Thermal and Electrical Properties of $Nb₂AIC$, (Ti, $Nb₂AIC$ and Ti₂AIC

M.W. BARSOUM, I. SALAMA, T. El-RAGHY, J. GOLCZEWSKI, W.D. PORTER, H. WANG, H.J. SEIFERT, and F. ALDINGER

The heat capacities, thermal-expansion coefficients, thermal and electrical conductivities of $Nb₂AIC$ (actual Nb:Al:C mole fractions: 0.525 ± 0.005 , 0.240 ± 0.002 , and 0.235 ± 0.005 , respectively), T₁₂AlC and (Ti, Nb)₂AlC (actual Ti:Nb:Al:C mole fractions: 0.244 \pm 0.005, 0.273 \pm 0.005, 0.240 \pm 0.003, and 0.244 \pm 0.005, respectively) were measured as a function of temperature. These ternaries are good electrical conductors, with a resistivity that increases linearly with increasing temperatures. The resistivity of $(T_i, Nb)_2$ AlC is higher than the other members, indicating a solid-solution scattering effect. The thermal-expansion coefficients, in the 25 \degree C to 1000 \degree C temperature range, are comparable and fall in the narrow range of 8.7 to 8.9 \times 10⁻⁶ K⁻¹, with that of the solid solution being the highest. They are all good conductors of heat, with thermal conductivities in the range between 15 to 45 W/m K at room temperature. The electronic component of the thermal conductivity is the dominant mechanism at all temperatures for $Nb₂AIC$ and (Ti, Nb)₂AlC. The conductivity of Ti₂AlC, on the other hand, is high because the phonon contribution to the conductivity is nonnegligible.

and thermal-expansion coefficients (TECs) were affected by
the formation of the solid solution, the electrical properties **II. EXPERIMENTAL PROCEDURE** were much less altered. Mixtures of graphite $(-325 \text{ mesh}, 99 \text{ pet})$, Al₄C₃ $(-325 \text{ mesh}, 99 \text{ pet})$

I. INTRODUCTION This is one reason, for example, $Ti_4AlN_{2.9}$, is a poorer phonon conductor than $Ti_2AlC^{[1]}$. The second reason is more unique THE ternary carbides Nb₂AlC and T₁₂AlC belong to a
larger class of solids with the general formula $M_{N+1}AX_N$,
where $N = 1$ to 3, M is an early transition metal, A is an
A-group (mostly III and IV A) element, and X

to thermal shock and damage tolerant. Some of them also
exhibit some very attractive high-temperature properties.
Nowotny and co-workers^[17,18] were the first to synthesize
and fully characterize all the known MAX phase

In general, the MAX phases are good thermal conductors mesh, 99.0 pct+), Nb ($1-5 \mu m$, 99.8 pct), and Ti ($-325 \text{ cause they are good electrical conductors}$. The pho-
resh, 99.5 pct) powders were used in this work. The purities, because they are good electrical conductors.^[5,10,14] The pho-
non contribution to the total conductivity, with a few notable based on metal basis alone, are those specified by the supplier non contribution to the total conductivity, with a few notable based on metal basis alone, are those specified by the supplier
exceptions. Ti-AIC being one of them is small despite the (Alpha Aesar, Ward Hill, MA). The pro exceptions, T₁₂AlC being one of them, is small, despite the (Alpha Aesar, Ward Hill, MA). The processing details for fact that these solids are elastically stiff and have high Debye the T₁₂AlC and the Nb-containing sa temperatures.^[6,16] The phonon contribution is suppressed
because of two factors. First, the presence of small concentra-
were mixed in the proper stoichiometry, cold isostatically because of two factors. First, the presence of small concentra-
tions of point defects which, not unlike the binary near-
pressed, sealed in glass under vacuum, and placed in a hot tions of point defects which, not unlike the binary near-
stochastic pressed, sealed in glass under vacuum, and placed in a hot
stoichiometric MX phases, are potent phonon scatterers.^[20,21] isostatic press (HIP). The T \approx 40 MPa for 16 hours at 1300 °C and the Nb₂AlC and (Ti, Nb)₂AlC samples at \approx 100 MPa for 8 hours at 1600 °C. M.W. BARSOUM, Professor, I. SALAMA, and T. EL-RAGHY are with The samples were sliced, mounted, and polished down to a the Department of Materials Engineering, Drexel University, Philadelphia, 1-*um* diamond suspension for with the Oak Ridge National Laboratory, Oak Ridge, TN 37831. was performed on a Cameca SX100 (Paris). Measurements
Manuscript submitted November 9, 2001. were carried out using an accelerating voltage of 20 kV, and were carried out using an accelerating voltage of 20 kV, and

the Department of Materials Engineering, Drexel University, Philadelphia, $1-\mu m$ diamond suspension for optical and scanning electron
PA 19104. Contact e-mail: barsoumw@drexel.edu J. GOLCZEWSKI, microscopy (SEM). The chemi PA 19104. Contact e-mail: barsoumw@drexel.edu J. GOLCZEWSKI, microscopy (SEM). The chemical composition was meas-
H.J. SEIFERT, and F. ALDINGER are with the Max Planck Institut fur metal wed by electron probe X-ray microan

a probe current of 10 nA. The K_{α} lines from the following standards were used for the quantitative analysis: pure Ti for Ti metal and Fe₃C for C. The standard for Nb was Nb metal, where the L_{α} line was used instead.

The densities, δ , of the hipped samples were measured using Archimedes' method in water at ambient temperatures. The resistances were measured using a four-probe technique at 290, 273.15, 77, and 4.2 K. The coefficients of thermal expansions of bulk samples $(4 \times 4 \times 25 \text{ mm}^3)$ were measured under flowing Ar (25 mL/min) in the 25 \degree C to 1200 8C temperature range using a dilatometer (Unitherm, Anter Corp., Pittsburgh, PA). The thermal strains were measured, both on heating and cooling, at a rate of $2 °C/min$. The dilatometer was precalibrated, and the error in the measurements is estimated to be \approx 2 pct.

The heat capacities and thermal diffusivities, D , of $Ti₂AIC$ were measured using the equipment and procedures described in Reference 5; the corresponding values for the other two samples were measured using a different calorimeter and a different laser-flash system. The former was meas-
ured using a differential scanning calirometer (DSC) Fig. 1—Temperature dependence of resistivity in the 4.2 to 300 K range. (Netzsch, 404C, Selb, Germany). The DSC was calibrated using a sapphire crystal; the calibration and all measurements grain size of \approx 14 μ m. The samples were fully dense, with a measured density (δ = 6.37 \pm 0.02 Mg/m³) that is 98% The samples were cylindrical (5 The samples were cylindrical (5-mm diameter, \approx 1-mm of value calculated from the lattice parameters.
thick). For the laser-flash technique, a flat cylindrical sample The starting composition for the solid solution was ture; at which time, the front surface was pulsed, for $1 \approx 1$ vol pct of Nb-Ti carbides and aluminides. According to ms, with a 40 J pulse of a Nd:YAG laser. The increase EPMA results, the actual Ti, Nb, Al, and C mole f in temperature on the rear surface was monitored with a were 0.244 ± 0.005 , 0.273 ± 0.005 , 0.240 ± 0.003 , and pyrometer, and the temperature vs time curve was digitized $0.244 + 0.005$, respectively. Once again, assu pyrometer, and the temperature vs time curve was digitized
and analyzed to estimate the half-time lag, $t_{1/2}$, between the
initial and the stable final temperatures. The D values are
initial and the stable final tempera calculated assuming, $D = 0.134 d^2/t_{1/2}$. The *Ds* are then calculated assuming, $D = 0.134 d^2/t_{1/2}$. The *Ds* are then
converted to thermal conductivities, k_{tot} , using the relation-
ship: $k_{\text{tot}} = c_p D\delta$.
converted to thermal conductivities, k_{tot} , using the relation-
de

A. *Microstructural Characterization*

The Ti₂AlC samples were fully dense, measured density, B. Electrical Properties δ = 4.1 Mg/m³, with an average grain size of \approx 25 μ m. $\delta = 4.1$ Mg/m³, with an average grain size of ≈ 25 μ m. The temperature dependencies of the resistivities, ρ , are Optical and SEM micrographs of the resulting microstruc-
Diotted in Fig. 1. Like all MAX phases graphs revealed that in addition to the $Ti₂AIC$ matrix, two sented by: minority phases, most likely Al_2O_3 and $Ti_3P_i^[9]$ with a total volume fraction of \approx 4 vol. pct exist. The EPMA indicated that the final composition was close to the stoichiometric where ρ_0 , α , and *T* are, respectively, the resistivity at the

mole fractions, as determined by EPMA were 0.525 ± 0.005 , only valid for temperatures >70 K. 0.240 \pm 0.002, and 0.235 \pm 0.005, respectively. If one The resistivity of the solid solution is significantly higher

a measured density ($\delta = 6.37 \pm 0.02$ Mg/m³) that is 98%

dense; the measured density $(5.3 \pm 0.05 \text{ Mg/m}^3)$ is in excellent agreement with theoretical value calculated from **III.** RESULTS AND DISCUSSION the lattice parameters, *viz.* 5.28 Mg/m³.^[19] The grains are platelike, with an average size of 50 to 60 μ m.

plotted in Fig. 1. Like all MAX phases [1], ρ increases ture can be found elsewhere.^[9] Backscattered SEM micro-
linearly with increasing temperatures and can be repre-

$$
\rho = \rho_0 [1 + \alpha (T - T_{\text{ref}})]
$$

composition, T₁₂AlC.
To obtain phase-pure samples of Nb₂AlC, over a dozen resistivity, and the temperature in degrees Kelvin. Least To obtain phase-pure samples of $Nb₂AlC$, over a dozen resistivity, and the temperature in degrees Kelvin. Least different compositions were explored.^[15] The nominal com-
squares fits of the results, shown in Figur squares fits of the results, shown in Figure 1, yield the values position that resulted in predominantly single-phase samples listed in Table I. In all cases, the reference temperature is was $Nb_{1.95}Al_{1.05}Co_{0.95}$. However, the actual Nb, Al, and C 2300 K and $R^2 > 0.999$. Note that these relationships are

assumes the Nb sites to be fully occupied, the resulting than its end members, which implies that solid-solution scatcompound is best represented as $Nb_{2.00}Al_{0.91}C_{0.89}$. In other tering is occurring in this system. In contrast, when the words, it is postulated that vacancies exist on the Al and resistivities of T₁₂AlN, T₁₂AlN_{0.} words, it is postulated that vacancies exist on the Al and resistivities of Ti₂AlN, Ti₂AlN_{0.5}C_{0.5}, and Ti₂AlC are com-
C sites. The resulting predominantly single-phase samples pared, the solid solution appears pared, the solid solution appears to fall on the line joining contained \approx 2 vol pct Al₂O₃ and \approx 1 vol pct Nb-carbides the end members.^[9] It, thus, appears that the effect of substi-
and aluminides. The grains were equiaxed with an average tutions on the M sites on the e tutions on the M sites on the electrical conductivity is greater

Table I. Values of ρ_0 ($\mu\Omega$ m) and α (K)⁻¹ and the Coefficients of a Second-Order Polynomial Assuming $\Delta L/L_0 = A + B$ **T(K)** 1 **CT2 . The Conductivity Results are Only Valid for Temperatures** .**70 K and the Thermal Expansion in the 400–1500 K Temperature Range.**

Compound	μ_0 $(\mu\Omega m)$	α $(K)^{-1}$	Ref. Temp.				\mathbf{D}^2
Nb ₂ AIC	0.29	0.0024	300 K	-1.6×10^{-3}	-4.0×10^{-6}	2.4×10^{-9}	> 0.99
(Ti, Nb) , AlC	0.78	0.001	300 K	-1.8×10^{-3}	-4.5×10^{-6}	2.34×10^{-9}	> 0.99
Ti ₂ AIC	0.36	0.0035	300 K	-1.4×10^{-3}	-3.3×10^{-6}	2.7×10^{-9}	> 0.99

two solid solutions, and consequently, its general validity 2(b)).

MAX phases measured to date,^[1] the values reported here \qquad 3. The solid and dotted lines in Figure 3 represent the best

Fig. 3—Temperature dependence of heat capacities. The data were fit to the Debye model, which results in the various lines superimposed on the data. For Ti₂AlC, the data points above \approx 900 K were not used in the fit (text). To obtain the results listed in Table III, the lines were fit to a thirdorder polynomial.

for $Nb₂AIC$ are relatively high. Such high values are consistent with a structure in which the concentration of defects, in general, and point defects, in particular, are large, *i.e.*, consistent with the proposed structure, $Nb_{2.00}Al_{0.91}C_{0.89}$.

C. *Thermal Properties*

The thermal expansions (on heating and cooling) of the two end members are almost indistinguishable, and both are slightly lower than the solid solution (Figure 2). Least squares fitting of all points (heating and cooling) yields the following TECs: 8.7×10^{-6} K⁻¹ for Nb₂AlC, 8.7×10^{-6} K⁻¹ for T₁₂AlC, and 8.9×10^{-6} K⁻¹ for the (Ti, Nb)₂AlC. The (*b*) R^2 values in all cases was > 0.98 . Given the curvature, a Fig. 2—(*a*) Temperature dependence of thermal expansions upon heating better fit can be obtained by a second order polynomial; the and cooling. The data for the solid solution are shifted upward by a strain coefficients o and cooling. The data for the solid solution are shifted upward by a strain coefficients of which are also listed in Table I. Here, the of 0.002 and those for Ti₂AIC by 0.004. Least-squares fits of the results R^2 val of 0.002 and those for T₂AIC by 0.004. Least-squares fits of the results
are shown by lines superimposed on the data. The inset superimposes the
results of the polynomial fits (text and Table I). (b) Comparison of TCEs
 binary carbides, MX. much more subtle, however (inset in Figure 2(a)). In contrast to the Sn and Pb-containing (211) phases,^[11] there is little correlation between the TECs of the MAX phases and their than those on the X sites. This conclusion is based on only respective binary near-stoichiometric MX phases (Figure

The temperature dependence of the heat capacities, c_p , of
When compared to the residual resistivities of the other the end members and the solid solution are shown in Figure the end members and the solid solution are shown in Figure

Table II. Coefficients of Third-Order Polynomial Used to Fit the c_p Results after They Were Fit to the Debye Model. The **Relevant Equation is:** $c_p = A + \overrightarrow{B} T(K) + CT^2 + DT^3$.

Compound					Temp. Range (K)
Ti ₂ AIC	58.1	0.10	-7.0×10^{-5}	1.8×10^{-8}	$300 - 1600$
(T_i, Nb) , AlC	74.8	0.06	-4.3×10^{-5}	1.2×10^{-8}	$300 - 1600$
Nb ₂ AIC	59.2	0.09	-7.3×10^{-5}	2.0×10^{-8}	$300 - 1600$

diamonds in Figure 5) were, therefore, not used for the fitting
of the results (solid line). Based on the c_p results, it is unlikely
that the other two compositions lost Al; why that is the case
is not clear at this tim ^{*If *k_{ph}* is not a function of temperature, then *dk*_{tot}/dT has the same
in the Ar gas.
^{sign} as the intercept of the electrical resistivity vs T curves at 0 K.}

*k*_{tot}, is shown in Figure 4. The thermal conductivities of
the Nb-containing ternaries increase slightly with increasing
temperatures; conversely, *k*_{tot} of T₁₂AIC decreases. Least-
squares fits of the data, shown

$$
k_{\text{tot}} \text{ (Nb}_2 \text{AIC)} = 21.8 + 0.0037 \, T \quad R^2 = 0.61
$$
\n
$$
k_{\text{tot}} \text{ (Ti, Nb)}_2 \text{AIC} = 14.4 + 0.0074 \, T \quad R^2 = 0.94
$$
\n
$$
k_{\text{tot}} \text{ (Ti}_2 \text{AIC)} = 49 - 0.01 \, T \quad R^2 = 0.90
$$

Because both k_{tot} and ρ are known, the Wiedmann– Franz law:

$$
k_e = L_o T/\rho
$$

where $L_0 = 2.45 \times 10^{-8}$ W Ω/K^2 , can be used to decouple the electronic, k_e , and phonon, k_{ph} , contributions to k_{tot} . This expression has been shown to be valid for many of the MAX phases explored to date.^[1] The results are summarized in Table III for two temperatures. Based on these results the following points are salient.

- (1) The Ti₂AlC has the highest k_{tot} because of its high k_{ph} . Increasing the temperature reduces k_{ph} by about 60 pct.
- (2) At all temperatures, (Ti, Nb)₂AlC has the lowest k_{tot} because both k_{ph} and k_{tot} are lower than the end members presumably because of solid-solution scattering. Increasing the temperature to 1300 K decreases k_{ph} by \approx 50 pct.
- (3) Because for Nb₂AlC, the impossible result that k_e > k_{tot} , is obtained, one must conclude that L_0 < 2.45 \times 10^{-8} W Ω/K^2 . This is not unique to Nb₂AlC but is true Fig. 4—Temperature dependence of thermal conductivity. The results for for other Nb-containing MAX and MX phases, such as $\frac{\text{Ti}_3\text{SiC}_2^{[5]}}{\text{Ni}_3\text{SiC}_2^{[3]}}$ are also included for comparison. $NbC^{[25]}$ and $Nb₂SnC^{[1,14]}$ (last two rows in Table III). Furthermore, given that it is unlikely that k_{ph} of the solid solution is greater than that of Nb₂AlC, the value for the Fits of the data to the Debye model. Once generated, the
Debye curve was, in turn, fitted to a third-order polynomial,
the coefficients of which are listed in Table II.
The reason for the decrease in c_p at temperatures The reason for the decrease in c_p at temperatures higher

The reason for the decrease in c_p at temperatures higher

probably related to the loss of Al from the sample. Recent

work on T₁₂AIC is not clear at this tim
	-

in the Ar gas.
The effect of temperature on the thermal conductivities,
Thus, if the intercept is high, the slope is positive.

the Nb-containing phases, k_{ph} , is quite small, both in relation to *ke* and in absolute terms. Given the low thermal expansions, relatively high Debye temperatures and presumably

Table III. Summary of Thermal Conductivity Results Obtained in This Work; Also Included are Literature Results for TiC, Nb₂SnC, and NbC

Compound	k_{total} at		300 K		1300 K	
	300 K	1300 K	k_e	k_{ph}	k_e	k_{ph}
$TiC_{0.96}$	14.4^{27}	33.4^{27}	$7.35(50)$ pct)	$7(50 \text{ pct})$		
TiC_{r}	3326	3926	12^{26} (36 pct)	21 (62 pct)	24 (66 pct)	(38 pct) 15
Ti ₂ AIC	46	36	20 (43 pct)	26 (57 pct)	$19.7(55 \text{ pct})$	16.3 (45 pct)
(T_i, Nb) , AlC	16.6	24	9.4 (56 pct)	7.2 (43 pct)	20.3 (85 pct)	$3.7(16 \text{ pct})$
Nb ₂ AIC	23	27	$26*(>100$ pct)		32^* (>100 pct)	
			$15.6**$ (77 pct)	>7.4 (32 pct)	$20**$ (73 pct)	>4 (26 pct)
NbC_r	14^{25}		21^{25*} (>100 pct)			
Nb ₂ SnC	17.5^{14}	30.5	$18**$ (>100 pct)		25 (82 pct)	$5(18 \text{ pc})$
	**Assuming Lorenz number = 1.5×10^{-8} W Ω/K (text).		*Since $k_e > k_{\text{tots}}$, the Lorenz number must be <2.45 × 10 ⁻⁸ W Ω/K (text).			

high stiffnesses, this is a somewhat surprising result. It is, **REFERENCES** however, in agreement with notion that the A atoms act as

rattlers in these structures.^[1] Clearly, Ti₂AlC is an exception

presumably because the Al atoms are strongly bound in that

structure, at least at lower temp structure, at least at lower temperatures. However, based on 3. M.W. Barsoum, D. Brodkin, the TEC data, it can be argued that the Al atoms are as well and 1997 , vol. 36, pp. 535-41. the TEC data, it can be argued that the Al atoms are as well
bound in Nb₂AlC as they are in Ti₂AlC. Rietveld analysis
of high-temperature neutron or X-ray diffraction would be
invaluable in answering this question and

A second source of phonon scattering is point defects. It
well established that such defects are potent scattering of the M.C. Ho, H.H. Hamdeh, M.W. Barsoum, and T. El-Raghy: J. Appl. is well established that such defects are potent scatterers of

phonons in near-stoichiometric MX phases, such as T_{avg} and T_{avg} and T_{avg} and T_{avg} and T_{avg}

phonons in near-stoichiometric MX phases and NbC_x .^[20,21] This is especially true here, when it is *A*, 2000, vol. 31A, p. 333. recalled that, if one assumes vacancies on the A and X 8. N. Tzenov and M.W. Barsoum: *J. Am. Cer. Soc.*, 2000, vol. 83, pp. subletting stocharaction attachment of $\frac{\text{Al}}{\text{Al}}$ $\frac{\text{Al}}{\text{Al}}$ 825-32. sublattices, the resulting stoichiometries are $Nb_{2.00}Al_{0.91}C_{0.89}$
and $Ti_{0.94}Nb_{1.06}Al_{0.93}C_{0.94}$. These comments notwithstanding,
it is hereby acknowledged that more work is needed to sort
in M.W. Barsoum, C.J. R out some of these issues. Most indicated at this time would
be low-temperature thermal-conductivity measurements and
 $11.$ T. El-Raghy, S. Chakraborty, and M.W. Barsoum: *J. Eur. Cer. Soc.*, be low-temperature thermal-conductivity measurements and 11. T. El-Raghy, S. Chakrabort
neutron diffraction studies at elevated temperatures as well 2000, vol. 20, pp. 2619-25. neutron diffraction studies at elevated temperatures, as well
as a systematic characterization of the thermal and electrical
properties as a function of stoichiometry.
 $\frac{2000, \text{ Vol. } 20, \text{ pp. } 261-82.}{12. H-I. Yoo, M.W. Barsoum, and T.$

To date, over a dozen MAX phases have been synthesized and T. El-Raghy: *Phys. Rev. B*, 2000, vol. 52, pp. 10194-99.
d characterized ^[1] The highest k_{tot} in the 300 to 1400 K ¹⁴. M.W. Barsoum, T. El-Raghy, W.D. Porte 14. M.W. Barsoum, T. El-Raghy, W.D. Porter, H. Wang, $\frac{1}{10}$ The highest *k*_{tot} in the 300 to 1400 K and M.W. Barsoum, T. El-Raghy, W.D. Porter, H. Wang, $\frac{1}{10}$ Elinelly, it is worth s. Chakraborty: *J. Appl. Phy* temperature range belongs to Ti₂AlC. Finally, it is worth
noting that the microstructural stability of Nb₂AlC is excel-
noting that the microstructural stability of Nb₂AlC is excel-
2002, in press. lent; the grain size of HIP samples at $1600 \degree$ C for 8 hours 16. P. Finkel, M.W. Barsoum, and T. El-Raghy: *J. Appl. Phys.*, 2000, vol. is $\leq \approx 15 \mu m$.^[15] These characteristics indicate that this com-
87, pp. 1701-03 $\frac{87}{17}$, pp. 1701-03.
 Solution $\frac{87}{101}$, pp. 1701-03.
 IT. H. Nowotny: *Progr. Solid State Chem.*, H. Reiss, ed., 1970, p. 27. pound is potentially an excellent candidate for high-tempera
ture applications. However, unless its oxidation resistance
ture applications. However, unless its oxidation resistance
vol. 94, p. 672. in air, which is poor,^[28] can be enhanced, its use will have $\frac{19.5 \times 10^{13} \text{ m}}{20.0 \text{ W.S.}}$ Movember and H. Nowotny: *Z. Metallkd.*, 1980, vol. 71, p. 341. to be confined to nonoxidizing atmospheres.

State Chem., 1999, vol. 146, p. 528. We thank Professor Sommer, for carrying out the heat 24. M.W. Barsoum, J. Golczewski, H. Seifert, and F. Aldinger: *J. Alloys* capacity measurements. This work was partially funded by *Compounds*, 2002, in press.

the Division of Materials Research, National Science Foun-

25. H. Pierson: Handbook of Refractory Carbides and Nitrides, Noyes the Division of Materials Research, National Science Foun-

dation (Grant No. DMR 0072067) The support of Professor

Pubs., Westwood, NJ, 1996. dation (Grant No. DMR 0072067). The support of Professor

M. Ruehle and the Humboldt and Max Planck Foundations

to one of the authors (MB) during his sabbatical leave in

G. Groboth: *J. Alloys Compounds*, 1995, vol. 217,

-
-
-
-
- Payzant, and C. Hubbard: *J. Phys. Chem. Solids*, 1999, vol. 60, pp.
-
-
-
-
-
-
-
- 13. M.W. Barsoum, H.-I. Yoo, I.K. Polushina, V. Yu. Rud', Yu. V. Rud', and T. El-Raghy: *Phys. Rev. B*, 2000, vol. 52, pp. 10194-99.
-
-
-
-
-
-
-
- 21. L.G. Radosevich and W.S. Williams: *Phys. Rev.*, 1969, vol. 188, p. 770.
- 22. V. Keppens, D. Mandrus, B.C. Sales, B.C. Chakoumakos, P. Dai, R. Coldea, M.B. Maple, D.A. Gajewski, E.J. Freeman, and S. Bennington:
- *Nature*, 1998, vol. 395, p. 876. **ACKNOWLEDGMENTS** 23. B.C. Sales, B.C. Chakoumakos, D. Mandrus, and J.W. Sharp: *J. Solid*
	-
	-
	-
	-
	- 28. I. Salama: Master's Thesis, Drexel University, Philadelphia, PA, 2001.