determined
from the two-scale (micromacro) modeling in the following
are termed as microstructurally based stress-strain curves,
as discussed in Section IV. Their influence on the predicted
FLD will be discussed later.

IV. TWO-SCALE MODELING

At the microlength scale, the second-phase particles are a
major source of inhomogeneity. Figure 8 shows a particle
field of an Al-Mg alloy. Using a micromechanical analysis,
the influence of such local microstructure can be incorpo-
rated in the structural model. In other words, the stress-
strain curves associated with inhomogeneities can be
obtained from the micromechanical analyses using a series
of unit cell models.
To simulate how local particle size, morphology, and

distribution affect the macroscale response, a micromacro
two-scale modeling strategy is used. In brief, the procedure
is introduced as follows. (1) Measurement of individual
particle position and size using image analysis software.
(2) Construction of a virtual particle field using suitable
preprocessing finite element software. (3) Micromechanical
analyses based on the representative volume elements or
concentric windows of varying size. (4) The stress-strain
curves from the micromechanical analyses are assigned
randomly to different elements in the structural model.
(5) Elements close to the predicted intense shear bands in
the structural model are selected to extract forming limit
strains.
Figure 9(a) shows the constructed virtual particle field

and three concentric windows for the micromechanical
analysis. Each particle is assumed to be an ellipse. The
corresponding finite element model for the medium size
window is shown in Figure 9(b). There are two phases in
each window: the white particles and the remaining matrix.
All particles are assumed to only undertake elastic defor-
mation, with a Young’s modulus of 300 GPa and Poisson’s
ratio of 0.28. The flow stress of the matrix is assumed to
follow the average response from the uniaxial tension test.
In other words, the curve identified as ‘‘Voce equation fit-
ting_Matrix’’ is assigned to be the matrix material in FigureFig. 3—Finite element model used to determine the left side of the FLD.

Fig. 4—Finite element model used to determine the right side of the FLD, in which a1 and a2 are the applied loads.

METALLURGICAL AND MATERIALS TRANSACTIONS A VOLUME 37A, DECEMBER 2006—3491

JOBNAME: MTA 37A#12 2006 PAGE: 3 OUTPUT: Tuesday November 21 15:45:51 2006

tms/MTA/123244/ETP05325ARR



9(b). This is an approximation because it is known that the
matrix material at the microscale in Figure 9(b) changes
from place to place. However, this is a common practice in
such micromechanical analysis.

The boundary conditions of Figure 9(b) are such that the
top and bottom edges are maintained straight during defor-
mation, the left edge is constrained, and a uniform displace-
ment is applied to the right edge. The calculated responses
from the three selected windows are presented in Figure 10.

The initial part of the stress-strain curve is identical for all
these windows. However, because the particle characteris-
tics (such as the particle cluster and the volume fraction of
particles) vary from window to window, one would expect
to see different behavior at high strain (i.e., shear localiza-
tion). This is seen by the strain at which the stress drop
occurs: the window that fails earlier, the soft phase; and that
which fails later, the hard phase. The remaining one is
referred to as the matrix. The effect of window or unit cell

Fig. 5—A schematic of the tool setup for the Nakajima test.

Fig. 6—Blanks used to determine the FLD in the Nakajima test.
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size on the response will be discussed in Section VII.
The aforementioned method for the determination of
stress-strain curves for each phase is obviously different
from that shown in Figure 7 and has a clearer physical
meaning than the phenomenological method. However,
both can be used to predict FLDs.

V. PREDICTED FLD

As stated in Section II, two kinds of finite element mod-
els are usually applied in the FLD predictions. In the first
part of this section, the results from the use of in-plane
plane stress model are described. The FE simulations per-
taining to the Nakajima test are reported in the second part.

Because the experimentally measured FLD typically
uses a fractured specimen, prediction of the fracture path
is necessary in order to have a consistent comparison. The
Oyane fracture criterion[16] was used to indicate the initia-
tion of fracture. A physical separation of the specimen was
not necessary in the simulation because only the points
outside of the intense band were considered in the FLD
prediction. The strain values of these points change little
during the final fracture process.
The Oyane fracture criterion can be expressed as

ð�ef
0

sm

�s
1B

� �
d�e ¼ C [1]

where �ef is the equivalent strain at fracture initiation, while
sm and �s are the hydrostatic stress and the equivalent
stress, respectively. The terms B and C are constants. The
value of C = 0.8 is used in all simulation because it has
been justified for a similar Al sheet alloy in Reference 17.

A. In-Plane Plane Stress Model

A plot of equivalent plastic strain rate, as shown in Fig-
ures 11 and 12, is most useful for discerning the intense
shear band, because outside this region, elastic unloading
takes over and there is no further plastic deformation. This
kind of plot therefore is used to determine the boundary of
the intense shear band and hence the location of the meas-
urement point.
The intense shear bands predicted under uniaxial tension

for various specimen geometries are shown in Figure 11. As
the notch radius R decreases, a plane strain state is
approached in the notched region. The angle between the
intense shear band and the applied loading direction also
increases from approximately 60 deg (standard uniaxial
specimen without a notch[9]) toward 90 deg under plane
strain with respect to the loading direction. This agrees well
with the experimental observations presented in Figure 1.
For the specimen subjected to biaxial loading, because

the same FE model is used in terms of the mesh and the
distribution of inhomogeneities for all loading paths, it
would be expected that the localization starts from the same
place. However, this is only true for the loading ratio r ,
0.7 (Figure 12, for instance). As the loading condition
approaches the balanced biaxial state, the place of local-
ization shifts. Also noticeable from Figure 12 is that the
length of localized band decreases when the critical frac-
ture parameter is reached. Because the damage develops
dramatically after the formation of intense shear band, the
loading path exerts a significant influence on the character-
istics of the fracture pattern.
As mentioned in Section I, the objective of the present

article is to develop a methodology for the prediction of
FLDs that closely follows the experimental procedure. As
the first step, research was carried out to validate our pre-
diction of intense shear bands, in particular, the strain dis-
tribution inside and outside of the shear band. The results
presented in Figures 11 and 12 are calculated using the
stress-strain curves, as shown in Figure 7. Following the
same procedure (random distribution of inhomogeneities
and the Voce expression of stress-strain curves), the equiv-
alent strain distribution in a flat AA6111-T4 specimen is

Fig. 7—The true stress–true strain curves for various phases (soft, hard,
and matrix).

Fig. 8—Particle distribution of an Al-Mg alloy.
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numerically calculated and compared with the measured
values in Figure 13. A noncontact automatic optical strain
measurement system was used to experimentally obtain the
surface strain evolution leading to Figure 13(b).[18] Clearly,
the predicted shear localization agrees well with the strain
measurement based on the digital image correlation techni-
que. The reader is referred to Reference 17 for a detailed
comparison between the FE prediction and experimental
measurements. It should be noted that the predicted intense
bandwidth and the orientation to the loading direction
depend very little on the spatial distribution of inhomoge-
neities as long as the inhomogeneities are randomly dis-
tributed in the FE structural model. A detailed study of the
spatial distribution of inhomogeneities on the localization
mode was reported in Reference 9.

Figure 14 shows the distribution of major strain after
failure and the minor-major strain profiles for three nodes:
one within and two outside the intense shear band. It should
be noted that Figures 11(a) and 14(a) are obtained from the
same simulation but with different contour plots. The selec-
tion of nodes 1 and 2 is made using a plot of equivalent
plastic strain rate in Figure 11 based on the criterion of

being the closest node to the shear band and possessing zero
plastic strain rate. It is clear from Figure 14(b) that the strain
values approach saturation for nodes 1 and 2 after the for-
mation of intense shear band but that node 3 still experiences
an increasing minor strain. The small window in Figure
14(b) showing the expanded region of the graph also sug-
gests that node 1 is closer to a plane strain state as the slope
of the curve approaches vertical in strain space. Figure 14(c)
plots the histories of minor and major strain as a function the
increment number. Clearly, both the major and minor strain
components saturate after a critical strain is reached (in this
case about increment number 45), indicating the formation
of an intense shear band. Based on the preceding analysis,
nodes 1 and 2 were selected as locations corresponding to
the forming limit strains. It should be noted that there are
many other points that are also qualified as in the experi-
mental measurement procedure. These points can be easily
selected and confirmed by their plot of minor-major strains.
Of particular interest are those points that are very close to
the corner of two intersecting fracture paths (as shown in
Figure 12 for r 5 0.1). The calculated minor limit strain at
these locations is usually greater than anywhere else because
of the strain path change.

Following the previously mentioned procedure of using
the phenomenological stress-strain curves, we can obtain
the forming limit strains for different specimens undergoing
other strain paths. The final prediction is shown in Figure 15,
identified as ‘‘Prediction 1.’’ The modeling-based data points
are shown in the filled diamond in Figure 15(a) and the black
solid line in Figure 15(b). The solid curves are the trend lines
of the predicted discrete data. The crosses are the measure-
ments from seven independent research laboratories.[10]

Clearly, a remarkable agreement has been obtained. The
measured data points in Figure 15 indicate a significant scat-
ter in the data especially for the plane strain and balanced
biaxial strain states. The same is true for the FE predictions.

Selecting the element in the vicinity of a shear band was
repeated for analyses with the microstructurally based
stress-strain curves obtained from micromacro modeling
(Figure 10). The predicted forming limit strains, identified
by ‘‘Prediction 2,’’ are shown in the filled triangular sym-
bols in Figure 15(a) and the corresponding trend line in
Figure 15(b).

Fig. 9—Micromechanical finite element model. Three concentric windows are selected. Each window consists of two phases: matrix and particles. The
particles only undertake elastic deformation. The flow stress behavior of the matrix is taken directly from the uniaxial tension test, as shown in Fig. 7.

Fig. 10—Calculated true stress–true strain responses from the microme-
chanical finite element simulations. The three curves represent the
responses of the three different windows, as shown in Fig. 9(a). The
stress-strain curve that drops earlier is assigned to the soft phase. The
stress-strain curve that drops later is assigned to the hard phase. The
remaining one is assigned to the matrix.
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B. 3-D Model for Nakajima Test

The sequence of deformation under uniaxial tension for
both sheet Al alloys and steels consists of uniform defor-
mation, diffuse necking, the formation of a crossed band
similar to that shown in Figure 1(c), localized necking, and
finally void formation and growth in the shear band leading
to final failure.[19] Because the preceding deformation
sequence is observed in uniaxial tension, the deformation
zone is not affected by either the external tooling contact or
interfacial friction.

Figure 16 presents the sequence of deformation of a
narrow specimen (24 mm in width) stretched by a hemi-
spherical dome. The plotted contour is the equivalent plas-
tic strain rate over the sample surface. Comparable with our
previous observations in Reference 19, there is no uniform
deformation zone in the center region of the blank because
of the existence of contact exerted by the tooling and fric-
tion. The ring shape strain rate contour in Figure 16(b)
reflects the instantaneous contact boundary between the
punch and the blank. Another noticeable feature is the
rotation of the intense shear band in the later deformation
stage to conform to the punch profile. These features of the

Nakajima test process suggest important differences
between the in-plane frictionless deformation mode and
the out-of-plane deformation mode of the sheet with punch.
It is likely that the limit strain predictions from the two
simulation methods will be different.
As stated earlier, different strain paths on the right side of

FLD were obtained numerically by changing the lubrica-
tion conditions in the Nakajima test. Figure 17 indicates the
predicted failure modes under the two friction conditions. It
can be clearly seen that the location of the localized bands
moves up as the friction coefficient decreases. This is in
good agreement with experimental observations in Figure
18.
The predicted FLDs from these 3-D simulations are iden-

tified by ‘‘Prediction 3,’’ shown as the filled square in
Figure 15(a), and the corresponding trend line in Figure
15(b). Again, a reasonable prediction is given.

VI. SENSITIVITY STUDY OF INHOMOGENEITY

A sensitivity study was also carried out to assess the
effect of the volume fraction of heterogeneities and their

Fig. 11—Predicted shear localization pattern for various specimens under uniaxial tension.

Fig. 12—Predicted shear localization pattern under various strain paths under biaxial loading.
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local strength variation on the predicted limit strains, by
the Taguchi method. The Taguchi method adopts a set of
standard orthogonal arrays (OAs) to determine the config-
uration of parameters and analyze the results. The arrays
use a small number of experimental runs to obtain
maximum information with high reproducibility and reli-
ability.

Four general adjustable parameters were used in the
present heterogeneous model: the local strength difference
between the soft (or hard) phase and the matrix (Dys_soft
and Dys_hard) and the volume fraction of each phase
(Vol_soft and Vol_hard). A random distribution of each
phase was assumed in the analysis. Each of the parameters
was assigned three values (also called ‘‘levels’’). These
values are shown in Table I. The value of Vol_soft and
Vol_hard ranged from 10 to 30 pct. The strength increments
ranged from 1 to 4 pct. Thus, the flow strength of the soft
region is given by �ssoft ¼ ð11Dys softÞ�smatrix where �smatrix

is the matrix strength. Similarly, �shard ¼ ð11
Dys hardÞ�smatrix for the hard region. The designed orthog-
onal array, L9(34), is shown in Table II. Designation L9(34)
indicates that there are four parameters; each parameter has
three levels and a total of nine test runs need to be con-
ducted. For example, if we consider test 6, the volume
fraction of the soft phase is 20 pct, the volume fraction of
the hard phase is 30 pct, and the remaining 50 pct is the
matrix material. The flow stresses for the soft and hard
phases are expressed as �ssoft ¼ 0:99�smatrix and �shard ¼
1:02�smatrix. To ensure that all nine test runs have the same
overall strength of �smatrix, a mixture rule is applied to mod-
ify the strength of the matrix to adapt to the variations of
volume fractions of inhomogeneities. For instance, for test
6, a coefficient k is applied to adjust the flow strength of the
matrix to satisfy the following constraint:

0:2 � 0:99�smatrix10:3 � 1:02�smatrix1ð1� 0:2� 0:3Þ
� k�smatrix ¼ �smatrix

The corresponding k value is 0.992.
The relative contribution of each parameter toward the

major forming limit strain (e1) is analyzed via the analysis
of variance (ANOVA) method. ANOVA uses the sum of
squares to quantitatively examine the deviation of the
responses of each control factor from the overall experimen-
tal mean response.[12] The reader is referred to textbooks
such as that in Reference 12 for details. The calculated con-
tributions of each parameter to the major forming limit for
the case of biaxial loading with an r 5 0.3 are shown in the
last column of Table III in the form of minor strain and
major strain. It can be seen that the relative difference in
flow strength between the soft phase and the matrix (Dys_
soft) is the most important parameter controlling the major
limit strain, followed by the volume fraction of the soft
phase, the relative difference in flow strength between the
hard phase, and the matrix and the volume fraction of the
hard phase. The Dys_soft contributes 70.1 pct to the e1,
about 3.5 times the contribution of the Vol_hard. The influ-
ences of the Dys_hard on the e1 are negligible. The average
effect of each parameter level on the e1 is shown in Figure
19. From Figure 18, it can be seen that e1 decreases with
linear increasing of Dys_soft. However, there is a clear
steady stage for the other three influencing parameters.

VII. DISCUSSION

A micromacro model has been proposed to predict the
macroscopic response (the FLD in this article) of materials

Fig. 13—Comparison between the (a) FE predicted and (b) measured strain distribution for AA6111-T4.
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based on microstructural details. Although all three predic-
tions fit well with the measurements in Figure 15, there are
still some differences that are worth noting. The best cor-
relation with the data comes from the use of Prediction 1,
which is computationally most efficient (Figure 15).
Because Prediction 1 and Prediction 2 use exactly the same
inhomogeneity distribution and element, the only differ-
ence comes from the phenomenological stress-strain curves
and the microstructurally based stress-strain curves. As also
mentioned from the studies using the Taguchi methods, it is
the strength difference between the soft phase and the
matrix that dominates the forming limit strain. If we com-
pare the curves in Figure 7 to those in Figure 10, we can see
that the strength difference between soft/hard phases to the
matrix is larger in Figure 7 than those in Figure 10. In other
words, the strength differences in the microstructurally
based stress-strain curves from the micromechanical anal-
ysis do not ‘‘truly’’ reflect the extent of inhomogeneities.
This is understandable because only the real particle infor-
mation is considered and the volume fraction of particles is
less than 3 pct. Other important microstructural information
such as the texture should be taken into account. This will

certainly add considerable technical difficulty in terms of
coupling the particles with texture. The advantage of the
model Prediction 1 is even obvious when the FEM is used
to predict the forming process of a large automotive part
such as a door panel. Although the methodology has been
proposed based on MSC.MARC, it can be easily transferred
to other commercial programs such as LS-DYNA and
ABAQUS.
The relationship between the window size in Figure 9

and the responses in Figure 10 needs to be further inter-
preted. Although the same unit cell concept is applied, our
use of unit cells is rather different compared with work
reported in the literature,[4,5] in which the unit cell approach
is used to determine a ‘‘representative’’ volume element
(RVE). The objective in the latter case is to model the
behavior of the entire specimen through the analysis of a
small but representative volume. Thus, the RVE should be
large enough that the results are more or less independent
of element size. The purpose of the present microscale
modeling approach however is to create a model that cap-
tures the inhomogeneity that is inherent in any microstruc-
ture and to study how this can be used to trigger

Fig. 14—Minor-major strain profiles for the nodes inside and outside the intense shear bands.
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localization in the structural scale modeling. It is therefore
important that the window be small enough that it captures
local features and is therefore not representative of the
overall behavior; in other words, it must not be an RVE.
Nevertheless, the window size in the current study should
not be too small to avoid any substantial changes in terms
of the volume fraction of particles. The minimum window
size of 40 3 40 mm was applied in Figure 9. The average
particle size is 1 mm.

We also conducted the search of RVE for several Al
alloys with different particle volume fractions. Our
detailed numerical analyses, not shown in this article,
indicated that as the window size increases, localization
occurs earlier, resulting in an early drop of the load
response. This is also reflected in the results shown in
Figure 10. The area fraction of particles varies from
1.68, 1.08, to 1.69 pct as the window’s size increases from
40 3 40 mm, 80 3 80 mm, to 120 3 120 mm in Figure 9.
The initiation of localization was found to be very sensi-
tive to the largest particle clusters in the unit cell and less
sensitive to the most cited volume fraction of microstruc-
ture (particles). As the window size increases, the proba-

bility of capturing such a big defect also increases. This is
in contrast to most previous work, which only considers
the volume fraction of microstructure (particles/textural
components) in their microscale[4] or mesoscale[5] models.
Under such a circumstance, a representative volume ele-
ment is rather difficult to establish. To overcome these
shortcomings, the selected particle field was encapsulated
with a particle free frame that has a slightly larger yield
stress. More information on this topic will be reported
elsewhere. We refer to other publications[20,21,22] for the
determination of minimum RVE size.

Prediction 3 (3-D shell element model with microstruc-
turally based stress-strain curves) tends to overpredict the
FLD especially on the right side. The deviation with the
measurement in the left side of FLD is significantly less
than that on the right side of FLD. This might relate to the
element formulation (for instance, solid vs shell), different
friction models, and the microstructurally based stress-
strain curves. More work needs to be conducted in the
future to identify why the 3-D model overpredicts the
FLD.

Most commercially rolled Al sheet materials exhibit
some anisotropy. Their yielding behavior is not well repre-
sented by von Mises type of isotropic yield function. More
advanced yield functions such as those proposed by
Barlat[23,24] should be investigated. However, the aforemen-
tioned measured strain distribution from ARAMIS and
the FLDs from seven independent laboratories have both
demonstrated the applicability of von Mises yield func-
tion for the prediction of FLD for Al-Mg sheet alloys
using the present heterogeneous microstructurally based
finite element model. An advantage of using von Mises
yield function is that the analysis time can be significantly
reduced.

As mentioned earlier, the present methodology follows
from that used to determine FLDs experimentally, enabling
a direct comparison with the experimental data. Therefore,
our FE models are tuned to mimic experimentally used
specimens. However, it is not necessary to use physical
specimens such as those in Figure 3. The left side of the
FLD can also be calculated from the model in Figure 4 by
varying the displacement ratio from �0.5 (uniaxial tension)
through zero (in-plane plane strain tension) to 1 (equi-
biaxial tension). Although the predicted FLDs from both
methods show no difference, a model such as that in Figure
4 would make the predicted left- and right-hand sides more
consistent.

Unlike all the approaches reported in the literature, the
present FE model has the following features.(1) The loca-
tion and the size of the intense shear band are unknown
before analysis. This is contrary to the assumption adopted
in the well-known Marciniak–Kuczynski (M-K approach)[25]

by which the predicted FLD is very sensitive to the size and
orientation of the assumed defect. Also, a measured form-
ing limit strain usually at the in-plane strain state is
required to adjust the imperfection factor in the M-K
method. This has been an important weakness of the M-K
method. (2) Shear localization is not triggered by damage.
This is different from those numerical models based on
damage evolution, using the GTN[26,27] model, for example.
Our recent experimental observation on automotive alumi-
num alloys indicates that it is the intense deformation that

Fig. 15—Comparison between the predicted and measured FLD[9] for
AA5182-O. Prediction 1 is obtained by the use of an in-plane plane stress
model with the phenomenological stress-strain curves (Fig. 7). Prediction 2
is obtained by use of the in-plane plane stress model with microstructurally
based stress-strain curves (Fig. 10). Prediction 3 is obtained by the use of a
3-D model with microstructurally based stress-strain curves (Fig. 10).
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accompanies localization that promotes damage nucleation
and growth.[19] (3) The fracture criterion is introduced as a
user-defined postprocessing variable in the FE computation
to select the measurement point. The implementation of a

fracture criterion does not affect the calculated strain val-
ues. Once the critical fracture parameter is exceeded, we
assume that the fracture path and pattern have been com-
pletely established. The actual fracture need not be simulated.

Fig. 16—Sequence of deformation under Nakajima test. The plotted contour is the equivalent plastic strain rate: (a) end of clamping, (b) the ring represents
the instantaneous contact condition between the punch and blank, (c) diffuse necking, (d) crossed bands, and (e) localized necking and failure.

METALLURGICAL AND MATERIALS TRANSACTIONS A VOLUME 37A, DECEMBER 2006—3499

JOBNAME: MTA 37A#12 2006 PAGE: 11 OUTPUT: Tuesday November 21 15:46:54 2006

tms/MTA/123244/ETP05325ARR



(4) The model has the flexibility to take into account the
microstructural information at different length scales.

VIII. CONCLUSIONS

A new methodology has been developed to predict the
FLD and has been applied to Al-Mg alloys. The new meth-
odology follows from that used to determine FLDs exper-
imentally, enabling a direct comparison with the
experimental data. The predicted FLD for AA5182-O fits
remarkably well with the measurements from a recent
round robin experimental FLD program involving several
research laboratories. The influence of the parameters

describing the inhomogeneity is also studied by the Taguchi
method. It has been found that the calculated major forming
limit strain is very sensitive to the assumed relative differ-
ence in the flow strength between the soft phase and the

Fig. 17—Failure modes under different friction conditions: (a) no friction and (b) friction coefficient of 0.1.

Fig. 18—Experimentally observed failure modes under different friction conditions: (a) Teflon and (b) dry condition.

Table I. Test Parameters and Their Levels

Variable Level 1 Level 2 Level 3

Vol_soft 10 pct 20 pct 30 pct
Vol_hard 10 pct 20 pct 30 pct
Dys._soft �1 pct �2 pct �4 pct
Dys._hard 1 pct 2 pct 4 pct

Table II. Experimental Design

Test Vol_soft Vol_hard Dys_soft Dys._hard
Forming Limit

Strain

1 10 pct 10 pct �1 pct 1 pct 0.077, 0.236
2 10 pct 20 pct �2 pct 2 pct 0.068, 0.204
3 10 pct 30 pct �4 pct 4 pct 0.053, 0.178
4 20 pct 10 pct �2 pct 4 pct 0.074, 0.219
5 20 pct 20 pct �4 pct 1 pct 0.058, 0.18
6 20 pct 30 pct �1 pct 2 pct 0.068, 0.209
7 30 pct 10 pct �4 pct 2 pct 0.056, 0.182
8 30 pct 20 pct �1 pct 4 pct 0.066, 0.199
9 30 pct 30 pct �2 pct 1 pct 0.071, 0.197

Table III. Analysis of Variance

Vol_soft Vol_hard Dys_soft Dys_hard

SS pct 8.6 pct 19.5 pct 70.1 pct 1.8 pct
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matrix. The influence of its volume fraction is minor. The
predicted FLD based on modeling the 3-D dome test tends
to overpredict the right side of FLD. As long as meaningful
microstructural parameters are assigned to the inhomoge-
neities, the use of phenomenological stress-strain curves
with the in-plane plane stress model is recommended
because it is the most accurate and efficient approach.
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Fig. 19—Plots of response of each parameter level on the predicted e1 for the subsurface point.
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