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The structure and migration mechanisms of planar interfaces are examined geometrically using the
concept of edge-to-edge matching of lattice planes and the Moiré plane approach derived from this
concept. The selected examples of planar interfaces include those associated with rational, near-
rational, or irrational orientation relationships. It is demonstrated that the orientation and structure of
planar interfaces associated with these orientation relationships can be rationalized by the Moiré plane
approach, and that the migration of these interfaces in their normal directions can occur via successive
nucleation and lateral gliding of growth ledges that are in the form of transformation disconnections,
for low-index interfaces, and of Moiré ledges, for high-index interfaces. It is further demonstrated
that a shear, and thus a shape change, is associated with the motion of all planar interfaces defined
by the edge-to-edge matching of lattice planes.

I. INTRODUCTION

THE structure and migration mechanisms of planar inter-
faces have received considerable attention and research in the
last 50 years. While significant progress has been made so
far on this topic, there are still some unsolved or controver-
sial issues, particularly on the coupling of crystallographic
features and the migration mechanisms of planar interfaces.
It is the purpose of the present article to use the concept of
edge-to-edge matching of lattice planes, and the Moiré plane
approach[1,2,3] that is derived from this concept, to rationalize
the orientation, structure, and migration mechanisms of pla-
nar interfaces that are either rationally or irrationally ori-
ented with respect to the two lattices involved. For the purpose
of comparison and straightforward discussion, and following
the approach of Howe et al.,[4] the planar interfaces examined
in this article include those that are associated with (1) ratio-
nal orientation relationships, (2) near-rational orientation rela-
tionships, and (3) irrational orientation relationships. To avoid
any confusion arising from terminologies, the term “irrational”
refers to relationships that cannot be defined as rational or
close to rational, i.e., random. For simplicity, two-dimensional
(2-D) lattices are used in the present analysis.

II. ORIENTATION RELATIONSHIPS AND
PLANAR INTERFACES

Suppose we have a 2-D matrix lattice that is defined by
two sets of planes, mx and my, that intersect with an angle
�m. For the coordinate system depicted in Figure 1, the nor-
mal of the my plane is parallel to the y-axis. If this lattice

is deformed by a simple shear, depicted by an angle of �,
along the x-axis on the y plane and a uniaxial expansion of
�x in the x direction, then the plane mx is transformed into
plane px. If this lattice is further deformed by a uniaxial
expansion of �y in the y direction, then the plane my trans-
forms into plane py, and a new lattice (named “product lat-
tice”) is generated. If we define the angle between the px

and py planes as �p, then the shear angle is given by � �
�m � �p. For the structural transformation described,

and

where dmx
, dmy

, dpx
, and dpy

are the interplanar spacings of the
mx, my, px and py planes, respectively. To achieve commen-
surate (coherent) matching of mx and px planes and of my

and py planes in an edge-on manner in a planar, if any, interface
that separates the two lattices (Figure 1), the product lattice
needs to rotate through an angle �, with respect to the matrix
lattice and about the z-axis; this angle is given by[3]

[1]

where D � (�x � �y)
2 tan2 � � 2s�y (�x � �y) tan �, and

� � 90 deg � �m. The orientation of the coherent planar
interface associated with this orientation relationship is
defined by

(1 � hxhy)(hx � hy) �R s2h2
y 3s

2hy
2 � (hx

2 � 1)(hy
2 � 1)4

� D 32s2hy
2 � (hx

2 � 1)(hy
2 � 1)

� D4                                            

(hx � hy)2 � s2
hy

2 � D

cos w �

hy � dpy
>dmy

,

hx � (dpx
sin um)>(dmx

sin up),

s � tan (90 deg � up) � tan (90 deg � um),
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[2]

where � is the angle between the interface plane AB//CD
and the mx plane. For structural transformations in which �m

	 �p (s 	 0), the rotation of the product lattice is clockwise
(positive �), if �x 	 1 and �y 
 1 (or �x 
 1 and �y 	 1),
or counterclockwise (negative �), if �x 	 1 and �y 	 1 (or
�x 
 1 and �y 
 1). Note that, if the mx /px pair and the my/py

pair are defined as the two principal pairs, then the geometric
condition specified by Eqs. [1] and [2] guarantees the
matching of a group of lattice plane pairs that are derived
from these two principal pairs. While mx and my, or px and
py, may represent any two planes of a lattice, they are often
the closest-packed or near-closest-packed planes in the
lattices involved in structural transformations.

For any structural transformations in which s � 0, the motion
of the AB//CD planar interface in its normal direction will
result in a shear displacement (shape change) of one lattice
with respect the other, if the commensurate edge-to-edge match-
ing of lattice planes within this interface is to be preserved.[1,5]

To preserve the continuity of the mx and px planes across two
adjacent planar interfaces, and any two opposing planar
interfaces, the motion of the AB//CD planar interface requires
the successive nucleation and lateral gliding of the Moiré
ledges, within the interface, the unit height of which is defined
by the interplanar spacing of the Moiré planes resulting from
the intersection of the mx and px planes, and is given by

[3]

An inspection of Eqs. [1] and [2] and the schematic dia-
grams in Figure 1 reveal immediately the existence of planar
interfaces that are associated with special (�x � 1, �y � 1,

h �
dpx sin a

sin (u � w)

s cos w � sin w (1 � tan2 
g � s tan g)

Rs2 � 3 (hx �1) (1 � tan2 
g) � s tan g 42

� 2hx (1 � tan2 
g) 3(1 � tan2 

g � s tan g)(1 � cos w)
� s sin w 4

sin a � or s � 0) and general (�x � 1, �y � 1, and s � 0) cases of
structural transformations. For the purpose of convenience
and in the context of the edge-to-edge matching of lattice
planes (s � 0), the planar interfaces are classified into three
major groups, as follows:

(1) low-index interfaces associated with rational orientation
relationships (�x � 1),

(2) high-index interfaces associated with rational (�x � 1
and �y � 1) or near-rational (�x � 1 and �y � 1) ori-
entation relationships, and

(3) high-index interfaces associated with irrational orienta-
tion relationships.

III. LOW-INDEX INTERFACES ASSOCIATED
WITH RATIONAL ORIENTATION

RELATIONSHIPS

If a structural change is such that �x � 1, then � � 0
(Figure 2(a)). The orientation relationship between the two
lattices is thus rational, with py //my and (px � py)//(mx � my).
The planar product/matrix interface associated with this ratio-
nal orientation relationship is invariably parallel to the my plane,
irrespective of the value of �y and s. Given that my and py are
the closest-packed or near-closest-packed planes in each lattice
and thus have low indices, the planar interface is, therefore,
classified as a low-index planar interface, and it is fully coherent.

If there is no volume change in a structural transforma-
tion (�x � 1, �y � 1 and s � 0), then the transformation
strain itself (Figure 2(b)), and the corresponding shape change
(Figure 3(a)), is a simple shear. The interfaces associated
with the simple shear transformations include twin bound-
aries and symmetrical-tilt boundaries in homophase materi-
als.[6–10] A unique feature of such planar interfaces is that
they exist periodically in their normal directions, i.e., there
exists a set of such planes in their normal directions. In the
case of {111}f twin boundaries in face-centered cubic lattices,
the spacing of the Moiré planes, defined by Eq. [3], is 3d{111}f.
It is now well understood that the continuous migration of a

Fig. 1—(a) Schematic diagram showing two lattices that are related by a simple shear and a uniaxial expansion along the x direction in the y plane and a
uniaxial dilatation in the direction normal to the y plane. (b) through (d ) Geometric condition for achieving edge-to-edge matching of the mx and px planes
and of the my and py planes, in a single planar interface (AB//CD) separating the two lattices.
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Fig. 2—Schematic diagrams showing structural transformations defined by
�x � 1: (a) �x � 1, �y � 1, and s � 0; (b) �x � 1, �y � 1, and s � 0; and
(c) �x � 1, �y � 1, and s � 0. The planar interface is parallel to the my plane
in all three cases. Note that the case in (a) can be regarded as a combination
of those illustrated in (b) and (c).

Fig. 3—Schematic diagrams showing the shape change representative of
structural transformations defined by (a) a simple shear (�x � 1, �y � 1,
and s � 0), depicted in Figure 2(b), and (b) a simple shear and a uniaxial
dilatation (�x � 1, �y � 1, and s � 0), depicted in Figure 2(a). Height h
is the interplanar spacing of Moiré planes defined by the intersection of
the mx and px planes. The dilatation strain normal to the interface is zero
in (a) and is (�y � 1) in (b).

twin boundary, as an entity, in its normal direction is ener-
getically unfavorable, and that this normal migration of the
twin boundary occurs via the successive nucleation and lat-
eral gliding of ledges in the twin plane. Such ledges have
been termed “transformation dislocations,”[11–14] “growth
ledges,”[15,16] “disconnections,”[17,18] and “Moiré ledges.”[1]

Existing experimental observations using high-resolution
transmission electron microscopy indicate that the height of
the ledges formed on twin boundaries is consistent with that

of Moiré ledges, i.e., 3d{111}f.
[6,7] Note that ledges may also

take the form of transformation disconnections with a smaller
unit height, in order to minimize the shear displacement. The
shear strain associated with a unit transformation discon-
nection is, however, identical to that of a Moiré ledge.

Most low-index planar interfaces are associated with trans-
formations that have a combination of a simple shear and a
uniaxial dilatation (�x � 1, �y � 1 and s � 0) (Figure 2(a)).
Such examples include {111}� habit planes of ��, , and T1

plates in Al-Ag,[19] Al-Cu-Mg-Ag,[20,21,22] and Al-Cu-Li[23]

alloys, respectively; {100}� habit planes of �� plates in Al-Cu
alloys;[24] habit planes of �1 plates in Mg-Y-Nd
alloys;[25] {111}f habit planes of � martensite plates in 
Fe-Mn-Si and Fe-Mn-Si-Cr-Ni alloys;[26,27] {111}� habit planes
of �2 plates in Ti-Al and Ti-Al-Ta alloys;[28] and planar inter-
faces separating Ni3Al and Ni3Nb lamellae in a Ni-Al-Nb
alloy.[29] The planar interfaces associated with the exact
Kurdjumow – Sachs, Nishiyama – Wassermann, Potter, and
Pitsch – Schrader relationships, in which �x � 1, can also be
classified into this group.[2,3] Due to the volume change (caused
by the simple dilatation) in the structural transformations, now
there exists only a single planar interface, instead of a set of
them, in which commensurate edge-to-edge matching of many
pairs of lattice planes can be established, (Figure 3(b)). The
formation of either a unit-height Moiré ledge or a unit-height
transformation disconnection on this planar interface will cause
an elastic distortion in the matrix or product lattice adjacent
to the newly-formed planar interface, or both, as depicted in
Figure 2 in Reference 30 and Figures 6 and 9 in Reference
17, if the coherent matching of lattice planes is to be preserved.
In such cases, the interfacial defects may favor unit transfor-
mation disconnections to minimize the shear displacement.
Given that any ledges formed on a fully coherent planar inter-
face are not an intrinsic part of the interface structure, the lat-
eral gliding of these ledges will not destroy the coherent
matching of the two lattices.

Note that low-index planar interfaces can also be associated
with structural transformations that can be defined by a uni-
axial dilatation (�x � 1, �y � 1, and s � 0), as shown schemat-
ically in Figure 2(c). This uniaxial dilatation is equivalent to a
uniform dilatation and a pure shear (simple shear plus rota-
tion).[31] Examples of a uniaxial dilatation include {001}b habit
planes of HfN precipitates in nitrided Mo-Hf alloys,[32,33] pla-
nar interfaces in the exact Bain – Baker – Nutting, Pitsch, and
Burgers orientation relationships.[2,3,34,35] A detailed description
of such interfaces is beyond the scope of the present article.

IV. HIGH-INDEX PLANAR INTERFACES
ASSOCIATED WITH RATIONAL OR NEAR-

RATIONAL ORIENTATION RELATIONSHIPS

A. Interfaces Associated with Rational Orientation
Relationships

For structural transformations in which �y � 1 (and �x � 1)
(Figure 4(a)), the orientation relationship between the two lattices
is again rational, with py//my and the matrix direction contain-
ing the mx and my planes parallel to the product direction con-
taining the px and py planes. Note that this orientation relationship
is identical to that associated with �x � 1. Similar to the case
depicted in Section III, a set of parallel planar interfaces can
exist between the two lattices, and commensurate edge-to-edge

�11�00�a
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matching of many pairs of lattice planes can be established in
each single planar interface of this set. The orientation of this
set of fully coherent, planar interfaces is given by

[4]

Note that each planar interface in this set is now not parallel
to the my plane (Figure 4(b)), and thus has a high index, in
general. Given that the py and my planes are parallel to each
other and the planar interface is inclined to them, the macro-
scopic interface may also adopt a form that has a regular array
of disconnections (or structural ledges) and terraces (Figure
4(c)). Note that these disconnections are different from those
(transformation) disconnections formed on low-index inter-
faces, as they are now an intrinsic part of the interface struc-
ture, and only the synchronous motion of these disconnections
can maintain the orientation and the structure of the interface.
These disconnections are thus structural disconnections (or
structural ledges),[16] rather than transformation disconnec-
tions, growth ledges, or transformation dislocations. (Ledges
that are not an intrinsic part of the interface structure are
defined as transformation dislocations, per References 11

sin a �
s1s2 � [(hx � 1)(1 � tan2 

g) � s tan g]2

through 14). In terms of the Moiré plane approach,[1] the
migration of this type of planar interface involves the suc-
cessive nucleation and lateral sliding of the Moiré ledges (or
growth ledges) within the Moiré plane interface. The unit
height of the Moiré ledges is defined by Eq. [3]. The struc-
tural transformations and the resultant shape changes in this
group are equivalent to a simple shear (Figure 2(b)), with
the shear direction parallel to the trace of the macroscopic
planar interface (Figure 4(b)).

One example in this group is the structural transfor-
mation from orthorhombic or tetragonal to monoclinic in
zirconia.[36–40] Characterization using in-situ transmission
electron microscopy of the orthorhombic 1 monoclinic
transformation in ZrO2 particles dispersed in Nb[36] reveals
a rational orientation relationship that is in the form
(200)m//(400)o, , and . The pla-
nar interface associated with this orientation relationship is
inclined at �13.5 deg with the (400)o plane.[36] The crys-
tallographic features, migration mechanisms of interfaces,
and shape change associated with the orthorhombic 1 mon-
oclinic transformation can be well accounted for by the Moiré
plane approach. If we assume that the monoclinic lattice is
generated from the orthorhombic lattice by shearing the
orthorhombic lattice along the [001]o direction in the (400)o

plane and expanding it in the [001]o direction, together with
an expansion in the [100]o direction (Figure 5(a)), then

and

where ao, co, am, cm, �m are lattice parameters of the ortho-
rhombic and monoclinic lattices, respectively. If we further
assume that ao � 1.0166 nm, bo � 0.521 nm, co � 0.511 nm,
am � 0.515 nm, bm � 0.521 nm, cm � 0.531 nm, and �m �
99.25 deg,[36,37] then � and � are predicted to be 0 and 76.49
deg, respectively. Therefore, the predicted orientation rela-
tionship is in the form (200)m//(400)o, , and

, and the predicted monoclinic/orthorhombic
interface is �13.51 deg clockwise away from the (400)o plane,
as indicated by the angle � in Figure 5(b). The unit height of
the Moiré ledges is predicted to be �1.59 nm.

It is important to emphasize that ao � 1.0166 nm, rather
than ao � 1.014 nm, is used in the present calculation, in
order to make �y � 1. The use of ao � 1.014 nm[36,37] leads
to a slight counterclockwise rotation (� � �0.035 deg) of
the monoclinic lattice, with respect to the orthorhombic lat-
tice and thus a slight deviation from the otherwise rational
orientation relationship. While this lattice rotation is quite
small, it destroys the existence of a set of Moiré planes, such
as that illustrated in Figure 5(b), in which the matching of
(002)m/(002)o planes and of (200)m/(400)o planes can both
occur in every plane of this set of Moiré planes. Figure
5(c) shows two identical variants of the monoclinic lattice
generated from a single crystal of the orthorhombic lattice.[36]

These two variants are separated by a single orthorhombic
crystal, resulting in the formation of two orthorhombic/mono-
clinic interfaces that are parallel to each other. If the sepa-
ration distance between these two orthorhombic/monoclinic

[001�]m//[001]o

[01�0]m//[010]o

hy � d(200) m /d(400) o � (2am /ao) sin bm,

hx � d(002)m /(d(002)o  sin up) � cm /co,

s � tan (90 deg � up) � tan (bm � 90 deg),

[001�]m//[001]o[01�0]m//[010]o

Fig. 4—(a) Schematic diagram showing the structural change defined by 
�y � 1, �x � 1, and s � 0. (b) The high-index planar interface and the shape
change associated with the structural transformation. Height h is the inter-
planar spacing of Moiré planes defined by the intersection of the mx and px

planes. (c) A section of the planar interface in (b), showing structural dis-
connections and terraces.
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interfaces is nh, where n is an integer number and h is the
interplanar spacing of the Moiré planes defined by the
intersection of the (002)m and (002)o planes, then the im-
pingement of these two interfaces, due to their migration
towards each other, will generate a perfect single crystal of
the monoclinic lattice, as observed experimentally.[36]

The macroscopically planar interface depicted in Figure 5
was reported to adopt a form of structural disconnections (or
structural ledges) and terraces, as shown in Figure 5 in Ref-
erence 36, with the terrace plane parallel to (200)m or (400)o

planes. It was also suggested[36,41,42] that the macroscopic inter-
face migrates in its normal direction via the cooperative glid-
ing of the structural disconnections (termed “transformation
dislocations” in Reference 36 and “coherency dislocations”
in Reference 42) within the terrace plane. An alternative,
and energetically favorable, mechanism for the migration of
this planar interface is via the nucleation and lateral gliding

of Moiré ledges,[1] the unit height of which is defined by the
interplanar spacing of the Moiré planes resulting from the
intersection of the (002)m and (002)o planes. These two dis-
tinctly different mechanisms can be distinguished either by
direct in-situ transmission electron microscopy observations
in the direction or by careful examination of
the thickness variation of the transformation product, as the
former mechanism leads to a continuous variation in thick-
ness while the latter mechanism leads to a discrete variation
in thickness. While there is a lack of sufficient and compelling
experimental evidence to establish the operating mechanism
of the interface migration, careful inspection of the trans-
mission electron microscopy image in Figure 9(b) in Refer-
ence 36 reveals unambiguously the presence of an isolated
ledge, on the macroscopically planar interface, that resembles
the features of Moiré ledges.

B. Interfaces Associated with Near-Rational Orientation
Relationships

For structural transformations in which �y � 1 (and �x � 1)
(Figure 6(a)), a single planar interface (fully coherent) can still
exist, provided the product lattice is rotated through a proper
angle �, with respect to the matrix lattice (Eq. [1]). Since the
rotation angle rarely has a value that leads to another ratio-
nal orientation relationship, the orientation relationship between
the two lattices is thus regarded as near rational, with the py

plane deviated from the my plane by an angle of �. The pla-
nar interface associated with this near-rational orientation
relationship is often rotated away from the low-index plane

[01�0]m//[010]o
Fig. 5—Schematic diagrams showing (a) structural transformation from
orthorhombic to monoclinic in zirconia, (b) matching of lattice planes in two
parallel orthorhombic/monoclinic interfaces (Moiré planes) defined by the
intersection of the (002)m and (002)o planes, and (c) shape change from a
single crystal of orthorhombic to a single crystal of monoclinic.[36] Note  that
the separating distance between the two interfaces in (c) has to be a mul-
tiple of the interplanar spacing of the Moiré planes (h) in order to generate
a perfect single crystal of monoclinic.

Fig. 6—(a) Schematic diagram showing the structural change defined by �y

� 1, �x � 1, and s � 0. (b) The (high-index) planar interface, the total lat-
tice transformation (dashed line), and the shape change (hair line). The total
lattice transformation can be described by a simple shear parallel to the inter-
face and a uniaxial dilatation normal to the interface. The magnitude of dilata-
tion strain normal to the interface is given by (�x�y � 1).
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my (Eq. [2]), and thus has a high index (Figure 6(b)). Note
that commensurate edge-to-edge matching of the px and mx

planes and of the py and my planes cannot both be achieved
in each individual plane in the set of Moiré planes defined by
the intersection of the px and mx planes. In this case, the total
transformation strain (structural change plus lattice rotation)
can be regarded as having a combination of a simple shear
and a simple dilatation (Figure 6(b)), and is thus equivalent
to that depicted in Figure 2(a). But the shape change is now
different from that associated with a general shear (Figure
3(b)), due to the rotation of the product lattice.

While the high-index planar interface depicted in Figure 6(b)
may again adopt a form of structural disconnections (or struc-
tural ledges) and terraces such as that depicted in Figure 4(c),
its motion in the normal direction is expected to involve the
nucleation and lateral gliding of growth ledges that are in the
form of Moiré ledges. The formation of any ledges on this
planar interface leads to an elastic distortion in the vicinity of
the newly formed interface. While it is still possible to estab-
lish a coherent matching of lattice planes in the newly formed
interface, when the value of �y is close to unity, it is geomet-
rically difficult for the transformation product to develop two
broad surfaces that have an identical interface structure.

The only way to generate a transformation product that
has two broad surfaces with identical interface structures is
to invoke a lattice-invariant shear (LIS) on the px planes 
(Figure 7). The spacing of the planar defects of LIS is deter-
mined by the dilatation strain (�y � 1) of the structural trans-
formation and the shear strain of the LIS. In segments between
each two adjacent planar faults in the transformation product,
the commensurate edge-to-edge matching of the px and mx

planes and of the py and my planes can be maintained, even
though some elastic distortion of either or both lattices is
involved.[43] Note that a shape change is also associated with
the LIS, and that this LIS shape change makes the net macro-
scopic shape change of the transformation equivalent to that
associated with a simple shear and a uniaxial dilatation. The
resultant transformation product is expected to have two par-
allel-sided planar surfaces that are partially coherent. The
migration of this partially coherent interface can again involve
the nucleation and lateral sliding of the Moiré ledges within
the Moiré plane interface, with the unit height of the Moiré
ledges being defined by the intersection of the mx and px

planes.
Examples of planar interfaces in this group of structural

transformations include broad surfaces of Cr laths/plates in

the matrix of Cu, Ni, or Ti;[44–52] broad surfaces of Mo5Si3

laths in MoSi2;
[53] the habit plane of Fe4N plates in Fe;[54,55]

the side surface of Mg17Al12 laths (with a near-Burgers ori-
entation relationship) in Mg;[56,57] and the habit plane of the
�1 plates of a metastable 9R phase in a B2 matrix in Ag-
Cd, Cu-Zn, and Cu-Zn-Al alloys.[14,58–61] Three high-reso-
lution transmission electron microscopy images, showing
commensurate edge-to-edge matching of closest- or near-
closest-packed planes, are provided in Figure 8.

Studies using transmission electron microscopy[14,58] of the
B2 1 9R transformation in Ag-Cd alloys reveal that the ori-
entation relationship between 9R and B2 lattices is very close
to rational, with and .[110]9R�//[111�]B2(1�14)9R�//(011)B2

Fig. 7—Schematic diagram showing a change in interplanar spacing dpy
due to the regular occurrence of LIS on plane px; n is an integer. Note that
a shape change is associated with the LIS.

Fig. 8—High-resolution transmission electron microscopy images showing
edge-to-edge matching of lattice planes in the planar interface of (a) a marten-
site lath in a Fe-Ni-Mn alloy in Reference 62 (courtesy of T. Furuhara), (b)
a martensite lath in a Fe-Ni-Co-Ti alloy in Reference 43 (courtesy of S.
Kajiwara), and (c) a Mg17Al12 lath in a Mg-9 wt pct Al alloy.[3] The planar
interface is indicated by the white line in (a) and (b) and Moiré planes in (c).
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The 9R product (�1 plates) often has a parallel-sided plate
morphology and a substructure of stacking faults that form
on (009)9R and are distributed regularly within the �1 plate.
The two broad surfaces (habit planes) of the �1 plates are
strikingly parallel to each other, and they are rotated �6.5 deg
away from (011)B2, toward .[14,58] An inspection of
the 9R and B2 lattices in the direction
reveals that the 9R lattice can be generated from the B2 lat-
tice by shearing and expanding the B2 lattice in the 
direction on (011)B2, and by expanding it in the [011]B2 direc-
tion (Figure 9(a)). If we assume that aB2 � 0.293 nm, a9R �
0.444 nm, b9R � 0.264 nm, c9R � 1.921 nm, and �m �
89 deg,[14] then the angle between planes and (009)9R

is 64.3 deg,

and

The values of � and � are predicted to be 0.082 and 5.99 deg,
respectively, where � is the angle between the AB interface
and (011)B2. The orientation relationship predicted by the
theory is thus close to rational, and the predicted habit plane
of the �1 plates is �6 deg clockwise away from (011)B2,
when viewed along the direction (Figure
9(b)). The predicted unit height of the Moiré ledges is �2.65
nm. It should be emphasized that the value of � can reach

[110]9R//[111�]B2

hy � d(114)9R / d(110)B2 � 0.986.

hx � (d(009)9R sin 60 deg)/(d(011)B2 sin 64.3 deg) � 0.990,

s � tan(90 deg � 64.3 deg) � tan(90 deg � 60 deg) ��0.096,

(1�14)9R

[2�11�]B2

[110]9R//[111�]B2

(1�10)B2

zero if a small change is made on the lattice parameters of
either the B2 or the 9R lattices. If the slight rotation of the
9R lattice, with respect to the B2 lattice, is accepted as rep-
resentative, then LIS is required to generate a single plate that
has identical structures on its two broad surfaces (Figure
9(b)). Similar to the planar interfaces discussed in Section IV,
there is currently a lack of experimental evidence that would
allow the operating mechanism of the interface migration to
be established unambiguously. While some transmission elec-
tron microscopy evidence has been obtained for the existence
of growth ledges on the habit plane of �1 plates, and while
it has been reported that the �1 plates thicken via the nucle-
ation and lateral sliding of growth ledges,[63] the crystallog-
raphy and compatibility of such growth ledges with Moiré
ledges, defined by the intersection of the (009)9R and (101)B2

planes, are yet to be established.

V. HIGH-INDEX PLANAR INTERFACES
ASSOCIATED WITH IRRATIONAL
ORIENTATION RELATIONSHIPS

Since the orientation relationship in this group of struc-
tural transformations is irrational (or random), the direction
of the product lattice that is defined by the intersection of
the px and py planes is thus irrationally oriented, with respect
to the intersection line of the matrix lattice planes mx and
my. Under such circumstances, it is impossible to find even
a single planar interface within which there exists an edge-
to-edge matching of the mx and px planes and of the my

and py planes. However, the Moiré planes resulting from
the intersection of the mx and px planes and those defined
by the intersection of the my and py planes still exist, and
each of these two sets of Moiré planes may potentially
become a planar interface; this is the case even though such
a planar interface may be irrationally oriented with respect
to either or both lattices, and thus has a high index. Any
planar interfaces that adopt this configuration may repre-
sent a lower limit to the matching that is possible between
the two lattices. It is conceivable that the motion of even
such planar interfaces in their normal directions may still
involve the nucleation and lateral gliding of Moiré ledges
defined by the intersection of the mx and px planes or of the
my and py planes. One example is the planar facets of the
massive �m phase in the �2 matrix in a Ti-46.5 at. pct Al
alloy. Existing experimental evidence suggests that the �m

and �2 lattices do not share a rational or close to rational
orientation relationship, and that the planar �m/�2 interfaces
are irrationally oriented with respect to �2 and �m lat-
tices.[64–70] While such planar interfaces do not contain any
linear defects,[67,68] recent studies using transmission elec-
tron microscopy[69] reveal that they are invariably parallel
to the Moiré planes, defined by the intersection of two
sets of closest-packed or near-closest packed planes in the
�m and �2 phases, as illustrated schematically in Figure 10.
In irrational orientation relationships, the angle between the
two sets of lattice planes is rarely zero; therefore, a shear
displacement of one lattice with respect to the other is almost
always associated with the motion of a planar interface,
such as that depicted in Figure 10, even though it is now
difficult to define whether a uniaxial dilatation is also asso-
ciated with the motion of the planar interface.

Fig. 9—Schematic diagrams showing (a) structural transformation from
B2 (bcc) to 9R (monoclinic) in a Ag-45 at. pct Cd alloy, and (b) a parallel-
sided plate of 9R in the B2 matrix. The thickness of this plate needs to be
a multiple of the interplanar spacing of Moiré planes in order to have iden-
tical structure in the AB and CD interfaces.
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VI. SUMMARY

For planar interfaces that are defined by the edge-to-edge
matching of lattice planes, their crystallographic features and
migration mechanisms can be coupled by the Moiré plane
approach. On the basis of the features of the transformation
strain, the planar interfaces are classified into three major
groups, namely, (1) low-index interfaces associated with
rational orientation relationships, (2) high-index interfaces
associated with rational or near-rational orientation rela-
tionships, and (3) high-index interfaces associated with irra-
tional orientation relationships.

(1) For structural transformations without any expansions or
contractions within the shear plane (�x � 1), the orien-
tation relationship between the two lattices is invariably
rational. A fully coherent planar interface always exists,
and this interface is parallel to the (low-index) shear plane
of the structural transformation. The migration of this low-
index planar interface, in its normal direction, involves
successive nucleation and lateral gliding of growth ledges,
within the planar interface, that are often in the form of
transformation disconnections. Such transformation dis-
connections are compatible with Moiré ledges, in terms
of shape strain. A shape change is associated with the
motion of the planar interface; this shape change can be
either a simple shear (�y � 1) or a combination of a
simple shear and a uniaxial dilatation (�y � 1).

(2) For structural transformations with deformations within
the shear plane (�x � 1), the orientation relationship
between the two lattices is rational, if �y � 1, or near-
rational, if �y � 1. In both cases, a fully coherent planar
interface can exist, and this interface has a high index.
Similar to the low-index interfaces, the high-index inter-
face migrates in its normal direction again via successive
nucleation and lateral gliding of growth ledges, now in the
form of Moiré ledges, within the planar interface. The
motion of the high-index interface also produces a shape
change that can be described by a simple shear and a uni-

axial dilatation or a simple shear, a uniaxial dilatation, and
a lattice rotation.

(3) For a structural transformation that cannot be defined
by a rational or near-rational orientation relationship
(i.e., irrational or random orientation relationship), it is
always possible to identify a planar interface that is
defined by the commensurate edge-to-edge matching
of two sets of lattice planes. Similar to those planar
interfaces that are associated with rational or near-
rational orientation relationships, motion of a unidi-
mensionally coherent interface in its normal direction
may occur again via successive nucleation and lateral
gliding of the Moiré ledges, and this interface motion
produces a shape change that resembles the features
of a shear.
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