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The intensities of texture components are modeled by Gaussian distribution functions in Euler space.
The multiplicities depend on the relation between the texture component and the crystal and sample
symmetry elements. Higher multiplicities are associated with higher maximum values in the orientation
distribution function (ODF). The ODF generated by Gaussian function shows that the S component
has a multiplicity of 1, the brass and copper components, 2, and the Goss and cube components, 4 in
the cubic crystal and orthorhombic sample symmetry. Typical texture components were modeled using
standard distributions in Euler space to calculate a discrete ODF, and their volume fractions were
collected and verified against the volume used to generate the ODF. The volume fraction of a texture
component that has a standard spherical distribution can be collected using the misorientation approach.
The misorientation approach means integrating the volume-weighted intensity that is located within a
specified cut-off misorientation angle from the ideal orientation. The volume fraction of a sharply
peaked texture component can be collected exactly with a small cut-off value, but textures with broad
distributions (large full-width at half-maximum (FWHM)) need a larger cut-off value. Larger cut-off
values require Euler space to be partitioned between texture components in order to avoid overlapping
regions. The misorientation approach can be used for texture’s volume in Euler space in a general
manner. Fiber texture is also modeled with Gaussian distribution, and it is produced by rotation of a
crystal located at g0, around a sample axis. The volume of fiber texture in wire drawing or extrusion
also can be calculated easily in the unit triangle with the angle distance approach.

I. INTRODUCTION

A polycrystalline material consists of many crystals with
different phases, shapes, sizes, and orientations. For this arti-
cle, a single-phase, fully dense solid is assumed with uniform
chemical composition. The orientations of the crystals or
grains in a polycrystal are typically not randomly distributed
after thermomechanical processing and the dominance of cer-
tain orientations may affect materials properties. The orienta-
tion distribution function (ODF, f(g)) in Euler space is the
probability density of orientation in a polycrystalline mater-
ial. The ODF has normalized positive values and there are
two limiting cases, i.e., the random distribution and single-
crystal case. The former corresponds to f (g) � 1 and the
latter is represented by a delta function, f(g) � 8�2�(g � g0),
where the orientations of all crystallites have the same ori-
entation g � g0. The summation over the ODF is unity by
normalization. Quantitative texture analysis based on pole
figures is a kernel problem, and several methods such as the
series expansion, the WIMV, and the Vector methods, are
used for the calculation of the ODF. The ODF is essential
information for optimization of anisotropy and mechanical
properties.[1–5] The WIMV with an automated conditional
ghost correction suggested by Mathies and Vinel is the repro-
duction method of the ODF from pole figure. It is based on
the analysis of the structure of the exact solution of the cen-

tral problem, of the analytical properties of the ghosts problem
and of the use of the most construcive elements of earlier
reproduction activities by Williams and Imhof. With reference
to these authors it bears the acronym WIMV.

Model distributions have been used for analyzing the reli-
ability of mathematical reproduction methods of the ODF
from pole figures and for investigating ghost effects. The
Gauss-shaped distribution suggested by Bunge has been used
widely in texture analysis.[6] This model can be represented
by series in harmonic functions, but leads to termination
errors. It can be calculated in a numerical form for small
full-width at half-maximum (FWHM, b; b �� �). The
Gauss-shaped function proposed by Bunge is not symmetric
about , and the general property of the orientation
distance, is not satisfied, where � is a
finite angle (orientation distance, is defined in Eqs. [5]
through [7]). Matthies proposed a different standard function
with a physically reasonable and mathematically simple form,
which satisfies the property of orientation distance and is
not limited to small FWHM.[7,8] This standard function has
an analytically closed form and the values can be tabulated.

The development of the rolling textures in copper and
� brass was studied with the help of Gauss model calcula-
tions.[9] This method was able to give a complete quantitative
description of the main texture peaks and their dispersion with
good approximation at high rolling reductions. The description
of ODF by the superposition of Gauss-type model functions
for the purpose of information condensation and ghost correc-
tion was considered and was found to be useful.[10] For both
recrystallization and deformation textures, Gauss function
models are also well suited for the presentation of ODF.

In order to describe an orientation, g, several mathematical
parameters can be used. These include rotation or orientation
matrices, Miller indices, Euler angles, angle/axis of rotation,
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Rodrigues vectors, and unit quaternions. All of these are
used for the description of different aspects of macrotexture
and microtexture measurements.[11] The misorientation
angle/axis between two texture components can be calculated
easily. These values can be used as the useful characteristics
of the different two orientations or crystals in polycrystalline
materials.[12] Mackenzie and Handscomb calculated the
misorientation distribution in a randomly oriented cubic
material.[13,14] They showed that the average value of mis-
orientation is located around 45 deg and the maximum is
about 62.8 deg. Morawiec reported the distribution of mis-
orientation angles and misorientation axes for crystallites
with different symmetries.[15] The misorientation is also used
for characterization of materials microtextures. Rajan and
Petkie measured wire textures, for example, using electron
backscatter diffraction and displayed the results with
Rodrigues–Frank maps in addition to inverse pole figures
and standard pole figures.[16] In order to calculate the aver-
age orientation within a grain, Barton and Dawson have used
misorientation angles.[17] Many researchers have investigated
methods of determining a suitable average orientation from
a set of orientations.[18,19]

Texture components in real materials often have Gauss-
shaped distributions as measured in a diffraction experiment.
Gauss-shaped distributions have a bell shape with FWHM, b,
and maximum at the ideal component, g0. When considering
the volume fractions of texture components, it is useful to
define a window about g0 based on a difference in orientation
measured by misorientation angle between g0 and its sur-
rounding components. All of the ODFs, f (g), within the accep-
tance angle can be assumed to be a part of the ideal texture
component, g0 and be added to the volume of component of
g0. The misorientation angle is a useful measure of distance
from a component for the volume fraction calculation in ODF
space.

When considering the ODF in orientation space, the
volume element with metric is also important. Quantities
such as an ODF described in a non-Euclidean space are
distorted in some way that is specified by the associated
metric tensor. The metric tensors for a range of orientation
spaces were obtained from their actions on line elements
of the spaces.[20] In order to use the ODF as a density in
the Euclidean sense, it should be scaled by the metric. This
means that the volume fraction of a texture component
should be evaluated by both its ODF and its discretized
volume element in the representation space. Just as the dis-
cretization of Euler space needs a metric for the volume
element, which is defined by dg � d
1 sin � d� d
2, so
Rodrigues’ space needs a metric, , which leads to
a volume element, dr idr jdr k. The volumet-
ric distortion associated with a Rodrigues’ space is also
discussed in other work.[21] Kumar and Dawson have used
the finite-element discretization for ODF calculation and
the fundamental region in Rodrigues’ space.

In this study, using the standard distribution proposed
by Matthies, various model textures have been generated
(Section II–A) in Euler space. The volumes of the spherical
texture components are calculated using the misorientation
approach in Euler space (Section II–B). In addition, fiber tex-
tures such as those that occur from wire drawing or extrusion,
e.g., �111�, �110�, and �100�, can be calculated with
the angle distance (angle between plane normals) approach

dv � 1detgij

1detgij

in the unit triangle of the inverse pole figure (Section II–C).
This measure of orientation distance is equivalent to distance
on the surface of a sphere. The useful applications are shown
in Section III for rolling and drawing textures.

II. THEORETICAL BACKGROUND

The orientation of a crystal coordinate KB in regard to
sample KA can be characterized by three numbers combined
in the symbol, g � {
1, �, 
2}, in the Bunge Euler angle
definition or g � {�, , �} in the Matthies/Roe definition.
The orientation space, Euler space, or G space contains every
orientation g, which describes the transformation of KA into
KB.[2,7] This space is finite,

in Bunge

[1]

with the space element or volume element,

[2]

When the orientations of discrete points are known in a body
with volume V, the ODF, f(g), is given by

[3]

In order to develop a method of calculating volume frac-
tions that can be applied to standard data sets from texture
analysis, Euler space can be discretized on a 5 by 5 by
5 deg grid. Such a discretization is commonly used to
quantify preferred orientation in a material by specifying
the intensity at each point on the grid.[22] The choice of

f (g) �
dV(g)

dg

�
G

dg � 8p
2

  dg � dw1 sin � d� dw2 or dg � da sin b db dg

in Matthies/Roe
or G:0 � a, g � 2p; 0 � b � p (g � {a, b, g}),

G: 0 � w1, w2 � 2p; 0 � � � p (g � {w1,�, w2}),

g:[KA → KB] or g�1 � gT:[KB → KA]

Fig. 1—Discrete ODF grid and centered cell structures. The end cells have
different areas (
2 � 30 deg).
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cell size determines the size of the volume increment,
which depends on the value of the second Euler angle.
The centered cell structure for a discrete ODF is shown
in Figure 1, and the end cells have different areas. Euler
angles are inherently spherical (globe analogy), and a
Cartesian plot (orthogonal axes) of the ODF in Euler
[angle] space has some distortions. Considering that the
volume of Euler space is 8�2, a normalization is necessary.
The summation of the discrete ODF over all the cells in
Euler space should be unity.

[4]

The volume fraction of a component of interest can be calcu-
lated by multiplication of the ODF by volume increment or
invariant measure of each cell and summation of these prod-
ucts over the set of cells associated with the component.

A. Standard Distributions

The standard function is a useful model distribution for the
ODF analysis.[7,8] In this study, the function is used for test-
ing the calculation of volume fractions of spherical texture
components using the misorientation angle in Euler space
and fiber texture using the angle distance in the standard stere-
ographic unit triangle. The intensity distribution of a texture
component in a material is assumed to possess a bell-shaped
structure, which can be described by a model distribution. Pro-
vided that the intensity distribution f (b, g0, g) has a texture
component at g0, it has the maximum value at g0 and decreases
with increasing orientation distance . The expression
for the orientation distance between two orientations is

[5]

[6]

[7]

The model distribution with half-width, b, is given by

[8]

[9]

Two types of standard function can be used for texture
modeling, i.e., Gauss-shaped and Lorentz-shaped standard
functions. A Gauss-shaped standard function, , is
defined by

[10]

For S � 0, Eq. [10] describes a random distribution, and for
, it approaches the properties of the delta function,

such as a single crystal. The function, , has its max-f(S, v�)
S → �

f (S, v�) � N (S)eS cos v� � 0,  v� � v�(g0, g),  0 � S � �

f(S, v�)

�
G

f (b, g0, g) dg � 16p�
p

0

f (b, v�) sin2 (v�/2) dv� � 8p
2

f (b, g0, g) � f (b, v�(g0, g)) � f (b, v�)

cos v� � (trace (g�) � 1)/2

v� � v�(g0, g) � v�(g, g0)

g� � g # g0
T � (g0

T # g)T

v�
v�(g0, g)

   0 � w1 � 2p, 0 � � � p, 0 � w2 � 2p

 acos a�i �
��

2
 b � cos a�i 	

��

2
bb

 1 �
1

8p
2 a

w1

a
�
a
w2

 f(w1,�i,w2)�w1�w2 

imum at and its minimum at . The parameter
S is given by a FWHM, b,

[11]

[12]

The normalization constant N(S) follows from Eq. [9] as

[13]

using the modified Bessel functions,

[14]

The Bessel functions can be evaluated numerically.[23,24] This
Gauss-shaped distribution is known to possess all the prop-
erties required of standard distributions.

The other standard function is the Lorentz-shaped standard
distribution, which is

[15]

For describes a random distribution, and for
, it has the properties of a delta function at .

Although these two standard functions satisfy the general
property of the orientation distance, ,
the Lorentzian distribution has a longer tail than the Gaussian
distribution. The long tail of the Lorentzian function leads
to a physically unreasonable coupling between the fitting
near the maximum peak and in distant regions, which also
contributes to an increase in the background. In addition
to the maximum value at the peak, the integral intensity
of the function has an important meaning for the components.
The metric factor, , of the Euler space related to
ODF representation can exaggerate the differences between
the distribution types.[25] The Gauss function has been found
to be successful in eliminating ghost errors and allows for
good fitting of typical multicomponent textures.[10] In this
article, only the Gauss-shaped distribution is considered.

Model distributions were generated in the discretized Euler
space with the standard accuracy for several texture compo-
nents. Gaussian shape distributions, half-widths, background,
crystal, and sample symmetry should be considered together.
The model distribution, f (g), must also have identical intensi-
ties at equivalent positions in Euler space with respect to
both sample and crystal symmetries. From the sample and
crystal symmetry.

[16]

where GB and GA are the proper rotation groups for crystal and
sample symmetries, respectively, and g is written as an axis
transformation or rotation matrix.[1,2] In the case of cubic crystal
symmetry and orthorhombic sample symmetry, as in rolled
cubic materials, NB � 24 and NA � 4. When the symmetry

  gAk
� GA;  k � 1, 2, p , NA

  gBj
� GB;  j � 1, 2, p , NB

  f(g 

jk) �  f(g); g 

jk � gBj
# g # gAk

sin2 (v�/2)

v� � p 	 � � 
p � �

v� � 0t → 1
t → 0,  f (t, v�) 

(1 	 t2)2 	 4t2cos2 (v�/2)

[(1 	 t2)2 � 4t2cos2 (v�/2)]2

f(t, v�) K (1 � t2)

I1(x) �
1
p �

p

0

ex cos tcos (lt) dt

N(S ) � [I0 (S ) � I1(S )]�1

b � 4 arcsin (1ln 2(2S), S �
1

2
 ln 2 � 0.347

S � ln 2/[2 sin2 (b/4)],  b � 2p

v� � pv� � 0
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properties are considered, the model ODF, f M(g), which has
parameters In, bn, and background F, is given by

[17]

where In is the volume of a given texture components at 
and bn is its half-width. The term N is the number of texture
components. In what follows, all texture components are
assumed to be spherical in shape, i.e., varying in intensity
only with distance (misorientation angle) away from the cen-
tral location.

B. Volume Fraction of Spherical Texture Components
(Misorientation Approach in ODF Space)

This section discusses volume collection of spherical tex-
ture components, and section C deals with fiber textures. The
applications of spherical and fiber textures are shown in Sec-
tions III–A and B, respectively. Table I shows the intensities
at the positions of standard textures components of spherical
shapes with a Gaussian distribution. For simplicity,
cubic/orthorhombic symmetry is assumed and the half-width
of each component is fixed at 12.5 deg. All components have
the same unit volume fraction (no background). Euler angles
are given in both Bunge and Roe/Matthies angles. The mul-
tiplicity number, m, is also listed. The multiplicity number is
related to the number of overlapped equivalent points of a
component in Euler space. Cube and Goss have m � 4 and
the highest ODF values, and brass and copper have m � 2.
The S component has m � 1 and the lowest ODF value. The
S component with m � 1 has 96 equivalent points in Euler
space and none of the positions are overlapped, whereas the
Goss component with m � 4 has 72 overlapped equivalent
points among 96 points and only 24 points have unique posi-
tions. The multiplicity Mg of the orientation g is given by

[18]Mg �
NA

# NB

Nuniq

g0
n

gAk
, g))b/(NA

# NB)f  F 	 a
N

n�1
In � 1

f M(g) � F 	 a
N

n�1
In e aa

NA

k�1
a
NB

j�1
f (bn, v

� (gBj
#  g0

n #

g0
n

where NA and NB are given as the number of sample and
crystal symmetry operators and Nuniq is the number of
unique positions among the equivalent points. Note that
the cube and rotated cube components share the charac-
teristic of a “tube” of orientation along a line � 	 � �
const in Euler space, when  (or �) � 0. This character-
istic is a consequence of the degeneracy of the Euler space
at  (or �) � 0.

The presence of sample and crystal symmetry means that
the ODF has equivalent positions in the Euler space. Cubic
materials with orthorhombic sample symmetry have 96 equiv-
alents points in the full Euler space. Even in the subspace
used for the cubic/orthorhombic case (90 deg-90 deg-90 deg),
there are three equivalent points for each component. The
subspace can be readily separated to yield a fundamental
zone (or asymmetric unit), but the shape of the resulting
reduced subspace is inconvenient for graphical representation.
Other orientation representation methods such as Rodrigues
are preferred for this purpose.[26,27]

The misorientation analysis between grains or orienta-
tions has been extensively reviewed.[11,12] The orientation
of a grain is represented as a rotation from sample coordi-
nates KA to crystal coordinates KB. When two orientations are
given as and , and Sj describes
one of the symmetry operations belonging to the appropri-
ate crystal class concerned, the misorientation angle, �, is
given as

[19]

The misorientation angle, �, is the minimum value of angle
distances among their equivalent orientations of two orien-
tations with respect to crystal symmetry, while the orientation
distance, , is simply the angular distance between two orien-
tations (Eqs. [5] through [7]). Figure 2 shows each of the
texture components listed in Table I in the 90 � 90 � 90 deg
subspace. The orientation number in Figure 2 corresponds to
the orientation number in the footnote of Table II. Table II
lists the misorientation angle and axis between some typical
texture components, i.e., brass, copper, S, Goss, and cube

v�

  i � 1, p , n; S1 � E

 u � min c acos e trace ((C1
# C2

�1) # Sj) � 1

2
f d ,

C2 [KA → KB]C1 [KA → KB]

Table I. Standard Texture of Spherical Components with Gaussian Distribution (b � 12.5 Deg) and Its Multiplicity
(Cubic/Orthorhombic) in the 90 � 90 � 90 Deg Region

Miller Index Euler Angles ODF (Maximum Multiplicity
{hkl}�uvw� {
1, �, 
2} {�, , �} at Exact Position) (m)

Bs, {110}�112� {35.26 deg, 45 deg, 0 deg} {54.74 deg, 45 deg, 0 deg} 130.95 2
Copper, {112}�111� {90 deg, 35.26 deg, 45 deg} {0 deg, 35.26 deg, 45 deg} 130.95 2
S {123}�634� {58.98 deg, 36.7 deg, 63.44 deg} {31.02 deg, 36.7 deg, 26.57 deg} 56.89 1
Goss, {110}�001� {0 deg, 45 deg, 0 deg} {90 deg, 45 deg, 0 deg} 262.22 4
Cube, {001}�100� {
1 	 
2 � 0 deg, 90 deg, {� 	 � � 0 deg, 90 deg, 262.22 4

180 deg, � � 0 deg} 180 deg,  � 0 deg}
Rotated cube, {
1 	 
2 � 45 deg, {� 	 � � 45 deg, 262.22 4

{001}�110� 135 deg, � � 0 deg} 135 deg,  � 0 deg}
Rotated Goss, {90 deg, 45 deg, 0 deg} {0 deg, 45 deg, 0 deg} 262.22 4

{110}�011�
{111}�112� {90 deg, 54.75 deg, 45 deg} {0 deg, 54.74 deg, 45 deg} 130.95 2
{112}�110� {0 deg, 35.26 deg, 45 deg} {90 deg, 35.26 deg, 45 deg} 130.95 2
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Fig. 2—Texture components generated by Gaussian distribution (b � 12.5 deg) in three-dimensional Euler space. The combined texture in (f) has the equal
volume fractions of all nine components in Table I. The numbers have the following meanings: 1: {35.26, 45, 90} brass, 2: {54.74, 90, 45} brass, 3: {90,
35.26, 45} copper, 4: {39.23, 65.9, 26.57} copper, 5: {58.98, 36.7, 63.43} S, 6: {27.03, 57.69, 18.44} S, 7: {52.87, 74.49, 33.69} S, 8: {90, 90, 45} Goss,
9: {0, 0, 0} cube, 10: {45, 0, 0} rotated cube. (In this figure, the surface contour has unit ODF value and the center of a component has maximum ODF
in Table I for each component.) (a) brass, (b) copper, (c) S, (d) Goss, (e) cube, and (f ) combined texture.

and their physically equivalent points in the subspace.
Although the brass component has three equivalent points in
the subspace, orientation 1’, {35.26 deg, 45 deg, 0 deg},
has no misorientation with 1, {35.26 deg, 45 deg, 90 deg},
because the two orientations are related by crystal symmetry
only. This means that the two orientations are physically
equivalent as well as equivalent in Euler space. The variants
of the S component, which has multiplicity 1, exhibit a variety
of misorientations between themselves; the misorientation
angle/axis is 38.2 deg �1,1,1� between orientations 5 and
6 (Table II), 50.2 deg �43,64,64� between 5 and 7, and

38.6 deg �66,37,66� between 6 and 7. All three variants
belong to the S component. The maximum possible misori-
entation angle in cubic materials is 62.8 deg and it occurs,
for example, between the Goss, {90 deg, 90 deg, 45 deg},
and rotated cube, {45°, 0°, 0°}, components. A twin rela-
tionship (�3) occurs between the two brass variants or the
two copper variants.

By considering these equivalent points, the Euler space can
be partitioned between the various components of interest. If
the dispersion in orientation about a component can be assumed
to be spherical in misorientation angle, then the partitioning of
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Table II. Misorientations between Typical Texture Components Expressed as Axis/Angle Pairs; the Numbers Represent
Orientations*

1 2 3 4 5 6 7 8 9 10

1 60 35.6 35.6 19.4 19.4 53.7 35.3 56.6 46 
�111� �80 60 5� �5 60 80� �68 59 43� �43 59 68� �12 62 78� �101� �59 77 24� �20 98 8�

2 35.6 35.6 53.7 53.7 19.4 35.3 56.6 46 
�5 80 60� �80 4 60� �12 78 62� �78 12 62� �68 43 59� �110� �24 59 77� �8 20 98�

3 60 19.4 51.5 51.5 54.7 56.6 35.3 
�111� �72 60 35� �76 57 35� �57 76 31� �110� �24 59 77� �110�

4 51.5 19.4 19.4 54.7 56.6 35.3 
�57 31 76� �60 35 72� �72 35 60� �101� �59 77 25� �101�

5 38.2 50.2 43 48.6 38.7 
�111� �43 64 64� �82 37 45� �52 56 64� �33 89 31�

6 38.6 43.0 48.6 38.7 
�66 37 66� �37 45 82� �56 64 52� �89 31 33�

7 43 48.6 38.7 
�82 45 37� �52 64 56� �33 31 89�

8 45 62.8 
�001� �28 68 68�

9 45 
�001�

10

Note: Bunge notations
1: {35.26, 45, 90}, brass, 2: {54.74, 90, 45}, brass
3: {90, 35.26, 45}, copper, 4: {39.23, 65.9, 26.57}, copper
5: {58.98, 36.7, 63.43}, S, 6: {27.03, 57.69, 18.44}, S,
7: {52.87, 74.49, 33.69}, S, 8: {90, 90, 45}, Goss
9: {0, 0, 0}, cube, 10: {45, 0, 0}, rotated cube

Euler space is straightforward. Once the space has been par-
titioned, then the volume fraction of each component can be
calculated easily. A cut-off or acceptance angle is chosen and
all cells in the orientation distribution whose misorientation
angle with respect to a particular component falls within the
cut-off angle are included in the summation to obtain the
volume fraction (Fig. 3(a)). Since the maximum possible mis-
orientation angle is 62.8 deg, as noted previously, choice of a
cut-off angle larger than this will yield unit volume fraction
for a component. Figure 3(b) shows the relationship between
three standard components, brass (number 1 in Table II), copper
(number 3), and S (number 5). Certain combinations of ori-
entations such as brass, copper, and S are too close together,
however, because their collection volumes overlap. Since the
misorientation between brass and S (number 5) is only 19.4 deg,
it is clear that choosing a cut-off angle of 15 deg will result
in appreciable overlap and thus double counting of the orien-
tation distribution. The same situation exists between copper
(number 3) and S (number 5). There are two solutions to this
problem. One is to avoid using a cut-off angle larger than one-
half of the smallest intercomponent misorientation in the chosen
set of components. The second, employed here, is to partition
the overlapped space so that those cells are assigned to the
nearest component (provided that the cell is nearer than the
cut-off angle to at least one component). Cells further away
(in misorientation angle) than the cut-off are assigned to a tex-
ture category of “other” or “random.”

C. Volume Fraction of Fiber Texture Component
(Angular Distance in an Inverse Pole Figure)

Ideal fiber textures can be obtained by convoluting an
orientation, g0, with a cylindrical rotation symmetry ele-

ment about an axis, n. The axis, n, of the fiber component
is specified with respect to the sample coordinate sys-
tem. If the starting distributions are given in f (b, g0, g),
the corresponding fibers will be described by f (b, n, g0, g).
In this case, g0 has a different meaning because of the
rotation around n and so it is taken as the mean of the
rotation angle, ,

[20]

[21]

For the case of an ideal fiber texture, the intensity in the
orientation distribution is identical for all orientations that
are invariant with respect to the cylindrical symmetry ele-
ment. In practical terms, a certain sample direction is
aligned with the same crystal direction. An inverse pole
figure map shows the distribution of a given sample direc-
tion with respect to crystal directions (in KB). Therefore,
it is useful to project the Euler space into a single unit tri-
angle, (100-110-111), of an inverse pole figure (Figure 4)
and plot intensities in, say, a stereographic projection. The
standard stereographic triangle is the fundamental zone
when a single direction is sufficient to describe orientation.

In general, the information in Euler space can be projected
into an inverse pole figure map, Ry (hi), or a pole figure map,

(y). Like the pole figure, an inverse pole figure also
represents all crystallites orientated in such a manner that a
direction hi fixed and described in their crystal coordinate
system KB, and a sample direction y given in KA, are parallel.
For fixed hi and y, Ry (hi) is proportional to the sum of all

Phi

g0 → g0
# {n,0}�1 # {n,w}; �

2p

0

dw /2p

f (b, g0, g) � f (b, n, g0, g)

w
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(b)

Fig. 3—Schematic diagrams considering the volume of the texture com-
ponents. Figure (b) illustrates the potential for overlay between adjacent
texture components: (a) texture distributions around ideal orientation and
cut-off angle and (b) relationships between adjacent other components.

(a)

crystallites with the orientations g and frequency f (g) meeting
the condition y // hi, i.e., .[7]

[22]

The crystal direction hi can be calculated directly from the
orientation. The crystal direction, hi, for a given fiber, i.e.,
{111}, {110}, or {100}, is compared with the crystal direc-
tions of all orientations in Euler space, and the ODF, f (g), for
orientations within the cut-off angular distance is summed for
the volume of that fiber. The angular distance between the crys-
tal direction of the fiber component and a cell in the inverse
pole figure is similar to the angular distance between two unit
vectors n1 and n2. The angular distance �(0 � � � �) between
two unit vectors, n1 and n2, is given by the scalar product,

[23]n1
# n2 � n1

# n2 � cos z

 �
1

2p
 �
2p

0

f ({hi,0}�1 # {y,w} dw

 Phi (y) � Ry (hi) �
1

2p
 �
2p

0

f ({hi,w}�1 # {y,0} d w

hi � g # y

The angular distance for fiber in the inverse pole figure is
analogous to the misorientation angle for a spherically distrib-
uted component in Euler space. The angular distance is equiv-
alent to a cut-off value between the ideal fiber line, or the
skeleton fiber line and all orientations in Euler space. The
skeleton fiber line defines an ideal fiber and orientations that
deviate from the ideal fiber are included in the volume frac-
tion for the fiber if they lie within the cut-off value.

III. APPLICATIONS

A. Volume Fractions of Spherical Components

The calculation of volume fractions was verified in Section II
with the standard function combined with the Gaussian distrib-
ution. The verifications were made for two examples, a mono-
component (single-crystal) case and a multicomponent case
(polycrystal).

1. Single-crystal distribution
The volume fraction of a single orientation is calculated

in Euler space assuming a combination of cubic crystal and
orthorhombic sample symmetry. A “standard ODF” is con-
structed for each ideal orientation, by calculating intensities
for all cells in orientation space based on Eq. [17] and setting
the background, F, equal to zero. The orientations considered
are brass, S, copper, Goss, cube, rotated cube, rotated Goss,
{111}�112�, {112}�110�, with b � 12.5 deg (in Table I).
Some of them are shown in Figures 2(a) through (e). Each
component is assigned a unit volume fraction and the
expected volume should also be unity. Since it is assumed
that a component has a bell-shaped distribution, there is some
spread about its nominal position. After constructing each
standard ODF, the volume fractions of the set of nine com-
ponents are calculated by summing up the intensity of each
cell in the ODF that lies within the cut-off misorientation
value, 15 deg, of each component. The orientation space is
partitioned, as described previously, in order to avoid over-
laps and double counting. The result is shown in Figure 5.
Generation of an ODF based on a single component with
spread, b � 12.5 deg, leads to recovery of 90 pct of the
volume fraction in the case of the brass, S, and copper com-
ponents. The remaining 10 pct is assigned to other orienta-
tions because of overlaps between the collection volumes of
each component. For the cube and Goss components, 95 pct
of the original volume fraction is recovered.

2. Polycrystal distributions
In addition to the nine different single-crystal ODFs exam-

ined in Section III-A,1, three examples of polycrystal
distributions were constructed. The same nine components
in Table I were used, and the intensities in each cell from
each component were added up and the resulting distribu-
tion normalized. The values of volume fraction and half-
width for each component are given in Table III. Only the
spread was varied between the three different ODFs with b
� 7.5, 12.5, 20 deg, for cases 1, 2, and 3, respectively.
Figure 2(f) shows the surface defined by an isointensity con-
tour in Euler space for case 2, for which b � 12.5 deg.

Figure 6 shows the results of the volume fraction calcula-
tion. The Gaussian distribution with narrower half-width, b �
7.5 deg, leads to reasonable estimates of volume fractions
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Fig. 4—Schematic drawing for reduction of Euler space via inverse pole figure to unit triangle. The angular distance �(0 � � � �) is calculated with two
direction vectors n1 and n2 in the unit triangle: (a) 110 fiber in Euler space, (b) ND inverse pole figure, (c) unit triangle for inverse pole figure, and (d)
angular distance.

Fig. 5—Collected volume fraction of single orientation. Each component
has unit volume in a Gaussian model distribution. The cut-off misorienta-
tion angle is 15 deg: (a) {110}�112�, (b) {123}�634�, (c) {112}�111�,
(d) {110}�001�, (e) {001}�100�, (f) {001}�110�, (g) {110}�110�,
(h) {111}�112�, and (i) {112}�110�.

for 10 and 15 deg cut offs (Figures 6(a) and (b)). For a distri-
bution with half-width b � 12.5 deg, use of a 15 deg cut-off
angle leads to reasonable volume fractions (Figure 6(d)): a
narrower cut-off angle of 10 deg underestimates their vol-
ume fractions however (Figure 6(c)). For distributions with
half-width b � 20 deg, both 10 and 15 deg cut-off values
underestimate the volume fractions (Figures 6(e) and (f)).

B. Volume Fractions of Fiber Components

Table IV shows the volume fractions used to construct
ODFs for each of the {111}, {110}, and {100} fiber tex-
tures (three cases) and an ODF with all three fibers com-
bined. Each fiber had a Gaussian distribution, b � 12.5 deg.
For the fourth case of the combined fibers, each of the {111},
{110}, and {100} fibers has an equal volume fraction, 0.333.
Figure 7 shows isointensity surfaces for the {111}, {110},
and {100} fiber textures together with the combined fibers.
With the angular distance approach and a cut-off angle of
15 deg, the collected volumes are 0.95, 0.95, and 0.95 for
{111}, {110}, and {100}, respectively. For the case of the
combined fibers, {111 	 110 	 100} and the same cut-off
angle of 15 deg, the volume fractions of the three fiber com-
ponents were 0.331, 0.325, and 0.325, respectively.

C. Volume Fraction in Experimental Textures

The two real examples for calculation of volume fractions
are shown. One is for a cold-rolled copper sheet with intensity
along both the alpha and beta fibers.[26] These are not fibers
in the sense defined in Section II-C or III-B but do repre-
sent lines of intensity threading through orientation space
along a series of typical orientations, {Goss�brass�S�cop-
per}.[28] The beta fiber is represented approximately by the
sequence brass-S-copper and the alpha fiber by the series of
orientations between Goss and brass. The second example
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Table III. The Volume and Half-Width for Mixed Nine Texture Components with Gaussian Distributions in Several Model
Distributions Case

Case 1 Case 2 Case 3

Texture Volume FWHM(b) Volume FWHM(b) Volume FWHM(b)

Bs {110}�112� 0.11 7.5 deg 0.11 12.5 deg 0.11 20 deg
S {123}�634� 0.11 7.5 deg 0.11 12.5 deg 0.11 20 deg
Copper {112}�111� 0.11 7.5 deg 0.11 12.5 deg 0.11 20 deg
Goss {110}�001� 0.11 7.5 deg 0.11 12.5 deg 0.11 20 deg
Cube {001}�100� 0.11 7.5 deg 0.11 12.5 deg 0.11 20 deg
Rcube {001}�110� 0.11 7.5 deg 0.11 12.5 deg 0.11 20 deg
Rgoss {110}�011� 0.11 7.5 deg 0.11 12.5 deg 0.11 20 deg
{111}�112� 0.11 7.5 deg 0.11 12.5 deg 0.11 20 deg
{112}�110� 0.11 7.5 deg 0.11 12.5 deg 0.11 20 deg

Fig. 6—Collected volume fractions of the ODF with nine texture compo-
nents in Table III according to each cut-off value. b � 7.5 deg:(a) case 1
in Table III (cutoff 10 deg) (b) case 1 in Table III (cutoff 15 deg) b �
12.5 deg:(c) case 2 in Table III (cutoff 10 deg), (d) case 2 in Table III (cutoff
15 deg) b � 20.5 deg: (e) case 3 in Table III (cutoff 10 deg), (f ) case 3 in
Table III (cutoff 15 deg).

Table IV. The Original and Collected Volume for the
Fibers Generated with Gaussian Distributions (FWHM, b �

12.5 Deg); the Cut-Off Value is 15 Deg

Fiber Original Volume Collected Volume

{111} 1 0.95
{110} 1 0.95
{100} 1 0.95
{111	110	100} {0.333	0.333	0.333} {0.331	0.325	0.325}

is measured for a gold bonding wire, which has very well
developed {111} and {100} fibers.

1. Cold-rolled copper (RA � 90 pct)
The texture of a copper sheet cold rolled to a reduction

in thickness of 96 pct was used. The measured texture has
the well-known alpha and beta fibers and is shown as an
isointensity contour map in Figure 8(a). Volume fractions
for the nine components listed in Table I were calculated
using the methods described previously and a cut-off angle
of 15 deg. The elementary regions of Euler space were used
to collect the volume of the texture components listed in
Table I. The result shows that the strongest components in
this rolling texture are S, brass, and copper. The brass and

copper components have similar volume fractions and S has
the maximum. The volume fraction of cube is similar to
the copper component, whereas the Goss component is
weaker than the cube component. The volume fractions of
each of the components are affected by the choice of cut-
off angle, as expected (Figure 9). The absolute values of the
volume fractions increase with increasing cut-off angle, but
the ratios between components are not changed.

2. Gold wire drawing
The texture of a gold bonding wire (diameter 30 �m) was

measured with automated EBSD after drawing to an equiv-
alent strain of 11.4. Using a cut-off angle of 15 deg, the vol-
ume fraction of the {111} fiber is 0.68 and the {100} fiber
is 0.14, which gives a ratio of {100}/{111} � 0.20. The vol-
ume fraction of the {110} fiber was negligible. This result
shows that the {111} fiber is dominant with respect to {100}
during wire deformation of gold. This result is typical for
drawing textures in medium and high stacking fault energy
fcc metals. The volume fractions obtained depend on the
cut-off angle chosen, but the largest volume fraction is always
{111} (Figure 10). As the cut-off value increases, all the
volume fractions increase as expected. The EBSD data were
converted into an ODF using the WIMV method and isoin-
tensity maps are shown in Euler space (Figure 8(b)).

IV. SUMMARY

A rational method for determining volume fractions of
texture components has been presented that is based on par-
titioning orientation space using the misorientation angle
as a measure of distance in orientation space. This approach
has been verified by first generating idealized discrete ori-
entation distributions in Euler space for single-component
and poly-component textures using a modified (spherical)
Gaussian distribution and then applying the partitioning
approach to calculate volume fractions.

1. Texture components can be modeled with standard Gaussian
function or Lorentzian functions. Examples of spherical and
fiber components in Euler space have been modeled with
the Gaussian function for verification of volume fraction
calculations.

2. Texture components have different multiplicities depend-
ing on their location with respect to symmetry elements.
The S component has multiplicity 1 and brass and copper
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Fig. 7—Fibers generated by Gaussian distribution (b � 12.5 deg) in three-dimenstional Euler space: (a) {100}, (b) {110}, (c) {111}, and (d) {111 	
110 	 100}.

Fig. 8—ODF for deformed metals: (a) cold-rolled copper (RA � 96 pct) and (b) cold-drawn gold bonding wire (�eq � 11.4).

have 2. The high symmetry orientations, Goss and cube,
have multiplicity 4.

3. The misorientation angle between pairs of orientations
can be used as a measure of distance in Euler space in
order to partition the space among a set of discrete com-
ponents. Once the space has been partitioned, volume

fractions can be calculated in a straightforward manner
either by integrating continuous functions or summing
intensities in discrete distributions.

4. The volume fractions of fiber texture components can be
collected using the interplanar angle distance approach
to partition a distribution of sample directions. For cubic
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Fig. 9—The volume of texture components in cold-rolled copper. The volume
fractions are variable according to cut-off value. (a) brass, {110}�112�;
(b) S, {123}�634�; (c) copper, {112}�111�; (d) Goss, {110}�001�;
(e) cube, {001}�100�; (f ) rotated cube, {001}�110�; (g) rotated Goss,
{110}�011�; (h) {111}�112�; and (i) {112}�110�.

Fig. 10—The volume of fiber texture components in gold wire. The vol-
ume fractions are variable according to cut-off value.

materials, the partitioning can be performed in the fun-
damental zone (asymmetric unit) of the 001-110-111 unit
triangle of an inverse pole figure.

5. Volume fractions calculated in this way are reasonable
for experimental textures measured in metals.
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APPENDIX

The working steps for partitioning of cell-structured
Euler space (cubic crystal/orthorhombic sample case) are
as follows.
Step 1. Identify the equivalent points of a texture com-
ponent of interest in Euler space (i.e., 90 deg-90 deg-
90 deg).

Sc: crystal symmetry operator, Ss: sample symmetry operator.
Step 2. Calculate the misorientations between the equiva-
lent points in step 1 and each cell in the discretized Euler
space.

Step 3. Partitioning of the Euler space.

Step 4. Compare the misorientation angles in step 3 among
the list of texture components.
For a given cell, the specific texture component with the
minimum misorientation angle from step 3 is assigned the
intensity of that cell.
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