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In addition to texture, plastic anisotropy of a polycrystalline fcc metal stems from the directional
nature of the dislocation substructure within individual grains. This produces the marked work hard-
ening or softening observed immediately following load path changes. Following the framework of
Peeters et al.,[1,2] in bcc steel, we develop a dislocation substructure evolution-based stage III hard-
ening model for copper, capable of capturing the constitutive response under load path changes. The
present model accounts for the more complicated substructure geometry in fcc metals than in bcc.
Using an optimization algorithm, the parameters governing substructure evolution in the model are
fit to experimental stress-strain curves obtained during compression along the three orthogonal direc-
tions in samples previously rolled to various reductions. These experiments approximate monotonic,
reverse, and cross-load paths. With parameters suitably chosen, the substructure model, embedded
into a self-consistent polycrystal plasticity model, is able to reproduce the measured flow stress
response of copper during load path change experiments. The sensitivity of the parameters to the
assumed substructure geometry and their uniqueness are also discussed.

I. INTRODUCTION

THE explosive growth of understanding over the last
decade or so, of plastic deformation processes in polycrystals
at different length scales (especially at the substructure level),
obtained largely through electron microscopy, has brought
us near the point where such information may be incorporated
in models of bulk polycrystal response. Such substructure-
based hardening models could supplement or supplant tradi-
tional grain hardening models that resort to phenomenological
considerations at the length scale of the grain. While on the
one hand a substructure-based approach is much more detailed
and intensive than the traditional hardening laws, on the other
hand, due to the much more detailed description of the inter-
nal state of a grain used by the substructure-based approach,
it can capture, for instance, transient response during non-
monotonic loading, which lies beyond the capabilities of
typical grain-level phenomenological approaches.

Most polycrystal models available in the literature concerned
with reproducing the texture evolution and the anisotropy of
the aggregate are usually based on relatively simple hardening
laws for the active slip systems (Balasubramanian and Anand,[3]

Tomé et al.,[4,5] Kok et al.,[6] and Kocks et al.[7]). For exam-
ple, Tomé et al.[4] consider an extended Voce law of slip sys-
tem hardening to describe the effect of texture evolution upon
the monotonic stress-strain response of oxygen free high con-
ductivity (OFHC) copper:

[1]

Here, the evolution of , the critical resolved shear stress
in slip system s, is given as a function of the accumulated
strain in the grain �. The parameter �0 is the initial yield
stress, �0 � �1 the back-extrapolated yield stress, and �0 and

ts
c

ts
c(�) � t0 � (t1 � u1�) [1 � exp (�u0  �/t1)]

�1 the initial and final hardening rates, respectively. Such an
expression accounts for dislocation hardening in a qualitative
way and succeeds in accounting for texture effects on the
overall stress-strain response[4] associated with monotonic
loading. However, Tomé et al.[4] could not find a unique set
of hardening parameters that accounts for the polycrystal
mechanical behavior under different loadings: tension, com-
pression, and torsion. They concluded that crystal orientation
effects account for about half of the observed von Mises yield
stress discrepancy between large strain tension, compression,
and torsion and attributed the other half to differences in the
dislocation structure associated with each deformation mode.
Another disadvantage of simple hardening rules such as Eq. [1]
is that they do not suffice to predict the transients associated
with strain path changes. To capture the observed transients,
one needs a kinematic hardening law, which accounts for the
directionality and evolution of dislocation structures inside
the grains.

More recently, models have been proposed that focus on
predicting dislocation density evolution, and connecting it
with the macroscopic yield stress (e.g., Kocks and Mecking,[8]

Teodosiu and Hu,[9] Hahner,[10] and Pantleon[11]). These
substructure-based models, improve upon laws like Eq. [1],
but disregard the dependence of the dislocation structure and
density on grain orientation. This deficiency is overcome in
the work of Estrin et al.[12] and Tóth et al.[13] for copper, and
Baik et al.[14] for aluminum, which incorporate dislocation
density evolution in their hardening laws and run polycrystal
simulations of monotonic loading. The work of Peeters et al.[1] for
steel is a first attempt at predicting transients associated with
strain path changes using the preceding approach. In parallel
with this modeling effort, there has lately been an increased
interest in characterizing experimentally the mechanical response
and microstructure evolution associated with strain path
changes (Gracio et al.,[15] Rauch et al.,[16] Barlat et al.,[17] and
Lopes et al.[18]). Table I provides a further summary of some of
the approaches described previously.

In this work, we develop a substructure evolution model of
OFHC copper grains that generates a hardening law fed into
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a self-consistent polycrystal model. We calibrate and test our
model under monotonic and nonmonotonic loading paths
(reverse and cross loadings). The reason is that while both
texture and microstructure underlie the anisotropic response
of polycrystalline materials subjected to most loading paths,
during reverse loading, anisotropy is entirely attributable to
microstructure alone. The material shows softening, a phe-
nomenon termed the Bauschinger effect. On the other hand,
the cross effect, which manifests as hardening or strain soft-
ening during cross loading (Barlat et al.[17] and Aernoudt
et al.[19] (Figure 20) has both texture and microstructure causes.

Dislocation structures within grains are the predominant
microstructure contribution to the anisotropy of pure poly-
crystalline copper. It has been extensively observed (e.g.,
Malin and Hatherly,[20] Gil Sevillano and Torrealdea,[21]

Christoffersen and Leffers,[22] and Huang[23]) that even after
only a few percent straining of copper, microstructure devel-
ops, which shows relatively dislocation-depleted regions called
cell blocks enclosed by geometrically necessary cell block
boundaries (CBBs). Dislocations in the CBBs are variously
referred to as wall or forest dislocations. In their extensive
studies of fcc metal substructures, their evolution, and struc-
tural transitions, Hughes, Hansen, and co-workers (Bay
et al.,[24] Hughes and Nix,[25] and Hughes and Hansen[26,27])
have classified CBBs as dense dislocation walls, microbands,
lamellar bands, etc. The cell blocks in turn contain cells that
are demarcated by incidental dislocation structures called cell
boundaries (CBs) or tangles. Anisotropic strain hardening at
the grain level results from the presence of cells and cell
blocks, which influence slip in each grain and the stress
needed for their activation. In turn, slip affects the formation
and development of CBs and CBBs by influencing the rates
of multiplication, storage, and annihilation of dislocations
in them. Grain-level anisotropic response is thus a conse-
quence of complex, tightly coupled processes involving slip
activity, and microstructure evolution.

A number of models (e.g., Kocks et al.,[30] Kubin and
Lépinoux,[31] and Tóth et al.[13]) attempt to account for the
microstructure of the grain with two state variables, most com-
monly �CB, the density of the mobile dislocations, and �CBB,
the density of the wall or forest dislocations. Such models
succeed in predicting the work hardening with monotonic
strain paths but fail in predicting the stress-strain response

associated with load path change tests. Kubin[32] has pointed
out that these simple models fail because two state variables
are inadequate to capture the complex interactions between
dipolar and multipolar ensembles, sessile junctions, mobile
dislocations on intersecting slip systems, and tangled dislo-
cations. He suggests that substructure models must dis-
tinguish between dislocations of the same or opposite sign,
of different characters, of different Burgers vectors, and
account for their interactions. Another fundamental limitation
of models of the substructure as a uniform distribution of
dislocations is that they are incapable of coupling the evolving
internal stress in the grain to the evolving substructral length
scale.

The model of Peeters et al.[1,2] goes in the direction of
overcoming these limitations. Based on experimental
observations of the substructure, this model predetermines
a certain number of potential CBB orientations, nCBB, rela-
tive to the crystal lattice. The state of the grain is then rep-
resented by 2nCBB � 1 dislocation densities. The list of state
variables consists of two dislocation densities associated with
each of the nCBB CBB planes: viz. , which do not have
a polarity; , which do have a polarity; for i � 1, . . . ,
nCBB, and, a nonpolar dislocation density � corresponding
to the overall density of CBs in the grain. Using this
expanded set of state variables, Peeters et al. are able to go
beyond the two state variable models and capture the
Bauschinger and cross effects in addition to monotonic hard-
ening behavior of interstitial free (IF) steel with remarkable
accuracy. The increased complexity of such a model neces-
sitates the introduction of additional parameters to describe
the evolution and interaction of the different dislocation
populations.

In the present work, we use the Peeters et al. framework to
model plastic deformation under path changes of fcc copper.
Using the optimization algorithm described in the Appendix,
we fit the hardening parameters of the model (Section II–A)
so that macroscopic predictions of a viscoplastic polycrystal
model (Lebensohn and Tomé[33]) agree with experimentally
observed responses under monotonic, reverse, and cross-loading
paths. We compare the measured and predicted responses in
view of the assumptions of the model in Section III, and analyze
these results in light of the model assumptions and our present
understanding of substructural mechanisms in Section IV.

ri
wp

ri
wd

Table I. Summary of Some of the Hardening Models Available in the Literature; only fitting parameters used 
in the hardening law of each model have been counted toward the entry in column 4

Reference Material Modeling Goals Parameters Hardening Model

Balasubramanian Ti mechanical behavior and 9 Voce-like
and Anand[3] texture in monotonic tests

Tomé et al.[4] Cu mechanical behavior in 4 Voce-like
monotonic tests

Kok et al.[6] steel mechanical behavior in monotonic 17 MTS-like
tests in stage IV with temperature
and strain-rate dependence

Tóth et al.[13] Cu mechanical behavior in 12 substructure evolution
monotonic tests in stages IV and V

Baik et al.[14] Al cell size and equivalent stress 12 substructure evolution
evolution in reverse tests

Peeters et al.[1] steel mechanical response during monotonic, 12 substructure evolution
reverse, and cross tests in stage III
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(a)

Fig. 1—Transmission electron microscopy (TEM) image of the microstruc-
ture of copper (a) after rolling to 50 pct reduction and (b) immediately
after load-crossing by compression along the transverse direction showing
the “cut-through” of a CBB formed during the original load path by a
microband formed by the slip activity in the cross loading path. Similar
dislocation activity during load crossing can also be expected for smaller
rolling reductions within the stage III hardening regime.

(b)

II. THE HARDENING MODEL

A. Dislocation Density Evolution

In this section, we summarize the model of Peeters et al.[1]

as applied to the present copper study. The first task in apply-
ing the model is to define the orientations of potential CBB
planes relative to the lattice. While this is discussed in Sec-
tion B, let us for now suppose that we have identified nactive

planes out of nCBB � 4 crystallographic planes available to
fcc grains undergoing �110�(111) slip, as the “active” slip
planes parallel to which CBBs may form. Let denote the
unit normal to each set of parallel slip planes, with an arbi-
trary but consistent sign and similarly, let denote the unit
vector along the slip directions again, with an arbitrary but
consistent sense. In an fcc crystal deforming plastically by
�110�(111) slip, s � 1, . . . , 12, and i � 1, . . . , 4. Slip
information is conveyed to the dislocation evolution proce-
dure through two key variables: the total slip activity on each
slip plane, , and the signed dislocation
flux into CBB i, . Here, is the slip 
rate on the sth of the 12 slip systems of the fcc grain, and
b denotes the magnitude of Burgers vector.

According to the model, nonpolar dislocation densities
associated with active and inactive planes evolve differently
as follows:

[2]

is the total slip rate on the currently active slip planes.
Thus, according to Eq. [2], the nonpolar dislocation density
of active planes grow while that of inactive planes dwin-
dle. The evolution of the polar dislocation density on CBB
i depends upon �i, its dislocation flux, as follows:
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whose dislocation flux is reversed, and denotes the sat-
uration value of the polarized dislocation density, �wp. Unlike
�wd, the growth or diminution of �wp on a CBB depends on
the mobile dislocation flux into it and not on slip activity
parallel to it. The mechanisms implied by Eqs. [3] and [4]
are consistent with the TEM observations of Christodoulou
et al.[34] during reverse tensile experiments.

We refer to Peeters et al.[1] for the physical reasoning
underlying these evolution equations. Broadly, the I para-
meters stand for dislocation multiplication coefficients, while
the R parameters refer to dislocation annihilation rates.
Peeters et al. assume an expression for the inhomogeneous
cut-through of pre-existing dislocation walls by the forma-
tion of microbands. Figure 1 shows that such cut-through
also occurs in fcc copper. However, this phenomenon is poorly
understood and its form, as assumed in Peeters et al.’s[1]

Eq. [8], appears to make the flow stress predictions depen-
dent on the simulation time-step. We therefore do not include
it in the present calculations, and expect to capture its effect
on average through homogeneous annihilation of inactive
CBBs via Eq. [2].

The current state of the grain determines the critical re-
solved shear stress of each of its slip systems as follows:

[5]

where , and represents the hardening of
slip system s by CBB i. The term f is a parameter denoting

tis
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Finally, for the evolution of the grain-averaged CB density,
Peeters et al. assume

, [4]

where 	 � 1 or 0 according to whether the dislocation flux
into at least one of the active CBB planes has changed sign,
�bausch denotes the total �wp content of the active CBB planes
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if plane i is active, and has undergone no 
sign reversal,

�i

if plane i is active, and has undergone sign 
reversal,
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0, otherwise. [3]  

if plane i is inactive, and has undergone no 
sign reversal,
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the volume fraction of CBB in the grain. This latter is known
to depend upon the spacing between CBBs i as

[6]

Here, 0 
 � 
 0.5 represents the dislocation interaction
parameter, G the shear modulus of the material, and di the
average spacing between the ith set of parallel CBBs so that

is the intercept of slip system s between them.
Equation [6] thus represents a directional Hall–Petch type
augmentation of the internal stress due to the presence of
the CBBs in the grain. The CBB spacing, for
slip system s are thus taken as the characteristic length scale
of importance. 0 � f � 1 is the volume fraction of CBBs
in the grain, which is assumed fixed in the course of defor-
mation (Argon and Haasen[35] offer justification during
stage III). Also, as pointed out by Lopes et al.,[18] � may vary
from system to system, so as used here, it represents an aver-
age over systems. It is known (Godfrey and Hughes[36]) that

, where K is a constant of the order of unity.
In the present case, where two wall populations are consid-
ered, assuming

[7]

and using Eq. [6] with � � �/K, we obtain

[8]

The first term involves �wp, and together with the decrease 
in � according to Eq. [4], this term is responsible for the
Bauschinger effect upon load reversal. Equation [8] is dif-
ferent from the expression of Peeters et al. only in that � �
� always in their expression. We will see in Section III that
� ≠ � is needed to reproduce the cross-test data in copper.

It should be emphasized that the Peeters et al. model is
strictly a stage III model (von Mises strain in copper);
dislocation populations, , and �, eventually saturate
with continuing deformation to , and , respectively,
where

[9]

and

Saturation of dislocation densities will result in constancy
of the critical resolved shear stresses in Eq. [5] and therefore
the constancy of the macroscopic flow stresses. Stage IV
hardening behavior shown by fcc metals and characterized
by linear hardening to large strains (Cu: Bassim and Liu;[37]

and Ni, Co, Al, Ni-Co alloys: Hughes and Nix[25]) cannot
be captured by this model.

We embed the preceding model, which supplies a hardening
law into the viscoplastic self consistent (VPSC) polycrystal
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plasticity code (Kocks et al.[38] and Lebensohn and Tomé[33]).
VPSC assumes a viscoplastic constitutive law for the activity
of each slip system s

[10]

where is the scaled shear rate in slip system s, � : ms

denotes the resolved shear stress on slip system s due to grain
stress �, and n determines the rate sensitivity. As n �� 1,
the grain response becomes rate insensitive.

Unlike the Taylor–Bishop–Hill or the Sachs approach,
VPSC does not impose the macroscopic strain rate or stress
upon each grain. Instead, grain strain rate is determined self-
consistently by embedding the grain in a homogeneous effec-
tive medium whose properties are the average properties of
other grains. Because of its more realistic nonenforcement
of the macroscopic strain rate on each grain, fewer slip
systems are activated in the VPSC approach in each grain.
This is of much significance to the present hardening model
since slip activity affects the evolution rates of the various
families of dislocations through and �i.

The evolution equations Eqs. [2] through [5] involve nparam �
13 unknowns (I, Iwp, Iwd, R, Rwp, Rwd, Rncg, Rrev, R2, �, �,
f, �0). Ideally, the dynamics of dislocation interaction between
the various families of dislocations would be known, for
example, from dislocation dynamics calculations. Such infor-
mation will provide values or plausible ranges for the fitting
parameters. Unfortunately, to our knowledge, this information
does not presently exist, but can be expected in the near
future. Presently, therefore, we will attempt to fit these parame-
ters in order to reproduce the stress-strain curves of various
monotonic and path change experiments. For such a complex
spectrum of parameters, the usual approach of manually
guessing, testing, and modifying the parameters is likely to
be unsuccessful. For this reason, we adopt a numerical pro-
cedure that uses the optimization methods to find parameters,
as described in Appendix A. The nature and consequences of
the present approach will be further discussed in Sections IV
and V.

B. Substructure Geometry

We now turn to the number and orientation of the nactive

CBBs alluded to in Section A. Peeters et al. assume that
each grain in bcc IF-steel forms two CBBs on the two most
active {110} slip planes during deformation. They find that
this condition is consistent with their TEM micrographs of
CBBs. In the case of fcc metals, on the other hand, the
substructure geometry has been experimentally observed to
be far more complex and dependent on grain orientation and
loading. Figure 2 shows four different types of substructures
observed in our copper samples after 15 and 30 pct rolling
reductions. As seen in this figure, and in the more extensive
studies of Wert et al.,[39] Liu et al.,[40] and Liu et al.,[41]

whether CBBs form in a grain, and if so, the number of CBBs
in a grain depends upon the grain orientation and loading.
Furthermore, CBB morphology may be planar or wavy, and
CBBs may or may not coincide with crystallographic slip
planes in copper and aluminum under a variety of loading
conditions. Indeed, after a statistical study of CBB orienta-
tions after rolling, Christoffersen and Leffers[22] found
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Fig. 2—Some of the dislocation substructures observed after rolling: (a) and
(b) 15 pct reduction and (c) and (d) 30 pct reduction. (a) one crystallographic
and one noncrystallographic set of CBBs, (b) equiaxed cell structure, (c) one
set of crystallographic CBBs, and (d) two sets of noncrystallographic CBBs.
The four (111) slip traces are shown in the top right corner of each micrograph.

(a)

(b)

Fig. 3—(a) The position of the tensile axis of a grain in the inverse pole
figure strongly correlates with the type of microstructure it forms (Huang,[23]

Figure 1], with permission). (b) Ratio of the largest to the second largest
slip system activity in 100 grains plotted on an inverse pole figure from a
viscoplastic self-consistent simulation assuming Voce hardening. Notice
that Huang’s type 1 grains in (a) away from the [100]–[111] line corres-
pond to the central region of the triangle where one slip system is sub-
stantially dominant in (b).

“Dislocation walls in copper have no preference for orien-
tations parallel to or approximately parallel to the {111} slip
planes.”

While the cause of this qualitative difference between bcc
and fcc behavior is unknown, it seems plausible that it arises
because of the larger fraction of screw dislocations in bcc met-
als relative to fcc. Screw dislocations are capable of cross-slip.
According to the theory of Winther et al.,[28] the mechanism
of cross-slip will strengthen the crystallographic preference
of CBBs as cross-slipping systems, may add to the slip activ-
ity in the most active slip plane. In fcc metals, however, the
mixed character of a greater fraction of dislocations (incapable
of cross-slip) likely lowers such crystallographic CBB prefer-
ence and probably leads to the more complicated CBB patterns.
However, we will see that in fcc metals also, the mechanism
of cross-slip plays an important role when there is no domi-
nant slip plane (defined in Eq [11]).

In fcc metals, Winther et al.[28] and Winther[29] made the
important observation that “coplanar slip fraction” determines
whether crystallographic CBBs form in a grain. They find
that CBBs do form parallel to {111} planes if the two most
active slip systems on the same plane account for most of
the slip activity in the grain. Their theory, however, does
not predict the orientation of CBBs when single slip plane
dominance does not hold.

In crystals wherein slip plane dominance does not occur,
Wert and Huang[42] have introduced the concept of an equiva-
lent slip system pair, which is a set of two planes and directions
(not necessarily coincident with any physical slip system), the
slip on which can accommodate any plane strain deformation
prescribed on the grain. They then show by means of extensive
comparison to available experimental data that CBBs do indeed
form on these equivalent slip planes, which are fed dislocations
by slip activity on physical slip systems associated with each
equivalent one. Wert and Huang’s analysis, however, is limited
to plane strain deformations of high symmetry crystal orien-
tations (Goss, rotated cube, cube, and copper ideal texture
components). Its extension to arbitrary orientations under

arbitrary grain loadings is not presently available. Such an
extension would be essential for implementation in the present
model.

Another class of crystal plasticity models are based on the
minimization of stored energy, and result in grain microstruc-
turing (Ortiz and Repetto[43] and Ortiz et al.[44]). However,
there appears to be no systematic comparison of their pre-
dictions of orientation dependence of microstructure against
experimental observations.

In summary, while important progress in understanding
CBB orientations in fcc crystals has been made, the investi-
gation of this subject is far from closed. In this work, we pur-
sue the following approach based on earlier results of Huang[23]

and Huang and Hansen[45] for copper and aluminum, respec-
tively. In an extensive and detailed study of microstructure
evolution in OFHC copper (grain size 50 �m) tensioned up
to �vM � 0.28, Huang[23] found a strong correlation between
microstructure and grain orientation. His observation, repro-
duced in the inverse pole figure of Figure 3(a), is that the ten-
sile axis of grains that form one set of crystallographic {111}
CBBs (type 1) lies in the middle of the triangle, and that of
grains that do not form any CBBs but only a cell substruc-
ture (type 2) lies near the [100] corner; for grains with two
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Fig. 4—Comparison of the compression experimental data along RD, TD, and ND after rolling to r � 0, 0.056, 0.105, and 0.188 with the model. The
model parameters are fit to the annealed response (r � 0) and the TD and RD curves of r � 0.105. The parameters obtained are used to predict the remain-
ing curves.

sets of noncrystallographic CBBs (type 3), the tensile axes lie
near the [111] corner. In a similar study on fcc aluminum
(grain size 300 �m) tensioned to �vM � 0.34; Huang and
Hansen[45] come to the same qualitative conclusion, except
for observing a larger number of type 3 microstructures along
the [100]-[111] line. This difference possibly arises due to the
difference in grain size since they argue that the stacking fault
energy difference between copper and aluminum does not affect
microstructure evolution. Figure 3(b) correlates grain orienta-
tion and the slip activity in crystallographic planes during
a VPSC-simulated uniaxial tensile test to �vM � 0.28. On an
inverse pole figure, it shows the ratio of the slip activity on the
most active and the second most active 
slip systems. Voce law hardening is assumed with parameters
that fit the tension test of Figure 4 (�0 � 18 MPa, �1 � 110 MPa,
�0 � 250 MPa, and �1 � 12 MPa, Eq. [1]), so as not to pre-
suppose any set of Peeters et al. model parameters. As seen,

1 |g# (2)| � |g
#
(1)| 21 |g# (1)| 2

the central part of the triangle corresponds to grains having
a dominant slip system, i.e., where . Together
with the aforementioned experimental observations, this implies
that type 1 CBBs form in grains oriented such that 
is large. Grains that undergo multiple slip, on the other hand,
form type 2 or type 3 microstructures; it is not possible to
distinguish between these types by means of the 
criterion.

In the present model, we will assume the applicability of
the preceding observation to arbitrary grain loadings, and
assume that

[11]

If there is only one active CBB, it is assumed to form on
the crystallographic plane of the most active slip system. If

nactive � •1, if |g
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there are to be two active CBBs, they are assumed to lie on
the plane of the most active slip system and its cross-slip
plane. While other choices for the placement of the two
CBBs are possible (e.g., the crystallographic planes of the
most and second most active slip systems), this choice proves
essential in capturing the mechanical response upon load
reversal and crossing. We will discuss this choice of CBBs
further in Section IV, in connection with fitting the experi-
mental data to the Peeters et al. model.

III. COMPARISON WITH EXPERIMENTS

We now describe a set of experiments that involve monot-
onic, reverse, and cross loading of copper against which we
will compare the model of Section II. Four identical plates
of OFHC copper vacuum annealed at 700 °C for 2 hours
and furnace cooled over 8 hours to grain size �100 �m
were rolled to reductions of r � 5.6, 10.5, and 18.8 pct in
one pass each. Three cylindrical specimens (length: 5.5 mm,
and diameter: 7 mm) were then cut out using electrical dis-
charge machining and from each of the four rolled plates
along the rolling direction (RD), transverse direction (TD),
and normal direction (ND) and were compression tested.
No barreling was noticed during compression. The macro-
scopic strain-rate tensor during rolling is approximately

, expressed in the right-

handed orthonormal basis defined by RD-TD-ND ( 1-2-3).
Subsequent uniaxial compression with traction-free lateral
surfaces along RD, TD, and ND represent a pseudo-reverse
test, a pseudo-cross test, and a pseudo-monotonic test, respec-
tively, in Barlat et al.’s[17] nomenclature. They are called
“pseudo” since the plane strain compression in the first stage
(D(1)) is replaced by uniaxial compression in the second stage.

Polycrystal calculations consisted in simulating rolling up
to the same reduction as the experiments, followed by axial
compression along the three principal directions. An initially
random distribution of orientations was assumed and the vis-
coplastic self-consistent scheme for polycrystals (Lebensohn
and Tomé[33]) was used.

Figure 4 compares the experimental and model-predicted
stress-strain curves for compression along RD, TD, and ND
after r � 0, 0.056, 0.105, and 0.188. Using the procedure of
Appendix A, the model parameters are fit (Table II) to three
experimental compression curves: compression of the annealed
specimen (r � 0) and compression along TD and RD of the
specimen rolled to r � 0.105. The fitting procedure is divided
into two parts: keeping Rrev and R2 fixed (since they do not
affect monotonic or cross-test response according to Sec-
tion II–A); the remaining 11 parameters are fit to the
experimental stress-strain curves for annealed compression and
TD compression after r � 0.105. Then, the fitting procedure
is applied in the two-dimensional space of Rrev and R2 to fit
the experimental curve for compression along RD. The curve
fits shown in Figure 4 are within the experimental error.

All the other curves in Figure 4 are predicted using the
model supplied with these parameters, obtained from the
r � 0.105 experimental fit. The four predicted responses for
r � 0.056 and r � 0.105 are in reasonable quantitative agree-
ment with the measured flow response. Qualitatively, while

�

[D(1)] � �
# £

1  0  0

0  0  0

0  0 �1

§ , (�
#

� 0)

the model does capture the experimental trend, TD � ND �
RD, it fails to capture the experimental observation that, at a
given �vM, the material response is softer in compression after
rolling than in compression from an annealed state. We spec-
ulate that this is because we perform numerical compression
starting from a numerical rolling texture, which is known to
evolve more rapidly than the experimental rolling texture.

It should be pointed out that simpler models of grain sub-
structure are unable to reproduce the transient response along
RD, TD, and ND even qualitatively. A model that accounts
for texture evolution but uses Eq. [1] fails even to capture
the correct order of the experimental yield point trend upon
load path change: TD � ND � RD. Also, the predictions
of simpler two-parameter substructure models can be expected
to follow the annealed curve (model: AN) in Figure 4; these
simpler models have no mechanisms to produce the response
discontinuities obtained from the present model under load
reversal.

When used to predict the compression response after rolling
to r � 0.188 (�vM � 0.24 to 0.44 during compression), the
model performs poorly. While the initial yield points are rea-
sonably well estimated, the model underestimates flow stress
evolution and tends toward saturation. This is to be expected
in the present stage III model when deformation enters the
stage IV regime, and is consistent with the observation of
Bassim and Liu[37] in copper under tension and torsion that
the stage IV regime begins at �vM � 0.3.

Figure 5 shows the evolution of the dislocation densities
calculated during the entire loading path in a single grain
embedded in a 100-grain self-consistent computer polycrystal
deformed by rolling to r � 0.105 (�vM � 0.13), then com-
pressed along RD (row 1), TD (row 2), and ND (row 3).
The assumed Peeters et al. model parameters are those used
to generate Figure 4. The dominant dislocation population
here is seen to be � whose density exceeds that of �wp and
�wd and which therefore controls in large part the flow stress
evolution in the grain. Since at the point of reversal in row 1
of Figure 5, � � 10�wp and R � 10R2, while �wp is seen to
decrease due to the efflux of polarized dislocations from CBBs,
no effect is seen in � since a negligible fraction of CBs suffice
to annihilate the polar dislocations according to Eq. [4]. During
the pseudo-reverse loading path of RD compression, the active

Table II. The Model Parameters for Copper as Fit 
to the Three Experimental Curves Described in the Text

nCBB 4
nactive 2
I 2.8776 � 10�2

Iwd 7.2366 � 10�1

Iwp 1.5944 � 10�2

R (m) 1.8996 � 10�9

Rwd (m) 7.4544 � 10�8

Rwp (m) 4.7920 � 10�10

Rncg (m) 3.9637 � 10�9

Rrev (m) 5.6487 � 10�8

R2 (m) 9.1846 � 10�10

� 3.9772 � 10�1

� 1.1950 � 10�1

f 1.2000 � 10�1

�0 (MPa) 1.2500 � 10�1

b (m) 2.5562 � 10�10

G 5.0000 � 10�4
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Fig. 5—Evolution of dislocation densities , and in one grain of a 100-grain model polycrystal oriented with Bunge angles (102.74,
119.56, 33.65 deg) prior to deformation in the RD-TD-ND system. The deformation path simulated here is rolling to r � 0.105 (�vM � 0.13), then uniax-
ial compression in the RD (reversal, row 1), TD (cross, row 2), and ND (monotonic, row 3) directions. Note that for compression in all three directions,
the � approaches its saturation dislocation density of �sat � (I/R)2 � 2.29 � 1014/m2.

ri
wd, i � 1, p , 4r, ri

wp

slip planes during rolling, and , continue to
remain so. On the other hand, upon pseudo-cross loading by
compression along TD (row 2), this grain switches from a
state with nactive � 2 active CBBs to one with only one active
CBB . Finally, note that dislocation density evolution
is qualitatively sustained during pseudo-monotonic compres-
sion along ND (row 3). The calculated dislocation densities
match the measurements of Hansen and Huang[46] in fcc alu-
minum, in order of magnitude (the measured total dislocation
density is O(1014) at �vM � 0.2).

IV. DISCUSSION

We will now discuss the importance of the substructural
geometry assumptions of Section II–B (which represents our
most significant deviation from the original bcc Peeters et al.
model) in capturing the relatively small Bauschinger effect
(�1 MPa for r � 0.105) and the large cross effect (�20 MPa
for r � 0.105). Unlike in the original Peeters et al. model
wherein every grain has nactive � 2, some (type 1) grains in
the present model have only one active CBB. These grains
suffer no Bauschinger effect upon load path reversal according
to the model of Section II–A. To see this, observe that the
most active slip system, say, s*, is coplanar with the only active
CBB, say, i*. Since will not contribute to
dislocation flux �i*. The lack of Bauschinger effect in a fraction
of the grains already decreases the magnitude of the macroscopic
Bauschinger effect. Furthermore, even in grains with nactive � 2
placed per Section II–B, the most active slip system, say, s*,
is coplanar with either active CBB, say, i*. The system s* will
not contribute to dislocation flux �i*, since ,
and by Eq. [3] therefore (which determines the magni-
tude of the Bauschinger effect), will remain small.

ri*
wp

us
b
*

# ui*
w � 0. �i*

us*
b # ui*

w � 0, s*

(111)

(111)(11 1) Contrariwise, if the active CBBs were placed on the two
planes most active in slip, so that �wp on each active CBB
is fed by slip systems intersecting that CBB plane and par-
allel to the other, accumulated �wp would be large, leading
to a much larger Bauschinger effect than observed experi-
mentally in copper. This argument provides support to our
active CBB placement strategy.

Further support is provided by the ability of the present
model to capture the large observed cross effect. In the first
stage of deformation (rolling), if s* is the most active slip sys-
tem during rolling and i* either its slip plane or cross-slip plane,

does not contribute to the CRSS of slip
system s* according to Eq. [8]. In other words, s* has an infi-
nite mean free path between the barri-
ers presented by either CBB i*.

Upon load crossing, if s** becomes the dominant slip system,
not coplanar with either CBB will be large since

and s** has a drastically reduced mean free
path between them than s*. This will cause a large cross effect,
which increases with prestrain, as observed. On the other hand,
if the active CBB, i* were as in the original Peeters et al. model,
and the slip system s* parallel to one CBB intersects the other,
load crossing will not bring about as drastic a reduction in
the mean free path, and the cross effect will be much smaller
in magnitude. The present substructural geometry thus enhances
the “barrier” posed to dislocation motion during a cross test
along the newly activated slip system s** by the CBB i* formed
during rolling, and this enhancement is essential for obtain-
ing reasonable fits in Figure 4 (Aernoudt et al.[19]).

In summary, the present model, while clearly not modeling
the variety of microstructural features observed experimen-
tally in deformed fcc copper essentially captures their influence
on the mechanical response using a simple CBB orientation
scheme.

us**
b # ui*

w Z 0
i*, ti* s**

CBB

(�di*/us*
b # ui*

w , Eq. [6])

us*
b # ui*

w � 0. CBB i*
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(a) (b) (c)

Fig. 6—Comparison of the experimental data reported by Christodoulou et al.[34] against the Peeters et al. model assuming nactive � 1 and nactive � 2. The
“T” denotes tension and the “C” compression. (a) Compression test followed by tension. (b) and (c) Tension tests followed by compression. The parameters
used in the model are reported in Table II. The gap between the experimental and model curves emphasizes the importance of the difference between the
copper material and testing conditions (e.g., average grain size and testing conditions) of different experiments.

We next turn to another important aspect of our proce-
dure, viz. the fitting of the parameters in Table II using the
methodology in Appendix A. As mentioned there, the pro-
cedure produces sets of different parameters that neverthe-
less fit the experimental data nearly equally well. This
nonuniqueness suggests the need for imposing additional
constraints on the ranges of individual parameters. These
constraints may come from calculations and observations
at smaller length scales (e.g., dislocation dynamics, or experi-
mental studies of the rate of absorption of mobile disloca-
tions into CBBs). The constraints may also take the form
of having to fit additional stress-strain curves with the same
set of parameters. Our experience in this respect is that the
inherent differences in flow response arising from variations
between nominally identical specimens set a limit to the
accuracy of the measured stress-strain curves, which is sizable
enough that one ends up obtaining poorer, still nonunique fits
to them all, since this type of constraint does not restrict the
range of individual parameters. For this reason, we believe
that the former approach to constraining individual parame-
ters is the superior one; indeed, the utility of the Peeters et al.
model may lie primarily in directing research at lower length
scales toward identifying parameters for use in mesoscale
models such as the present one.

The present model with its detailed microstructure evolution
mechanisms will be useful when fit to well-characterized
experimental response of a particular material, for which it
is important to capture the response to strain path change
(e.g., if one is interested in predicting flow localization
during sequential forming processes). However, given the
dispersion in experimental data available in the literature,
and the inapplicability of the parameters to materials with
other alloy compositions and grain sizes, chasing a load path
change effect of similar magnitude as the dispersion in the
data may not be warranted. Figure 6 compares the prediction
of the present model against the data of Christodoulou et al.[34]

during uniaxial Bauschinger tests. The grain size and strain
rate of the experiments to which the present model is fit

(100 �m and 10�3/s, respectively) differ from those of
Christodoulou’s experiment (20 �m and 10�5/s). While dis-
playing a Bauschinger effect comparable to the experimen-
tal one, the flow stress predictions of the model are clearly
below the experimental ones. The reason is simply the flow
stress scatter among different copper materials. The experi-
mental monotonic flow stress of the copper material of the
present work is about 40 MPa below that of Christodolou
et al’s at a uniaxial compressive strain of 20 pct. In addition,
the model tends to saturation, while the experiment shows
a type IV hardening stage. To overcome this difficulty, the
present model must be extended to account for grain size,
strain rate effects, and stage IV, at the expense of introduc-
ing additional parameters.

V. CONCLUSIONS

We develop a hardening model for fcc copper following
the model presented by Peeters et al. for bcc steel. By
accounting for three different dislocation populations within
each grain, the present model reproduces the flow response
of copper associated with monotonic loading, and strain path
changes in the stage III regime. The model however breaks
down in the stage IV regime. The discontinuous transition
due to strain path change is assumed to be connected with
either change polar dislocation density at the walls (Bauschinger
effect), or the effect of interaction of old walls with new
dislocation directions (cross effect). We find that texture
alone cannot explain the ordering of compression curves
along RD, TD, and ND of copper prestrained by rolling, and
that the contribution from the directional dislocation structure
also has to be accounted for.

We find that the dislocation structure in copper (and most
likely in other fcc aggregates also) is more complex than
bcc steel: depending on grain orientation, none, one, or two
families of dislocation walls form within the grain, not neces-
sarily on crystallographic planes. Our criteria for dealing with
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such configurations is probably too simplistic, and reflects
our lack of understanding of the physics behind the forma-
tion of these structures. We also find, by using our model
to simulate results in the literature, that it is sensitive to com-
position, grain size, and strain rate.

Our study highlights the following.

1. A hardening model that can reproduce arbitrary transi-
tion effects associated with strain-path changes will be
unavoidably complex, since it needs to account for the
evolving dislocation substructure inside each grain with
a reasonable amount of detail.

2. Approaches that attempt to determine all their parameters
by fitting solely against bulk mechanical response, without
an understanding of mechanisms at the dislocation scale,
will suffer from nonuniqueness of best parameter sets.
Such nonuniqueness may go un-noticed when parameter
sets are manually fit.

3. Relating the parameters of the model with basic dislo-
cation models and experimental characterization of the
microstructure is thus essential, and the framework of the
present model suggests specific questions about the inter-
action of families of dislocations.
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APPENDIX

Parameter fitting

We will now describe the heuristic optimization proce-
dure found most effective in finding material parameter sets
of the hardening model used here[1] to fit a suite of experi-
mental stress-strain curves (tests). For convenience of refer-
ence, let us assign an index i to each available test and denote
it by Ti, i � 1, 2, . . . , ntest, where ntest is the number of
tests against which to fit. Let Q � {Qj, j � 1, . . . , nparam}
denote a set of parameters. Using this set of parameters,
we may numerically simulate Ti, and obtain a theoretical
stress-strain curve, �theo (�), to compare with the corres-
ponding experimental �expt(�). We then define the fitting
error, or “cost,” associated with the parameter set Q and test
Ti to be

[A1]

where both integrals run over the entire loading path. The
cost associated with a fixed Q and Ti is thus the weighted
sum of the root-mean-square errors between the experimental
and theoretical stresses. Next, assigning weights wi, i � 1,
2, . . . , ntest to the individual tests such that 
we define the cost associated with the parameter set Q over
all tests in the suite Ti, i � 1, . . . , ntest as

[A2]C(Q) � a
ntest

i�1
wiC (Q, Ti) � c max  

i�1

ntest C (Q, Ti)

�i�1
n test  wi � 1,

C(Q, Ti) �C ∫(sexpt � s theo)
2|d�|

∫ |d�|
,

We use wi � 1/ntest and 	 � 1.25 in our implementation.
The problem of finding a good set of fitting parameters may
now be stated in optimization terms as minimizing C(Q) in
the space of all valid parameter sets, which will henceforth
be denoted �. Since the numeric values of the parameters
of the Peeters et al. model are several orders of magnitude
apart, we operate in the space � whose points are obtained
by taking an element-wise logarithm of the coordinates of
points in �.

Three features of the cost function determine our choice
of global optimization procedure. First, the cost function is
extremely noisy and has a large number of local minima of
similar depth in �. Second, cost function evaluation is very
expensive, as it involves simulating the entire deformation
paths of several tests while holding Q fixed. Finally, deriv-
atives of the cost function in � can only be obtained by
numerical means and are prohibitively expensive as their eval-
uation will involve at least nparam � 1 function evaluations.
The noisiness of the cost function also makes numerical deriv-
atives so calculated completely useless in choosing a search
direction.

The constraints listed previously in the present optimiza-
tion problem were also encountered by Brachetti et al.[47]

while attempting to fit a model to data for eclipsing binary
stars. After extensive study reported there, they find Price’s
algorithm[48] best suited for their purpose. They go further
and modify Price’s algorithm to accelerate its convergence.
We do not implement this accelerated methodology, since
the quadratic approximation of the cost used in it is ill suited
to our case where the basins of convergence around minima
are small. Therefore, our approach to global minimization in
the present problem consists of finding “promising regions”
of � using Price’s algorithm and then to search for the minima
within these regions using the simplex algorithm (Nelder and
Mead,[49] Spendley et al.,[50] and Fletcher[51]). Our sequential
approach is illustrated schematically in Figure A1.

As prescribed by Price, we sample a compact set � � �
shaped as an nparam-dimensional hypercube centered at the Peeters
et al. parameters for IF steel with a side dimension of log 20,
with random points , and evaluate
the cost at each of them. We then follow Price’s iter-
ative algorithm, as described in Reference 47 to displace the
original sample points to new coordinates such
that . Briefly, the lth iteration of Price’s
algorithm consists of reflecting the sample point with the high-
est cost, about the cen-
troid of a random collection of nparam � 1 other sample points
and repeating with a different set of random points until

. Each iterative step of this algorithm
thus reduces the maximum cost of the sample at that iteration,

and potentially also lowers mink C(Qk
(l�1)) if

.
The original Price’s algorithm terminates at iteration l* if

the range of costs goes below
a predetermined tolerance. In our application, however, we
find this condition is not attained within reasonable compu-
tation time (10 days on an i686 PC). It appears that the algo-
rithm displaces the original sample points to the vicinity of
several approximately equal minima, as shown in Figure A1(b),
and reflecting a displaced sample point about other points
not in its cluster places it in a region of high cost with large cer-
tainty. It may be possible to rectify this situation by substantially

maxk C (Qk
(l*)) � mink C (Qk

(l*))

C(Qk1

(l)) 
 mink C(Qk
(l�1))

maxk C(Qk
(l�1))

C(Qk1

(l)) 
 C(Qk1

(l�1))

Qk1

(l�1) : C(Qk1

(l�1)) � maxk C(Qk
(l�1))

C(Qk
P) � C(Qk

(0))
Qk

PQk
(0)

C(Qk
(0))

Qk
(0), k � 1, . . . , 25 nparam
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Fig. A1—Schematic depicting the global minimization procedure used.
(a) A uniform sampling of � � � is shown. Contours represent
lines of constant cost.-function value, and arrows represent the direction
of decreasing cost. (b) The new positions of the initial sampling points

after the action of Price’s algorithm. The new points are now concen-
trated in “promising” regions, while not necessarily achieving the global
minimum. (c) Progress of the simplex algorithm starting at one of the promis-
ing points in (b) (circle) to the nearby local minimum (star). This procedure
is repeated from each of the promising points in (b), and the local minimum
with the least cost is considered the global minimum.

(Qk
P)

(Qk
(0))

increasing the number of initial sample points. However, for
keeping computation times reasonable, we terminate Price’s
algorithm when either Price’s original termination condition
is met or when it fails to advance after a cut-off number of
point flipping trials (200). If termination is reached after l*
iterations, we call the Price-generated promising
points.

We proceed onward with the simplex algorithm starting
from each of the . In brief, the simplex algorithm con-
structs an (nparam � 1)-sided simplex, or a regular solid
(equilateral triangle in two dimensions, regular tetrahedron in
three dimensions, etc.) in �, with as one of the vertices.
Each of the other nparam vertices is obtained by perturbing
precisely one of the coordinates of by �log c, where
the sign is decided either way randomly with probability
half. By trial and error, we find c � 1.2 satisfactory. The
simplex algorithm also involves point flipping of the vertex
with maximum cost across the centroid of the other vertices
of the simplex (Figure A1(c)). After a simplex vertex has
remained in it in excess of a cut-off number of flips (15),
we halve each edge of the simplex about the vertex with
minimum cost (Fletcher[51]) and continue vertex flipping
with this smaller simplex. After three successive halvings,
the simplex algorithm terminates, and the vertex with least
cost is taken to be a local minimum near . The preced-
ing simplex algorithm is repeated for k � 1, . . . , 25 nparam

to generate several local minima. The local minimum with
the least cost is then taken to be the global minimum. The
cost at the so-defined global minimum is usually only
insignificantly lower than the cost at a few other local min-
ima. The global minimum is thus practically nonunique; dis-
parate parameter sets generate similar stress-strain responses
with similar costs.

Qk
P

Qk
P

Qk
P

Qk
P

Qk
P � Qk

(l*)

As stated at the outset, the cost-minimizing algorithm
described here is a heuristic method. The minimum found
has no theoretical guarantee of being global optimal. Also,
we sample a very large set � with relatively few points, so
that we can expect at best to arrive at a good approximation
of the global minimum cost. Nevertheless, the preceding
method of determining parameters represents a significant
improvement over manual curve fitting.
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