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A composite model is proposed to rationalize the phenomena of strength softening with decreasing
grain size for nanostructured materials, which is assumed to consist of a grain interior and an amor-
phous grain-boundary layer. The grain interior deforms elastically under external stresses, while the
linear viscoelastic flow is responsible for the plastic deformation of the grain-boundary layer, whose
stress “relaxation” follows Maxwell’s equation. The results indicate that the strength of a nanostruc-
tured material decreases linearly with decreasing grain size, when the grain size is below a certain
threshold. The model is compared with the experimental data from the published studies on nanos-
tructured Cu and Ni. The relevant creep mechanisms for nanostructured materials are also discussed
in light of model predictions.

I. INTRODUCTION

IT has long been accepted that dislocations emitted from
Frank–Read sources and/or grain boundaries are the carriers
for the plastic deformation of coarse-grained polycrystalline
materials.[1,2] When a dislocation slips from the grain interior
to the grain boundaries, the grain boundaries with a high-angle
orientation will stop the dislocation from traveling across them,
since crystallographic factors will not allow the dislocation
transmission from one grain to an adjacent one through the
grain boundary. This process will lead to dislocation pileups
at grain boundaries, which embodies the well-known pileup
mechanism for the plastic deformation of polycrystalline mate-
rials. In this framework, the presence of grain boundaries can
effectively strengthen a material by hindering the dislocation
motion, and the grain boundary itself is the source for the
dislocation nucleation. On the basis of this dislocation pileup
mechanism, the flow strength (�) of a material is inversely
proportional to the square root of the grain size (d), i.e.,

[1]

where �0 and k are material constants. Equation [1] is the
well-known Hall–Petch relation,[3,4] which was found to hold
for a wide range of polycrystalline materials with grain sizes
ranging from a millimeter down to the submicrometer range.

Recently, the applicability of Eq. [1] in the case of nanocrys-
talline (NC) materials (e.g., grain sizes typically less than
100 nm) has raised some interesting questions, given the
fact that in this regime, the grain size is comparable to the
grain-boundary width (w).[5,6] There are several reasons that
may be used to argue that Eq. [1] may not be valid in the
case of NC materials. First, the size of a Frank–Read source
for the dislocation nucleation would become larger than the
grain size, when the grain size is reduced to a nanometer scale,
implying that the accumulation of dislocations would become
difficult for NC materials.[7]

s � s0 � kd�1/2

In contrast to coarse-grained polycrystals, dislocations are,
therefore, source-limited for NC materials, implying that dis-
location pileups at grain boundaries are unlikely in the case
of NC materials. Published experimental results have already
indicated a deviation from the Hall–Petch relation with a
relatively lower k value in Eq. [1], when the grain sizes are
reduced from the micrometer to nanometer range.[8,9,10] Sec-
ond, when the grain size is comparable to the grain-bound-
ary width, the grain-boundary contribution to the overall
plasticity needs to be taken into account, which is typically
safely neglected in the case of coarse-grained polycrystals.
Finally, the obvious limitation of Eq. [1] stems from the
obvious physical limitation that the strength of NC materi-
als cannot increase infinitely when the grain size is reduced.

On the basis of the previous discussions, an inverse
Hall–Petch relation was presented when the grain size was
below a certain threshold (dc).

[11] Therefore, other defor-
mation mechanisms, rather than the dislocation-mediated
plasticity, should dominate the plastic deformation of a NC
material. Molecular-dynamics simulations have clearly
demonstrated a breakdown of the Hall–Petch relation for
NC materials due to the increased grain-boundary activity
during plastic deformation.[12,13,14] It was reported that the
yield strength of a NC Cu peaks at a grain size of 10 to 15
nm and decreases with a further decrease of the grain size.[13]

However, the study of the available literature reveals that
controversial experimental results have been reported regard-
ing the inverse Hall–Petch relation. These controversial results
may be due to several reasons, including sample flaws and
contaminations.[15,16] Moreover, there is a distribution of grain
sizes for NC materials, and the determination of the grain
size for a NC material is not a straightforward exercise. For
example, there is a discrepancy for grain sizes determined by
the X-ray diffractometer (XRD) and transmission electron
microscope (TEM).[17] Despite these difficulties in obtaining
reproducible mechanical-property data for NC materials,
the presence of an inverse Hall–Petch relation has been con-
firmed by different groups for the NC Cu, Ni, etc.[18–21]

To explain the observed inverse Hall–Petch relation for
NC materials, different models have been proposed.[11,18,22–31]

A number of investigators have suggested that the inverse
Hall–Petch relation can be attributed to the increased grain-
boundary activity due to grain-boundary sliding and/or the
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Fig. 1—A grain with a size of d, consisting of the grain interior and a grain-
boundary layer with a width of w.

Fig. 2—Volume fraction of the grain-boundary layer as a function of grain
size for a NC Cu.

diffusional mass transfer via grain-boundary diffusion. For
example, Masumura et al. suggested that the strength soft-
ening with decreasing grain size is due to the competition
between the conventional dislocation motion and grain-
boundary diffusion via the Coble creep,[29] which is assumed
to be responsible for the room-temperature plastic defor-
mation of NC materials. However, it is not clear that the
Coble creep,[32] which successfully describes the creep mech-
anism of coarse-grained polycrystals, can be extended to NC
materials with grain sizes of several nanometers. More-
over, the experimental data indicate a mild grain-size depen-
dence of the yield strength in the strength-softening region,[18]

in contrast to a very strong grain-size dependence, as required
by the Coble creep. Following the work by Masumura et al.,
Fedorov et al. took the triple-junction diffusional creep into
account to explain the grain-size dependence of the yield
strength of NC materials.[31] Scattergood and Koch proposed
a line-tension model based on the dislocation motion, which
is assumed to be responsible for the plastic deformation over
the entire range of grain sizes.[22] They reported that strength
softening with decreasing grain size occurs in a NC material
when the grain size is comparable to the cut-off distance for
the stress field of dislocations.[22]

The Inverse Hall–Petch relation for the NC materials can
also be interpreted using a composite model.[23,26,28–31,33,34]

A review of the composite model was given by Gutkin
et al.[34] In the present investigation, a composite model is
proposed using a different approach. It is assumed that a
grain-boundary layer having an amorphous structure will
deform viscoelastically during plastic deformation in a NC
material. The stress relaxation of the grain-boundary layer
follows Maxwell’s equation. The creep mechanisms of
coarse-grained polycrystals have been well established. In
this work, we develop a formula to describe the steady-creep
rate of NC materials, predicting a relatively weak grain-size
dependence, compared with those predicted by the Coble
creep[32] and Nabarro–Herring creep.[35,36]

II. MODEL DEVELOPMENT

We assume that a NC material with a grain size of d con-
sists of a mixture of a crystalline grain interior, which is
free from dislocations, and a grain-boundary layer having
a width of w (Figure 1). The grain-boundary width is approx-
imately 3 times the Burgers vector (b), i.e., w � 3b. The
volume fraction of the grain-boundary layer ( f ) can be
expressed by

[2]

with g1 defined as a constant whose value depends on the
grain morphology. For a spherical grain, g1 is 4�/3. The cal-
culated volume fraction of the grain-boundary layer as a
function of the grain size is shown in Figure 2 in the case of
the NC Cu. The volume fraction of the grain-boundary layer
increases very rapidly with decreasing grain size when the
grain size is less than 40 nm. For example, the volume frac-
tion of the grain-boundary layer amounts to about 20 pct for
the NC Cu with a grain size of 15 nm. Therefore, the con-
tributions due to the grain-boundary layer to the overall plas-
ticity need to be taken into account for NC materials. It is

f �
g11d>223 � g11d>2 � w>223

g11d>223  � 1 � a1�
w

d
 b3

assumed that the flow equations of a NC material consist-
ing of a crystalline grain interior (denoted by l) and a grain-
boundary layer (denoted by b) follow a simple rule of
mixtures, i.e.,

[3]

[4]

where �, �l, and �b (or �, �l, and �b) are the stresses (or
strains) of a NC material, crystalline grain interior, and grain-
boundary layer, respectively. When � � �l � �b, the pre-
vious equations reduce to the equal-stress condition of the
composite materials, while these two equations reduce to
the equal-strain condition if � � �l � �b. The derivative of

� � (1 � f ) �l � f �b

s � (1 � f ) sl � f sb
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Eqs. [3] and [4] with respect to time (t) lead to the stress
rate and strain rate of the NC material expressed by
the respective components of the grain interior and grain
boundary, i.e.,

[5]

[6]

The structure of grain boundaries in NC materials remains
a topic of active investigations.[5–7,12–14,20,37–45] Both high-
resolution TEM and computer simulations have been used
to obtain the structural information of grain boundaries in
NC materials. Despite tremendous efforts to clarify the struc-
ture of NC materials, this issue is still under active debate.

One of the theories regarding the structure of grain bound-
aries is that the grain boundary is composed of a layer of
an amorphous phase with disordered atomic arrangements.
Using the molecular-dynamics simulation, Keblinski et al.
concluded that grain boundaries in NC Pd and Si with high-
energy bicrystalline grain boundaries consist of a glassy,
gluelike, intergranular phase.[44,45] Many NC materials are
binary alloys or pure elemental metals. Amorphous alloys
in binary systems were frequently reported, even in some
immiscible systems, such as Ag-Ni[46] and Ni-W.[20] Despite
the fact that the formation of amorphous pure metals is kinet-
ically unfavorable, compared with binary and multicompo-
nent alloy systems, the existence of an amorphous state in
pure metals has already been confirmed both experimentally
and theoretically.[17,47–52] In the current work, the grain-
boundary layer of the NC materials is assumed to be a glassy
structure. Due to the simple chemistry of the grain bound-
ary of a NC material with one component, the amorphous
layer of grain boundaries is expected to exhibit a much lower
reduced glass-transition temperature (Tg/Tm), compared to
the multicomponent metallic glasses (Tg is the glass-transi-
tion temperature and Tm is the melting point).[53] Fecht and
Johnson predict that the glass-transition temperature for pure
elements is only 0.25Tm.[17] Applying this relation to the
amorphous Cu leads to a Tg value of 340 K, which is com-
parable with the value obtained by computer simulations.[51,52]

Due to a low glass-transition temperature (close to or even
lower than room temperature), the plastic deformation of
amorphous metals and alloys with a simple chemistry may
show a viscoelastic flow at room temperature. A nonlinear
viscoplastic deformation at the grain boundary for the NC
materials was assumed by Van Swygenhoven and Caro.[53]

Here, we assume that a viscoelastic deformation is respon-
sible for the plastic deformation in the amorphous grain-
boundary layer. The plastic deformation of a viscoelastic
solid is described by a differential constitutive equation,
based on a Maxwell model, which has been proven to be
very useful when rationalizing the “stress relaxation” of a
viscoelastic solid with a single characteristic relaxation
time,[54,55] i.e.,

[7]

where , Eb, , and tb are the stress rate, Young’s mod-
ulus, strain rate, and relaxation time of the grain-boundary
layer, respectively. For the NC materials, the root-mean-
square (RMS) strains always exist. In the present model,

�
#
bs

#
b

s
#

b � Eb�
#
b �

sb

tb

�
#

� (1 � f ) �# l � f�
#
b

s
#

� (1 � f ) sl
#

� fs
#

b

(�# )(s# )
the RMS strain can be relaxed during the grain-boundary
relaxation.

In the following text, some assumptions were made to solve
Eq. [7]. Since the crystalline-grain interior is free from dis-
locations, we assume an elastic deformation for the grain inte-
rior during plastic deformation. When a NC material is
strained, a shear stress (�b) must be developed between the
interfaces of the grain interior and the grain-boundary layer
in order to avoid the debonding of the interfaces. Accord-
ingly, a normal stress in the grain interior (�l) is built up,
which is transmitted from the grain boundary to the grain inte-
rior by means of the shear stress (�b). The relationship between
�l and �b can be expressed by (refer to the Appendix):

[8]

with g2 being the geometric factor depending on the shape
of the grain. The Newtonian viscosity of the grain-boundary
layer, i.e., �b, is determined by the normal stress (�b) and
the strain rate :

[9]

The shear stress depends not only on the normal stress, but
also on its direction. The maximum shear stress is �b � �b/2
for a homogeneous solid. For simplicity, we assume that the
shear stress is the same at all directions (refer to the Appen-
dix) and is described by

[10]

with g3 being another geometric factor. For a viscoelastic
solid, the relaxation time (tb) in Eq. [7] is related to the
Newtonian viscosity as expressed by

[11]

where Gb is the shear modulus for the viscoelastic solid. A
combination of Eqs. [8] through [11] yields

[12]

According to Hooke’s law for the elastic solid of the grain
interior, the strain of the grain interior (�l) is given by �l �
�l /El. Therefore,

[13]

Differentiation of Eq. [13] with respect to the time (t)
leads to , assuming a constant strain rate. Following
Eq. [6], the strain rate of the grain-boundary layer is, there-
fore, given by

[14]

Substituting Eq. [12] into [3] arrives at an expression for
the normal stress of the grain boundary by

[15]

sb �
s � 3(1 � f ) g2g3Gbtb�

#
b

f
�

s � 3a1

f
�1 bg2g3Gbtb�

#

f

�
#
b �

�
#

f

�
#
l � 0

�l �
3g2g3Gbtb�

#
b

El

sl � 3g2g3Gbtb�
#
b

1
tb

�
Gb

hb

tb � g3sb

hb �
sb

3�
#
b

(�# b)

sl � g2tb
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A derivative of �b in Eq. [15] with respect to t leads to

[16]

Equations [5] and [16] imply that the stress rate of the
crystalline-grain interior is 0. The previous results indicate
that the elastic-grain interior does not have any contribu-
tions to the overall strain rate and stress rate, assuming a
constant strain rate. The strain rate and stress rate of the
grain-boundary layer are equal to those of the NC material
divided by the volume fraction of the grain-boundary layer.

Substituting Eqs. [14] through [16] into Eq. [7] leads to
the flow equation of a NC material, given as

[17]

In Eq. [17], the shear modulus is approximately one-third
of the Young’s modulus i.e., Gb � Eb/3. The solution of
Eq. [17] is given as

[18]

Equation [18] indicates that the stress relaxation of a NC
material is related to the viscosity of the grain boundary, the
strain rate, the shape of the grain, as well as the volume frac-
tion of the grain-boundary layer.

The viscosity of the grain-boundary layer (�b) in Eq. [18]
can be linked with the diffusivity by means of a Stokes-
Einstein relation,[56,57] i.e.,

[19]

where kB is the Boltzmann constant, T is the absolute tem-
perature, R is the radius of atoms at the grain boundaries,
and Db is the diffusivity of the grain boundary.

[20]

with Db0 being the pre-exponential factor and Eb being the
activation energy for the grain-boundary diffusion. There-
fore, Eq. [18] can be rewritten as

[21]

Note that experimental and theoretical analyses indicate
a breakdown of the Stokes–Einstein relation due to a change
in the diffusion mechanism involving the cooperative motion
of atoms at low temperatures.[58–61] In this case, the para-
meter R in Eq. [19] no longer represents the mean atomic
radius. As will be shown later, R is determined to be sev-
eral orders of magnitude smaller than the atomic radius.
Clearly, Eq. [21] can be reduced to a flow equation of an
amorphous material having the same composition as that of
the NC counterpart when . The term of 1/f in Eq. [21]
can be simplified to be a linear relationship with d/w, as

f → 1

s (t) �
kBT�

#

2pRDb
c1 � g2g3a 1

f
� 1 b  d c1 � exp a� t

tb
 b  d

Db � Db0 exp a� Eb

kBT
 b

kBT

6pR
� Dbhb

 � 3hb�
# c1 � g2g3 a1

f
� 1 bd c1 � exp a� t

tb
 b  d

 s(t) � 3tbGb�
# c1 � g2g3a1

f
� 1 b  d c1 � exp a� t

tb
 b  d

s
#

f
�

Eb�
#

f
�

s � 3 a1

f
�1 bg2g3Gbtb�

#

tb f

s
#

b �
s
#

f

shown in Figure 3. By taking account of the boundary con-
dition, d/w � 1, Eq. [21] is expressed as a function of d/w,

[22]

i.e., where g2 and g3 are absorbed into a single geometric fac-
tor, g. Figure 4 shows the stress as a function of time for the
NC Cu with a grain size of d � 15 nm and at a strain rate of

s(t) �
kBT�

#

2pRDb
c1 � gad

w
� 1 bd  c1 � expa� t

tb
 b  d

Fig. 4—Stress relaxation of a NC Cu as a function of time.

Fig. 3—Inverse volume fraction of the grain-boundary layer, 1/f, as a func-
tion of d/w. The value of 1/f shows a linear relation with d/w.
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Fig. 5—Yield strength as a function of the inverse square root of the grain
size, for Cu. The solid line is a fit to the experimental data using Eq. [22],
when d 	 dc, while the dashed line is a fit to the experimental data using
Eq. [1], when d 
 dc. The value of dc � 25 nm is determined to be at the
crossover (� � data from Ref. 65; � � data from Ref. 66; � � data from
Ref. 67; and � � data from Ref. 18).

. For the calculation in Figure 4, the following
values are used for the parameters in Eq. [22]:[62] T � 300 K,
R � 1.2 � 10�14 m, Db � 3 � 10�9exp (�0.64eV/kBT), g �
0.0845, w � 3b (with b � 0.25 nm), and tb � 100 seconds.
Figure 4 can be easily converted into a stress-strain curve,
since . It is clear that the stress of the NC material
reaches a constant value after a sufficient time of the stress
relaxation, which ultimately represents the flow strength of a
NC material as a function of the grain size, as given by

[23]

Equation [23] shows an inverse Hall–Petch relation, indi-
cating that the strength (�) of a NC material shows a linear
relationship with the grain size, i.e., the strength decreases with
decreasing grain size. Equation [23] also suggests that the
strength of an amorphous material having the same composi-
tion as the NC counterpart is given by ,
when d/w � 1. This equation is the equivalent of Eq. [19],
indicating the self-consistence of the model.

III. RESULTS AND DISCUSSION

The grain boundaries for the polycrystals act as sinks and
sources for the dislocation activity, which effectively
strengthen the materials. The present model predicts that the
grain boundaries will soften the NC materials, whereas grain
interiors are the strengthening media. The reasons that the
grain interiors strengthen the NC materials are twofold. First,
a perfect grain interior without dislocations is expected to
have a very high strength. It is assumed that the grain inte-
rior deforms elastically without yielding during the plastic
deformation of NC materials. Second, the grain interior exerts
a frictional force on the grain boundary, thereby strength-
ening the grain-boundary layer. Despite the fact that other
deformation mechanisms may also be operative, which may
lead to a lower k value in Eq. [1] for the NC materials,[30,63,64]

for simplicity, we assume that the plastic deformation in a
NC material with a wide range of grain sizes (e.g., from mil-
limeters to nanometers) is a competing process between dis-
location pileups at the grain boundaries and grain-boundary
activities by means of the grain-boundary relaxation under
an external stress.

The experimental data for the NC Cu and Ni have indi-
cated that the Hall–Petch relation essentially holds true, when
the grain sizes exceed a certain threshold value (dc). When
d � dc, a breakdown of the Hall–Petch relationship occurs,
and the strength softening with decreasing grain size takes
place. The present model is applied to fit the experimental
data for the NC Cu and Ni. It is assumed that the plastic
deformation of a NC material switches abruptly from a dis-
location-pileup mechanism to a grain-boundary-relaxation
mechanism at a grain size of d � dc, i.e.,

[24]

The experimental data of the yield strength of Cu with grain
sizes ranging from micrometers to several nanometers are col-
lected in Figure 5. The yield strength of the polycrystalline
Cu is somewhat scattered, depending on the sources obtained.

s0 � kdc
�1/2 � sam. c1 � gadc

w
� 1 b  d

sam. � kBT�
# / 2pRDb

s �
kBT�

#

2pRDb
c1 � g ad

w
� 1 b  d � sam. c1 � g ad

w
� 1b  d

� � �
# t

�
#

� 10�3 s�1

The best fits to the experimental data yield a Hall–Petch rela-
tion (Eq. [1]) with �0 � 96.7 MPa and k � 3,273 MPa nm1/2,
and an inverse Hall–Petch relation (Eq. [23]) with �am. �
213 MPa and a geometric factor of g � 0.085. The value of
dc is determined to be 25 nm for the NC Cu, which is relatively
larger than the value of 18 nm obtained by Fedorov et al.[31]
and that of 14 nm obtained by Masumura et al.,[29] but smaller
than the value of 50 nm obtained by Arzt.[63] The maximum
strength of the NC Cu is determined to be �max � 760 MPa
at a crossover between two fitted curves. The cusp between
two curves is not expected experimentally due to the presence
of a distribution of grain sizes as well as the smooth transition
of the competing deformation mechanisms. The transition will
be smooth with a decrease in the grain size from the
Hall–Petch relation, based on Eq. [1], to the inverse Hall–Petch
relation, based on Eq. [23], if a distribution of grain sizes is
taken into account.[29,31]

Figure 6 displays the hardness (H) of the Ni and Ni(W)
solid solution. The fitted curves, based on Eqs. [1] and [23],
are also included. The hardness is about 3 times the yield stress,
i.e., H � 3�. A decrease of the hardness with decreasing grain
size was observed for the Ni(W) solid solution. Schuh et al.[20]

have pointed out that the contribution due to the solid-solution
strengthening from W is essentially negligible. The hardness
between the Ni and Ni(W) can be directly comparable with
each other. It is clear that below a certain grain-size threshold,
the Hall–Petch relation works fairly well. The best fit to the
experimental data yields a Hall–Petch relation with H0 �
0.9 GPa and k � 19.1 MPa nm1/2. Equation [23] is used to fit
the strength-softening region with decreasing grain size, and
the grain-boundary width is 0.75 nm for the fitting. The best
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fit yields an inverse Hall–Petch relation (Eq. [23]) with �am. �
5.2 GPa and a geometric factor of g � 0.05. The value of dc

is determined to be 7.7 nm for the NC Ni, which is compa-
rable with the value of 8 nm found by Schuh et al.[20] The
hardness of the amorphous Ni obtained through fitting the
experimental data, using Eq. [23], is comparable with amor-
phous Ni-based alloys.[72]

The Nabarro–Herring (N-H) creep and Coble creep have
been used to explain the creep mechanisms of polycrystalline
materials, which suggest that the diffusion of vacancies
through crystal lattices or along the grain boundaries under
external stresses is responsible for the flow rate during creep.
The N-H creep predicts the steady-creep rate based on the
vacancy flow through the crystal lattice:[35,36]

[25]

where Dl is the lattice diffusivity, which is described by Dl �
Dl0 exp (�El/kBT), where Dl0 is the pre-exponential factor, El

is the activation energy for the lattice diffusion, and  is the
atomic volume. The Coble creep predicts the steady-creep rate
based on the vacancy flow along the grain boundaries:[35]

[26]

Equations [25] and [26] indicate that the creep rate
increases with decreasing grain size, with a grain-size expo-
nent of 2 for the N-H creep and of 3 for the Coble creep.

�
#

�
148Db�ws

pkBT
a1

d
b3

�
#

�
14Dl �s

kBT
 a1

d
 b2

Moreover, the steady-creep rate shows a linear relationship
with the stress, characteristic of the Newtonian viscous flow.
It is believed that the Coble creep will predominate over the
N-H creep at the low temperature and very small grain sizes.
Therefore, it is expected that the Coble creep should be
responsible for the creep of NC materials. Experimental stud-
ies of creep mechanisms of NC materials encounter two
major difficulties, which are intrinsic to NC materials. First,
NC materials have a large volume fraction of grain bound-
aries, which is at a high-energy state. To reduce the free
energy, NC materials have a strong tendency for the grain
growth at a relatively low temperature.[73] Second, the deter-
mination of the grain size of a NC material is not straight-
forward due to a distribution of grain sizes.

Although some experimental data are available in the lit-
erature,[9,15,74–78] the experimental creep data of NC materials
from different sources are too limited to confirm any of the
available creep mechanisms, especially for the relationship
between the steady-creep rates and grain sizes. The conven-
tional Coble creep suggests a grain-size exponent of 3 for the
steady-creep rate. Recently, Yamakov et al.[43] pointed out
that the grain-size exponent decreases from 3 to 2 when the
width of grain boundaries is comparable with the grain size
(d � 2w). Molecular-dynamic computer simulations indicate
that the cubic grain-size dependence of the strain rate
demanded by the Coble creep may be overestimated for the
NC materials.[37,79,80] A grain-size exponent of 2 or even 1 was
obtained in NC materials, in contrast to that of 3 predicted
by the conventional Coble creep. Moreover, Ashby[81] and
Arzt et al.[82] have shown a much weaker grain-size depen-
dence of the steady-creep rate, if the creep of a NC material
is controlled by the deposition and removal of atoms at the
grain boundaries, rather than by the diffusional step in the
Coble creep. These results confirmed a relatively weak grain-
size dependence on the steady-creep rate for NC materials.

In the present investigation, following Eq. [23], the steady-
creep rate of a NC material with a grain size of d can be
expressed as

[27]

Equation [27] has a similar form, compared with Eqs. [25]
and [26], also indicating that the stress exponent is 1. How-
ever, the grain-size exponent is less than 1, which depends
on the geometric factor, i.e., the shape of the grains. It is
assumed that Eq. [27] governs the creep rate of a NC mate-
rial for the grain size for which d 	 dc (dc is determined by
Eq. [24]). Also, Eq. [26], i.e., the Coble creep, is responsi-
ble for the creep rate for d 
 dc. Then, at d � dc, the fol-
lowing equation holds:

[28]

Therefore, the Stokes–Einstein constant, R, can be
expressed as

[29]R �
74�w

p
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1 � g adc

w
� 1 b

dc
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Fig. 6—Hardness as a function of the inverse square root of the grain size, for
Ni and Ni(W). The solid line is a fit to the experimental data using Eq. [22],
when d 	 dc, while the dashed line is a fit to the experimental data using Eq. [1],
when d 
 dc. The value of dc � 7.7 nm is determined to be at the crossover
(� � data from Ref. 68; � � data from Ref. 19; � � data from Ref. 69; � �
data from Ref. 70; � � data from Ref. 20; and � � data from Ref. 71).
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Fig. 7—Normalized steady-creep rate as a function of the grain size, for
Cu. The solid line is the calculated value, using Eq. [26], for the present
work, and the dashed line is the calculated value, using Eq. [25], for
the Coble creep. The Coble creep suggests a grain-size exponent of 3 for
d 
 dc. The grain-size exponent in the present work for d 	 dc is less
than 1. The experimental data are smaller than the predicted values (� �
data from Ref. 83; � � data from Ref. 9; and � � data from Ref. 74).

Fig. 8—Normalized steady-creep rate as a function of the grain size, for Ni.
The solid line is the calculated value, using Eq. [26], for the present work,
and the dashed line is the calculated value, using Eq. [25], for the Coble
creep. The experimental data are larger than the predicted values (� � data
from Ref. 75, and � � data from Ref. 76).

Fig. 9—Grain-size exponent for the steady-state creep of the (a) NC Cu
and (b) NC Ni as a function of the grain size. The value of n depends on
the geometric factor, determined from Figs. 5 and 6.

in which R is determined to be 1.2 � 10�14 m for the NC
Cu and 1.4 � 10�13 m for the NC Ni, which is several orders
of magnitude smaller than the atomic radius of Cu and Ni,
indicating a breakdown of the Stokes–Einstein relation for
the NC Cu and Ni. Equations [26] and [27] imply that the
steady-strain rates at different temperatures and stress condi-
tions will be cast into a single curve in a plot.
Figure 7 shows the calculated ratio as a function
of the grain size, on a log-log scale. The experimental data
from the literature are also included in Figure 7. The fol-
lowing values were used in the calculations:[62] Db � 3 �
10�9 exp (�0.64eV/kBT) m2/s and  � 8.78 � 10�30 m3.
Figure 7 indicates that the normalized creep rate is smaller
for the present model compared with the Coble creep, when
d 	 dc, suggesting that the Coble creep may overestimate
the steady-creep rate for the NC materials. The experimen-
tal data of the normalized creep rate are smaller than the cal-
culated values. The normalized creep rate as a function of
the grain size for the NC Ni is demonstrated in Figure 8. The
values of Db � 5.3 � 10�6 exp (�0.89eV/kBT) m2/s and  �
8 � 10�30 m3 are used in the calculations.[84] In this case,
the experimental data are larger than the calculated values.
Apparently, more experiments are needed to understand the
exact creep mechanisms of NC materials. Figures 7 and 8
also suggest that the grain-size exponent for the Coble creep
is 3 for d 
 dc. The grain-size exponents for d 	 dc are cal-
culated and shown in Figure 9 for the NC Cu and Ni. It was
found that the value of the grain-size exponent depends on
the grain size and also on the geometric factor. The grain-
size exponent of the NC Cu with g � 0.085 decreases from
0.76 for d � dc � 25 nm to 0.22 for d � 2 nm, while the
grain-size exponent of the NC Ni with g � 0.05 decreases
from 0.37 for d � dc � 7.7 nm to 0.14 for d � 2 nm.

�# kBT/Dbs
�
# kBT/Dbs �  d

IV. CONCLUSIONS

A theoretical model is proposed in this article to explain
the grain-size dependence of the flow strength of NC mate-
rials, suggesting a competition between the dislocation slip and
grain-boundary activities during the plastic deformation of
NC materials. When the grain size is decreased to a critical
value, the plastic deformation due to the grain-boundary
activities predominates. At the same time, the creep mecha-
nism switches from the Coble creep into a grain-boundary-
relaxation mechanism. The model suggests that a NC material
consist of an elastic-grain interior, which is free from dislo-
cation activities, and a grain-boundary layer having an amor-
phous structure. Due to the relatively low glass-transition
temperature of the amorphous structure, the grain-boundary
layers are assumed to deform viscoelastically at room
temperature.
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Fig. A2—A NC material consisting of a hexagonal grain with a grain size
of d and a grain-boundary width of w.

A differential constitutive equation, based on a Maxwell
model, is used to describe the stress relaxation of grain
boundaries, leading to an inverse Hall–Petch relation of the
yield strength for the NC material as a function of the grain
size, following the relation � � �am.(1 � g(d/w�1)). The
results are compared with the experimental data of Cu and
Ni over entire ranges of grain sizes from micrometers to
several nanometers, indicating that the conventional Hall–
Petch relation works for d 
 dc, while the aforementioned
inverse Hall–Petch relation can be used to fit the experimen-
tal data for d 	 dc. A new expression is proposed to describe
the steady-creep rates of NC materials with grain sizes
less than dc. Compared with the Coble creep, the model
indicates a smaller grain-size exponent for the creep of
NC materials, as suggested by molecular-dynamic computer
simulations.
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APPENDIX

A shear stress is developed at the interfaces between
the grain interior and gain-boundary layer, which depends
on the position, with a maximum at one end of the grain
interior decreasing gradually toward zero at the midpoint.
The value of the shear stress also depends on its direc-
tion. Therefore, this is a very complicated situation. For
simplicity, it is assumed that the shear stress is constant
at all directions throughout the interfaces. Assuming a
spherical shape of grains (Figure A1), a force balance
requires

[A1]

Therefore,

[A2]

In the case of the hexagonal grains (Figure A2),

[A3]

and for the cubic grains (not shown),

[A4]

Therefore, the geometric factor g2 in Eq. [8] is 2/� for
spherical grains, 1.75 for hexagonal grains, and 2 for cubic
grains, implying that geometric factor relates to the shape
of a grain, although this may not represent the absolute value.
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