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The article describes work to bring together the topics of evolutionary computing and stereology and
asks the reader to judge whether such an approach can be genuinely useful or just represents a clever
application of computer science. The problem we address is that of constructing three-dimensional
(3-D) microstructures from two-dimensional (2-D) micrographs. Our solution is a computer program
called MicroConstructor that evolves 3-D discrete computer microstructures, which are statistically
equivalent to the 2-D inputs in terms of the microstructural variables of interest. The core of Micro-
Constructor is a genetic algorithm that evolves the 3-D microstructure so that its stereological
parameters match the 2-D data. MicroConstructor uses a general method of pattern construction, the
EmbryoCA, that does not require intervention from the user and is highly evolvable. This article pre-
sents initial results from successful experiments to evolve 3-D two-phase microstructures from 2-D
input microstructures. The advantages and disadvantages of the method are discussed, and we con-
clude that the method, though delightfully elegant and full of potential, has yet to prove itself capa-
ble of constructing 3-D microstructures that would interest experimentalists and computer modelers.

I. INTRODUCTION

THERE is a general consensus among computational
material scientists of the need to incorporate experimental
microstructures as starting configurations into computer models
of various types.[1,2,3] This is because materials property pre-
diction is based on one of the basic tenants of materials science,
the structure-property relationship. Thus, without accurate mea-
sures of the structure, property prediction is flawed. Since almost
all microstructures are three-dimensional (3-D) in nature, it fol-
lows that computer models need 3-D microstructures as inputs.

Measuring 3-D microstructural information is experimen-
tally challenging. Serial sectioning, where material is removed
layer by layer, was for a long time the only method available.[4]

It presents a number of technical difficulties to the micro-
scopist: first, how to reconstruct the 3-D structure from two-
dimensional (2-D) layers; and, second, how to interpolate to
reconstruct the material lost in removal. Recently, there have
been a number of advances in mechanical sectioning automiza-
tion.[5] Digital reconstruction techniques have also improved,
making the 3-D reconstruction of the serial sectioning data
routine enough to study systems other than model metal
alloys.[6–11] A method of serial sectioning coupled with orienta-
tion mapping has been developed, allowing the crystallography
of boundary planes to be studied.[12,13,14]

Three-dimensional microstructural information can be
obtained nondestructively using X-ray synchrotron meth-
ods.[15,16] Despite technical challenges, the spatial resolution
of 3-D X-ray diffraction microscopes has steadily been
increasing. An attraction of the technique is that it can cap-
ture not just spatial information, but also temporal infor-
mation, thus allowing microstructural evolution to be studied
in 3-D.[17] At the moment, these techniques require access
to rare X-ray synchrotron sources and expensive equipment,
which limits their general use.

The inverse problem of reconstructing 3-D microstructures
from limited information, such as a single 2-D micrograph,
has been studied by a number of authors and has been reviewed
by Torquato.[18,19] The early work was based on thresholding
Gaussian random fields.[20] Recently, Rintoul and Torquato[21]

introduced a stochastic optimization technique to reconstruct
dispersoid microstructures. They used radial distribution func-
tions to statistically characterize the microstructure and recon-
structed 2-D two-phase dispersions using a simulated annealing
approach. Yeong and Torquato extended this approach to recon-
structing one-dimensional (1-D) and 2-D microstructures[22]

and 3-D microstructures.[23] They introduced a set of correla-
tion functions to characterize the microstructure, and were able
to reconstruct 3-D pore structures from charaterizations of 2-D
slices of Fontainebleau sandstone. The 3-D reconstructions
were compared with experimentally obtained 3-D characteri-
zations of the microstructure, and Yeong and Torquato showed
that the reconstruction gave an accurate measure of the pore-
size distribution and other physical properties of the sandstone.
This work has been extended by Manwart et al.[24] to Berea
sandstone, and by Sheehan and Torquato to aluminum-boron
carbide composites.[25]

The Torquato approach to reconstructing 3-D two-phase
microstructures is to discretize the microstructure into 3-D
voxels, where each voxel can have one of two states corre-
sponding to the two phases in the system. The initial config-
uration is determined by randomly allocating a state to each
voxel, but conserving the volume fraction of each state to
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correspond to the 2-D original input microstructure. The
Hamiltonian “energy” of the system is calculated, which
relates to how closely the characterization of the microstruc-
ture matches the correlation functions of a desired microstruc-
ture. Microstructure is then evolved by randomly swapping
the states of pairs of voxels and accepting the change using
a Metropolis probability scheme. Simulated annealing is then
carried out to evolve the 3-D microstructure with the low-
est energy. Since there is a finite (but very large) number
of possible two-phase microstructures in a discrete system,
one can think of simulated annealing as a method to navigate
the large state space of possible microstructures (phenotypic
space) and locate the one with the greatest correspondence
with the desired correlation functions.[23,18]

The work presented in this article follows the Torquato
approach in that we use stereological measures to character-
ize 2-D microstructures and reconstruct statistically equiva-
lent but nonunique 3-D reconstructions. What is novel in our
approach is both our method of reconstruction and our method
of navigating phenotypic space. In the Torquato approach, the
method of reconstruction is voxel swapping, and navigation
of phenotypic space takes place by simulated annealing. In
our method, we use cellular automata as our reconstruction
method, and use a genetic algorithm to navigate phenotypic
space. Currently, our work is limited to two-phase single-crys-
tal microstructures, but the method presented here is general
enough that it could be applied to all other types of microstruc-
tures such as polycrystals and multiphase materials.

This article is divided into a number of sections. First, the
background to genetic algorithms is presented. Second, we
describe our computational approach, called MicroCon-
structor, in which we bring together genetic algorithms with
topics familiar to materials scientists, stereology and cellu-
lar automata, to describe how we evolve and grow 3-D
microstructures. Third, we present and discuss the results of
computer experiments, which investigate the current limits
of MicroConstructor’s ability to evolve 3-D two-phase
microstructures from 2-D micrographs.

II. GENETIC ALGORITHMS

Evolutionary algorithms use ideas inspired by natural evo-
lution[28] such as survival of the fittest and inheritance with
variation in order to evolve a population of potential solu-
tions to a problem, starting from individuals that have been
randomly created.[29] Genetic algorithms (GAs) are one of
the most popular form of evolutionary algorithms.[30]

The algorithm for a typical GA can be characterized as
follows.[31]

(1) Randomly create initial population of genotypes.
(2) For each individual in the population,

(a) decode the genotype into a phenotype of final rep-
resentation, and

(b) evaluate the fitness of the phenotype.
(3) While size of next generation � threshold,

(a) select two parents, choosing fitter individuals with
increased probability;

(b) use a selection and mutation to generate two off-
spring from the parents; and

(c) place offspring into new population.
(4) If acceptable solution not yet found, repeat from step 2.

Although the algorithm starts from a randomly created
initial population, that does not mean that the algorithm itself
is random. Thanks to artificial selection (survival of the
fittest), the best solutions tend to prevail and pass on their
genes to the next generation. Genetic operators such as
crossover and mutation make sure that new solutions are
frequently introduced in the population. In GAs, solutions
are not created as much as evolved, and this evolution is not
specified in the algorithm but emerges from it.[31]

When designing a GA, it is necessary to pay attention to
three features: the genetic operators, the fitness function,
and the representation of the individuals. We discuss these
topics in Sections A through C.

A. Representation of Individuals

One of the features of GAs that differentiate them from other
evolutionary algorithms is that the solution and its encoding
are different. This means that GAs work in two different spaces:
the solution space and the search space.[31] The separation
between search space (genetic space) and solution space (phe-
notypic space) means that the individuals of the population can
represent complex solutions and still be encoded in a way that
allows the GA to efficiently operate on the genotype.

Figure 1 shows an example of the mapping between the
search space and the solution space. The representation of
the individual in the search space is called genotype. In the
example, the genotype is a binary string. The representation
in the solution space is known as phenotype. In Figure 1,
the phenotype is a bitmap in which all the white sites cor-
respond to “0’s” in the genotype, whereas the colored sites
correspond to the “1’s.” This is an example of direct map-
ping, which is characterized by a one to one relationship
between the genotype and the phenotype. Direct mapping is
not the only way to map genotype to phenotype; nature
chooses a developmental mapping between DNA and bio-
logical form,[32] and thus the phenotype of all biological
organisms is established by growth from a single cell. We
will address thus issue at greater length in Section III–A.

Fig. 1—Example of the separation of genotype and phenotype in GAs.
The genotype is the representation of an individual in the search space, and
the phenotype is the representation in the solution space. In the example,
the genotype is a binary string and the phenotype is a 2-D lattice.
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B. Fitness

It is the phenotypic representation that is used to judge
the fitness of an individual. All the individuals in the pop-
ulation are measured and given a fitness value that measures
the quality of the solution they represent. It is this fitness
value that determines if the genes of the individual will be
passed on to the next generation. For example, if we try to
evolve a design for a car, then the fitness of different evolved
solutions in a population might be estimated by measuring
the aerodynamic drag. Clearly, there is more to a car design
that its drag efficiency; this is why the choice of fitness func-
tion is critical to the success of a GA. It is also worth not-
ing that GAs work best with fitness functions that vary
smoothly in solution space. Thus, the choice of the form of
the fitness function is also important.[31]

C. Genetic Operators

There are several different methods to select the parents
of the individuals of the next generation, but one of the most
widely used is called tournament selection. Using this selec-
tion method, a number of candidates are randomly drawn
from the population and the fittest one is selected for repro-
duction. This procedure is repeated until there are enough
parents selected to create a new population.[30]

Once the parents are chosen, there are many operations
that can be performed on the genotypes of the individuals
to produce the next generation. Two of the most common
are crossover and mutation. The crossover operation is used
to create new individuals that combine the genes of two
selected parents. An example of crossover is the one point
crossover illustrated in Figure 2. With this operation, two
offspring are created after randomly selecting one point of
the genotype and then swapping the segment of the geno-
type of those parents between the beginning and the selected
point. A similar type of crossover operation is the two-point
crossover, in which the genotype of the two parents is
swapped between two randomly selected points, to create
two offspring. The mutation operation is normally applied
to the individuals of a recently created population. In most
cases, the operation consists on randomly selecting a gene
and changing its value.[31]

III. MICROCONSTRUCTOR

MicroConstructor is a system comprised of a GA that
evolves populations of cellular automata (CA), which develop
3-D two-phase microstructures. The aim of the GA is to find
a 3-D microstructure with stereological properties that match
those of the user-provided 2-D input. Figure 3 is a schematic
overview of the MicroConstructor approach. It shows an
example of a 2-D microstructure that is used as an input
structure. It is a structure with two phases, an � matrix phase
and a � phase, which in this case has a particle morphol-
ogy. The experimental inputs are discretized and measured
to establish a stereological characterization. The figure also
shows schematically how MicroConstructor’s GA evolves
the genotypes, by using CA to map them onto 3-D microstruc-
tures and comparing stereological parameters of these
microstructure with those of the 2-D input structure.

The most important attributes of MicroConstructor are the
representation of the individuals in the population and the
way these individuals are measured with a fitness function.
We discuss these features in Sections A and B.

A. Representation of Individuals

Representing the 3-D images of microstructures in a lin-
ear way, like the direct mapping example shown in figure 1,
is an approach to microstructure representation that has a
number of problems associated with scalability.[26,33] Nature
creates organisms of extraordinary complexity and sophis-
tication using a developmental approach.[34] Biological devel-
opment is the mapping between the DNA (genotype) of a
biological organism and the complex pattern of cells that
represents their structure (phenotype). It is a process of con-
struction and growth in which pattern and structure emerges
from the interactions between proteins and genes and cells,
with the environment. As a consequence of the interplay of
these elements, structures emerge from a simple group of
cells that divide, grow, and change shape.[35] Development
is the key to understanding how complex systems evolve.[33]

MicroConstructor uses CA to model the development
of the genotype into a 3-D microstructure. The CA were

Fig. 2—Example of one-point crossover. (a) and (b) Two individuals have
been selected for crossover. (c) and (d) The result of applying the opera-
tor to these directly mapped individuals.

Fig. 3—A schematic overview of MicroConstructor. (top) 2-D input micro-
graphs are discretized and measured stereologically. (bottom) A binary
genotype is mapped onto a 3-D microstructure using a CA. A GA evolves
this system to achieve 3-D microstructures than match the 2-D experimental
microstructures stereologically.
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Fig. 4—The behavior of every cell in the CA is determined by its genome,
a set of n rules of behavior each of which combines a condition (environ-
mental or historical) with an action (move, clone, die).

introduced by Von Neumann and Ulam for the study of self-
replication;[36] they are dynamical systems made of a dis-
crete number of elements arranged into a lattice (normally
1-D, 2-D, or 3-D ones are used). These elements, or automata,
can be in a number of discrete states and change according
to a finite number of rules that determine the state of an
automaton given the state of its neighbors. Time is also
discrete and is divided into time-steps. The CA are inter-
esting because even though they are simple, they can show
very complex behaviors and patterns. They have been used
to study electrostatic self-assembly processes,[37] pattern for-
mation,[38] and to model microstructural evolution.[39]

There are several models of CA. Differences between CA
models lie in the definition of neighborhood, whether the
rules are applied synchronously or asynchronously, and the
number and type of states in which an automaton can be at
any given time-step. One model of CA is the effector
automata (EfA). The EfA is a model of CA designed and
created to evolve self-replication.[40] In the EfA model,
automata are autonomous elements capable of moving, cre-
ating copies of themselves, and dying, in an otherwise empty
lattice. The output of a rule in an EfA is the action to be
performed by the automaton when its internal state and its
configuration of neighbors are the ones specified in the rule.

The individuals in the population of the GA are rule sets
of a type of EfA whose design has been inspired by devel-
opmental biology and that are called EmbryoCA. The main
aims of the EmbryoCA model are to be able to grow binary
3-D spatial patterns and to be evolvable. In this work, the
evolvability of a CA model is considered as the capability
of the model to be effectively and efficiently modified by
evolution through gradual change, a property that most CA
models lack. An EmbryoCA is specified with a list of rules
that have the following format:

where variable can be either the internal variable that keeps
track of the number of divisions that the automaton has gone
through, or the number of neighbors in one of the six directions
of a semitotalistic Moore neighborhood (north, south, east,
west, up, and down).[41] There are two types of consequences
in a rule: actions (move, divide, and die) and antiactions (inhibit-
ing the automaton from either moving, dividing, or dying), as
shown in Figure 4. At a given time, an automaton may have
more than one applicable rule and a conflict resolution mech-
anism will decide what action to follow. For each time-step,
every automaton follows the following algorithm.

(1) Get list of rules whose precondition is true.
(2) For every applicable rule,

(a) if the consequence is an action, increase the counter
associated with the action; and

(b) if the consequence is an antiaction, decrease the
counter associated with the action.

(3) Pick the action with the higher counter.
(4) If selected action’s counter is higher than threshold, exe-

cute action.

Figure 5 shows an example of how the rule set is used with
the automata in a 2-D lattice. In the example, the rule set con-
tains only six rules (an unusually low size for a rule set). With

if 1variable � number 2  then do consequence

that rule set and the configuration of the neighborhood and
the internal variable shown in the upper right side, there are
three rules that could be applied. The conflict resolution mech-
anism has to decide between the action move north and the
action divide south, but since the third active rule cancels the
action of the second one, the action of the first one is applied.

The evaluation of an EmbryoCA takes place once it has
self-organized into a 3-D pattern after a number of time-
steps. Figure 6 shows how the final pattern grows from a
zygote (the initial starting cell). Even though the starting
configuration is always the same, different rule sets grow
different patterns.

As a consequence of the fact that more than one rule may
be applicable at any given time by an automaton, the actions
executed are not, in most cases, determined by a single
rule and, therefore, a change of a few rules in the ruleset
does not carry the same weight as the same change in a con-
ventional CA. Thanks to this, small changes in the genotype
of an individual translate into comparatively small changes

Fig. 5—Example of how rules are applied. The rule set, shown in the upper
left corner, contains six rules and its effect on the automaton in the center
of the 2-D lattice, upper right corner, is shown in the bottom. The rules that
are active for that automaton at that time-step and given its internal variable
and configuration of neighborhood are underlined. The action move north is
selected after applying the conflict resolution mechanism.
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Fig. 6—An example of the development of a 3-D microstructure using an
EmbryoCA. The behavior of every cell in the CA is determined by a set
of rules of behavior each of which combines a condition with an action.
In this case, the result of the collective behavior of the cells results in the
growth of a large particle and several particle nuclei.

in the phenotype, making the EmbryoCA model more
evolvable than other CA models and, therefore, better suited
to be used by a GA.

B. Fitness Function

The fitness function of MicroConstructor is a multiobjec-
tive fitness function in which several stereological tests are
performed to numerically characterize the user-provided 2-D
input and the 3-D characterizations grown by the individuals
of the GA population. The results of these tests provide a
measure of the stereological closeness of the 2-D and 3-D
microstructural characterizations. The tests that are performed
use five different stereological measures: volume and area
fraction, surface to volume/area fraction, two-point correla-
tion, number of particles, and particle size distribution.

1. Area and volume fraction
In traditional stereology, the area fraction of a microstruc-

tural section taken from a material is calculated using a grid
of points that are placed in a 2-D section to be analyzed.[42]

In MicroConstructor, measuring area and volume fraction
is easier since both 2-D and 3-D characterizations are in dig-
ital format. Measuring the area fraction for the � phase of
the 2-D user-provided inputs consists of counting the num-
ber of pixels in the lattice that represent a � phase and divid-
ing that number by the total number of pixels in the area
represented by the image. The volume fraction of the 3-D
characterizations evolved in MicroConstructor is computed
using the same procedure on the 3-D lattice.

2. Two-point correlation
Two-point correlation functions are widely used in mate-

rials science to characterize microstructures.[43] The two-
point correlation function is described in the following
equation:

[1]f1d 2 � Ns

1
2 a

Ns

i�0
nd

where d is the correlation distance, Ns is the total number
of �-phase cells, and nd is the number of cells of � phase
that are separated at distance d from particle i.

The distributions obtained using the two-point correlation
function on the 2-D input and the 3-D candidates are nor-
malized (distance in the range [0,30]), and a new distribution,
with the differences between the two, is created. The smaller
the sum of the differences, the better the value of the fitness.

3. Surface to area and surface to volume fraction
This stereological value is a measure of the surface of the

particles that belong to a specific phase against the volume
(or area if the test is done on a 2-D image) of the microstruc-
ture under study. These measurements are computed using
a similar method to the one described for the area and vol-
ume fraction. For the surface to area fraction, the pixels rep-
resenting the �/� are counted. The total is divided by the
total number of � pixels. The surface to volume fraction is
computed in a similar way.

4. Particle size distribution
A particle size distribution is a distribution of sizes of par-

ticles per unit area. The test involving particle size distribu-
tions, also known as the Saltykov test, is more complex than
other traditional stereological tests, since, using conventional
stereologic methods, it involves making assumptions about
the shapes of the particles in the microstructure (in most cases,
it is assumed that all the particles are spheres of different
radii).[44] In MicroConstructor, this test is easier to perform
due to the fact that the characterizations are in digital discrete
format. A list of the different �-phase particles is computed
and used to create a distribution of sizes of particles in the
lattice. This distribution is normalized (in the range [0,30]).
The fitness is computed summing the differences between the
2-D input and the 3-D candidates distributions.

5. Number of particles
The list of �-phase particles in the lattice is computed,

and the size of this list is used to compare 2-D and 3-D
characterizations.

6. Multiobjective fitness
Using a multiobjective fitness function raised a number of

issues about how the different criteria should be compared
and weighted. The sum of weighted global ratios method has
been shown to be an effective method of leading the con-
vergence toward a solution in a GA when multiple criteria
are involved.[45] Using this technique, the fitness of an indi-
vidual is not measured immediately after the phenotype is
developed but after having developed all the individuals in
the population. The fitness of the individual for each of the
objectives is normalized using the maximum and the mini-
mum found during the run of the GA, as shown in Eq. [2].

[2]

where Norm(Fitnessi) is the normalized fitness for a given
objective that will be used in subsequent stages of the GA,
Fitnessi is the temporal fitness for the objective calculated
after measuring different features of the lattice associated to
an individual, maxFitness is the maximum value for the

Norm1Fitnessi 2 �
Fitnessi�minFitness

maxFitness�minFitness
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(a)

(b)

Fig. 7—Input and output structures, and stereological parameters for exper-
iment 1: (a) 2-D input and (b) 3-D evolved structure.

Table I. Setup Used for the Experiments

Feature Value

CA dimensions 20 � 20 � 20
Mutation rate 0.05
Rule set size 500
Population size 100
Selection tournament (3)
Maximum number generations 500
Crossover 2 point
Time-steps to evaluate a CA 30
Elitism 10 pct of population

objective found so far in the current run of the GA, and min-
Fitness is the minimum.

The total fitness of an individual is the weighted sum of the
values of the individual in all the five criteria. All of them are
considered equally important so they are all weighted by 1 to
5 in the total fitness. The overall fitness is measured in a scale
of 0 to 1, where 1 would represent an exact stereological match
between the 2-D input and 3-D evolved microstructures.

IV. EXPERIMENTS

We used six examples of two-phase microstructures to test
MicroConstructor: (1) a-phase matrix with a single large
�-phase particle; (2) a-phase matrix with a single small �-
phase particle; (3) a-phase matrix with two �-phase particles
separated by a large distance; (4) �-phase matrix with two
�-phase particles separated by a small distance; (5) �-phase
matrix with three �-phase particles; and (6) �-phase matrix
with seven �-phase particles of different radii. The inputs
and their stereological parameters are shown in Figures 7(a),
8(a), 9(a), 10(a), 11(a), and 12(a).

In each case, MicroConstructor evolved EmbryoCA with
500 rules that grow 3-D microstructures of size 20 � 20 �
20. The initial 500 rules were randomly generated at the
beginning of each experiment. In each generation, 90 pct
of the individuals were created by crossing over the fittest
individuals of the previous generation, whereas the remain-
ing 10 pct were taken directly from the 10 pct best candi-
dates of the previous generation (elitism). The full parameter
specifications for each experiment are detailed in Table I.

V. RESULTS

For each of the six experiments, 100 solutions were
evolved for 500 generations. The best solutions are shown
in Figures 7(b), 8(b), 9(b), 10(b), 11(b), and 12(b). In each
case, MicroConstructor managed to reconstruct a 3-D
microstructure that is stereologically similar to the inputs
provided, although in none of the cases was an exact stere-
ological match obtained.

a. In the first experiment (Figure 7(b)), the best output has
a single �-phase particle, with the same particle size as
the input, an identical surface area fraction, and a similar
two-point correlation function. It did not match the sur-
face fraction. The overall fitness was 0.7944.

b. In the second experiment (Figure 8(b)), MicroConstructor
constructed a 3-D microstructure with a similar two-point
correlation function, equal particle size distribution, and
perfect match in the number of particles. The match in the
volume fraction criterion was not as good and it failed to
match the surface to area/volume fraction. The overall fit-
ness in this case was 0.7663 (note that fitness value can-
not be compared between experiments because we use
weighted global ratios).

c. In the third experiment (Figure 9(b)), MicroConstructor
fared less well, providing two �-phase particles, and a
similar two-point correlation function, but the other three
stereological criteria did not match. The overall fitness
was 0.7632.

d. In the fourth experiment (Figure 10(b)), MicroConstructor
managed to evolve a solution with reasonable two-point cor-
relation function, particle size distribution, and equal num-
ber of particles. It did not match the volume/area fraction
and the surface to area/volume fraction. The total fitness
was 0.7837.

e. In the fifth experiment (Figure 11(b)), MicroConstructor
evolved a solution that matched the two-point correlation
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(a)

Fig. 8—Input and output structures, and stereological parameters for experiment 2: (a) 2-D input and (b) 3-D evolved structure.

(b)

(a) (b)

Fig. 9—Input and output structures, and stereological parameters for experiment 3: (a) 2-D input and (b) 3-D evolved structure.

(a) (b)

Fig. 10—Input and output structures, and stereological parameters for experiment 4: (a) 2-D input and (b) 3-D evolved structure.

function and volume/area fraction but did not match the
other stereological criteria. Notably, despite the appear-
ance of the figure, it failed to evolve the right number

of particles (periodic boundary conditions are used in the
CA, and as a result, the particles all touch via boundary
wrap). The fitness of the solution is 0.7780.
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(a) (b)

Fig. 11—Input and output structures, and stereological parameters for experiment 5: (a) 2-D input and (b) 3-D evolved structure.

f . In the sixth experiment (Figure 12(b)), MicroConstructor
managed to create a solution with exactly the same num-
ber of �-phase particles, a similar distribution of the �
phase (as measured by the two-point correlation crite-
rion), and very close match in the area/volume fraction.
Despite the good results obtained by the solution in these
three criteria, it fared less well in terms of surface frac-
tion and particle size distribution. The fitness of the solu-
tion is 0.7780.

VI. ANALYSIS

Experiments 1 and 2 show that MicroConstructor can
evolve the ability to construct particles of different sizes. It
is clear there is a great deal of degeneracy in the stereo-
logical characterization of fitness (there being the possibil-
ity of many 3-D structures that match). More importantly,
from an experimental point of view, the problem is ill defined
because it relies on a single 2-D input, which by definition
excludes information from two other independent orthogo-
nal sections that characterize a real microstructure. We antic-
ipate that multiple inputs will be required, such as longitudinal

and transverse sections, to improve the performance of the
algorithm. In the future, we also hope to systematically inves-
tigate the range of particle sizes and shapes that the algo-
rithm is capable of constructing.

Experiments 3 and 4 show that MicroConstructor can con-
trol interparticle distance. It has performed this task using
a fitness function in which interparticle distance is not explic-
itly defined. Instead, by matching the two-point correlation
function, it arrives at a solution that matches the interparti-
cle distance, showing that interparticle distance is implicitly
encoded in the two-point correlation function. It is interest-
ing to note that within the EmbryoCA, cells have no mea-
sure of their distance from each other and there is no internal
variable that measures distance. Thus, interparticle distance
is controlled within the CA solely by controlling cell death
and cloning direction.

Experiments 5 and 6 explore the ability of MicroCon-
structor to evolve arrays of particles. The limited success
of these simulations shows one aspect of the scalability
and generality of the method. In the current experiments,
we used a small simulation volume of 20 � 20 � 20, but
since the EmbryoCA rule sets are independent of simula-
tion size, increasing the size of the evolved structures will

(a) (b)

Fig. 12—Input and output structures, and stereological parameters for experiment 6: (a) 2-D input and (b) 3-D evolved structure.
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not increase the genome size. This is a major advantage over
the direct mapping methods where each 3-D voxel must be
encoded in the genome, and genome size varies with the
cube of simulation size. Small genome sizes are useful
because they require less computer memory and thus enable
larger populations of solutions to be evolved. Further scal-
ability of the EmbryoCA can be obtained by distributing ini-
tial cells (zygotes) within the simulation volume. Thus, a
particle distribution in a very large (e.g., 1000 � 1000 �
1000) simulation volume may be evolved using the same
500-rule genome, but applied to n zygotes distributed in
the simulation volume.

VII. DISCUSSION

Clearly, there are two key elements to evolving 3-D
microstructures from 2-D sections. The first involves cal-
culating a representative fitness function that characterizes
a 3-D microstructure from a 2-D section. The second con-
cerns the means of construction, in our case, a CA that will
grow a microstructure whose stereological properties match
the fitness function. We will comment on both of these
features of the current work.

From the analysis of these experiments, it is clear that
some of the stereological measures used in the fitness func-
tion conflict when translated directly from 2-D to 3-D, for
instance, the number of particles and the volume fraction.
Assuming a random microstructure and a random 2-D sec-
tion, the area fraction should exactly equal the 3-D volume
fraction. However, the number of particles in a random
2-D section need not equal the total number in the 3-D vol-
ume. In fact, one would expect that the 3-D volume should
contain more particles than any representative 2-D section.
This means that it is not reasonable to expect to match the
volume fraction, number of particles, and particle size dis-
tribution simultaneously. We see this in the results in that
100 pct fitness is never obtained. This issue highlights the
problem not including the interdependence of stereological
measures in the multiobjective fitness function.

Yeong and Torquato have also shown that two-point cor-
relation functions are not sufficient to reconstruct 3-D ran-
dom media.[23] We have observed this is our previous
work,[26,27] and this is why we combined the five stereo-
logical parameters in a multiobjective fitness function in this
current work. However, it is clear that our multiobjective
fitness function needs improving and we intend to investi-
gate adding the lineal-path functions used by Yeong and
Torquato to our multiobjective fitness function.

It should be stressed that the initial EmbryoCA rules are
randomly created; thus, the algorithm starts with no inher-
ent ability to construct particles or to change their size, or
to arrange them at different distances from each other. Only
evolution guided by the fitness function produced these
CA that can grow two-phase microstructures with different
morphologies. The EmbryoCA in itself is very simple; like
many CA, it can produce complex patterns from simple local
rules. The key feature of the EmbryoCA that distinguishes
it from other CA is that the rule set (genome) was designed
specifically with the feature that small changes in the rule
set lead to small changes in the developed microstructure.
It is this feature that gives the EmbryoCA the ability to

evolve complexity.[46] This “insensitivity” of the EmbryoCA
is primarily due to the use of the multiple rule set with
conflict resolution (Section III–A).

Despite the sophistication of our EmbryoCA approach,
the results we have shown here fall short of those demon-
strated by Yeong and Torquato.[23] This is disappointing, but
we feel we have not yet fully explored the potential of our
approach to navigate phenotypic space for a wide range of
microstructures. We are particularly optimistic about the
ability of the EmbryoCA approach to generate polycrys-
talline microstructures, an important category of microstruc-
ture that is difficult to reconstruct by a voxel swapping
approach. Genetic algorithms are well known to be efficient
search algorithms for multiobjective problems, especially
for complex search spaces such as the phenotypic search
space of microstructures. One of their advantages is that they
evolve populations of solutions and so have less propensity
to get trapped in areas of phenotypic search space that might
be characterized as local minima.[24]

VIII. CONCLUSIONS

We have shown with these preliminary results that Micro-
Constructor can evolve 3-D two-phase microstructures, in
which particle size, interparticle distance, and particle dis-
tribution can all be controlled. These are all parameters
that not only characterize many different types of microstruc-
tures, but they are also known to influence materials prop-
erties in a wide variety of materials, e.g., particle-strengthened
aluminum alloys. Thus, we have shown that this novel
method has great potential to provide a tool for materials
modelers to create 3-D microstructures that are stereologi-
cally equivalent to experimental 2-D micrographs.
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