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The modified quasi-chemical model is further extended, in the quadruplet approximation, to treat,
simultaneously, first-nearest-neighbor (FNN) and second-nearest-neighbor (SNN) short-range ordering
(SRO) in solutions with two sublattices. When one sublattice is occupied by only one species, or is
empty, the model reduces to the modified quasi-chemical model for one sublattice in the pair approxima-
tion. The coordination numbers and the ratio of the number of sites on the two sublattices are permitted
to vary with composition, thereby making the model ideally suited to the treatment of liquid solutions
such as molten salts. The model also applies to solid solutions if the number of sites and coordination
numbers are held constant and may be combined with the compound-energy formalism to treat SRO
in a wide variety of types of solutions. A significant computational simplification is achieved by
formally treating the quadruplets as the “components” of the solution.

I. INTRODUCTION two sublattices is necessarily constant. However, in a liquid,
this ratio can vary with composition. For example, in moltenIN the first two articles in the present series,[1,2] the modi- NaCl-CaCl2 solutions, the ratio of cation to anion sites varies

fied quasi-chemical model for short-range ordering (SRO) from 1/1 to 1/2 as the composition varies from pure NaCl
in the pair approximation was developed for solutions in to pure CaCl2.which the species mix on only one lattice or sublattice. The It is an important feature of the present model that the
application of the model was illustrated in two accompa- ratio of the number of sites on the two sublattices is permitted
nying articles by the evaluation and optimization of all avail- to vary with composition. Further flexibility is also provided
able thermodynamic and phase-equilibrium data for the by permitting coordination numbers to vary with composi-
common-anion systems Li,Na,K,Rb,Cs,Mg,Ca//Cl[3] and tion. The model is, thus, ideally suited to describing molten
Li,Na,K,Mg,Ca//F.[4] The next article in the series[5] devel- ionic solutions.
oped the model, in the pair approximation, for SRO involv- In an accompanying article,[6] the use of the model is
ing first-nearest-neighbor (FNN) pairs in solutions with two illustrated by application to the thermodynamic evaluation/
sublattices. The present article extends the treatment, in the optimization of the Li,Na,K,Mg,Ca/F,Cl system.
quadruplet approximation, to take account, simultaneously,
of FNN SRO between sublattices and of second-nearest-
neighbor (SNN) SRO within a sublattice. II. THE MODEL

In solid solutions, the existence of two sublattices is a
manifestation of long-range ordering. For example, in a solid A. Definitions and Coordination Numbers
ionic solution, one can distinguish anionic and cationic sub-

The solution consists of two sublattices, I and II. Letlattices. In a liquid solution, on the other hand, there is no
A,B,C, . . . and X,Y,Z, . . . be the species that reside on sublat-long-range ordering and, strictly speaking, it is incorrect to
tices I and II, respectively. In a salt solution, for example,speak of sublattices. In molten NaCl, for example, the Na+

A,B,C, . . . are the cations and X,Y,Z, . . . are the anions, and,and Cl2 ions should be treated as residing on one sublattice,
in the present article, we shall refer to them as “cations”but with a very high degree of SRO, such that the nearest-
and “anions.” However, the model is also applicable to otherneighbors of Na+ ions are almost exclusively Cl2 ions, and
solutions. For example, in a solid spinel solution, sublatticesvice versa. Solutions of molten salts could, thus, in principle,
I and II would be associated with the tetrahedral and octahe-be treated with a single-sublattice model. However in such
dral cationic sublattices. Although there is a third anionicsolutions, in which the degree of SRO is very high, it is
sublattice, as long as this is occupied by only one speciesconceptually and mathematically simpler to treat the liquid
(O22), the present model can be applied. In other examples,solution as if it consisted of two distinct sublattices. This
lattice vacancies could also be considered as “species,” ordoes not preclude the possibility of a small number of cation-
the same chemical species could occupy both sublattices.cation or anion-anion nearest neighbors, since these can
For instance, in an ordered Cu-Au alloy, Cu and Au residebe treated within the two-sublattice model as substitutional
mainly on the I and II sublattices, respectively. However,defects (cations on anion sites and anions on cation sites).
due to substitutional disordering, some Cu is found on theIn a solid solution, the ratio of the number of sites on the
II sublattice and some Au on the I sublattice. That is, in this
example, A and X would both be Cu, and B and Y would
both be Au.
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Since each quadruplet contains just one SNN pair, ZA is also
the number of quadruplets emanating from an A species.
The term ZX is defined similarly. Then,

ZAnA 5 2nA2/X2 1 2nA2/Y2 1 2nA2/XY 1 nAB/X2 [4]
1 nAB/Y2 1 nAB/XY 1 ???

ZXnX 5 2nA2/X2 1 2nB2/X2 1 2nAB/X2 1 nA2/XY
[5]

Fig. 1—Some quadruplets.

1 nB2/XY 1 nAB/XY 1 ???

(A-[X ]-A) 1 (B-[X ]-B) 5 2(A-[X ]-B) DgAB/X [1] Overall mole (or site) fractions (Xi), FNN pair fractions
(Xij), and quadruplet fractions (Xij/kl) are defined as

The entropy expression was obtained[1,2] by distributing
the pairs over “pair positions.” The term DgAB/X is an empiri- XA 5 nA /(nA 1 nB 1 ???) XX 5 nX /(nX 1 nY 1 ???) [6]
cal parameter of the model, which may be composition

XA/X 5 nA/X /(nA/X 1 nB/X 1 nA/Y ???) [7]dependent. If DgAB/X 5 0, then ideal random mixing results.
If DgAB/X , 0, then reaction [1] is displaced to the right and

XAB/XY 5 nAB/XY /o nij/kl [8]SRO results, with (A-[X ]-B) pairs becoming predominant.
Similarly, when sublattice I is occupied only by the A species,

where (( nij/kl) is the total number of moles of quadruplets.the model considered the formation of (X-[A]-Y ) SNN pairs,
From Eqs. [4] and [5],according to

2(o nij/kl) 5 (ZAnA 1 ZBnB 1 ???)
[9]

(X-[A]-X ) 1 (Y-[A]-Y ) 5 2(X-[A]-Y ) DgA/XY [2]

In the next article in the present series,[5] the following 5 (ZXnX 1 ZY nY 1 ???)
exchange reaction among FNN pairs was considered:

The “coordination-equivalent site fraction” (Yi) is defined as
(A-X ) 1 (B-Y ) 5 (A-Y ) 1 (B-X ) Dgexchange

AB/XY [3]
YA 5 ZAnA /(ZAnA 1 ZBnB 1 ???)

[10]and the FNN pairs were distributed over pair positions. If
Dgexchange

AB/XY , 0, then there is SRO of FNN pairs, with (A-X ) YX 5 ZXnX /(ZXnX 1 ZY nY 1 ???)
and (B-Y ) pairs predominating. As a result, the probability

These are called coordination-equivalent fractions to dis-of an (A-[X ]-B) pair is less than that in a random mixture,
tinguish them from the more usual “charge-equivalent” frac-and so the contribution of the (A-[X ]-B) SNN energy
tions, in which the ni values are multiplied by the ionic(DgAB/X ) to the total Gibbs energy of the solution is reduced.
charges rather than by the coordination numbers. It may beIt was shown[5] that this effect becomes very important when
noted that the Yi values, as defined in Eq. [10], are identical.Dgexchange. is greater than about 50 kJ/mol.
to those defined in the previous publications.[1,2] SubstitutionSince the previous article[5] considered the quasi-chemical
into Eqs. [4] and [5] givesmodel only in the pair approximation, it was not possible

to treat both FNN and SNN SRO simultaneously. For sys-
YA 5 XA2/X2 1 XA2/Y2 1 XA2/XY 1 1–2 XAB/X2 1 1–2 XAB/XY 1 ???tems such as K,Mg//Cl,F, a large degree of SNN SRO is

observed in the binary KCl-MgCl2 and KF-MgF2 subsys- [11]
tems, and this cannot be neglected in a quantitative model.
In the present article, we consider the distribution, not of YX 5 XA2/X2 1 XB2/X2 1 XAB/X2 1 1–2 XA2/XY 1 1–2 XAB/XY 1 ???
pairs, but of “quadruplets:” A2X2, ABX2, A2XY, ABXY, etc.

[12]As illustrated in Figure 1, each quadruplet consists of two
SNN cations and two SNN anions, the cations and anions

In a solid solution, it is clearly required that ZA 5 ZB 5being mutual FNNs. Both FNN and SNN SRO can, thereby,
ZC 5 … and that ZX 5 ZY 5 ZZ 5 … However, in a liquid,be treated simultaneously.
this is not necessary and, furthermore, the coordination num-In a solid, all the various possible configurations of the
bers can vary with composition. As shown previously,[1–5]

quadruplets on the sublattices could be considered, as is
the use of variable coordination numbers is an importantdone in the cluster variation method (CVM),[7] and this is
feature of the present model, which provides the necessarynecessary for the full quantitative modeling of order-disorder
flexibility to fix the compositions of maximum SRO inphenomena. However, this additional complexity is neither
each subsystem.necessary nor possible in the case of liquid solutions and

Let Z A
AB/XY be the SNN coordination number of an A spe-can also be neglected in the modeling of solid solutions with

cies when (hypothetically) all A species exist in ABXY qua-a limited amount of SRO.
druplets. We then letLet ni (i 5 A,B, . . . X,Y . . .) be the number of moles of

species i; nA/X the number of moles of FNN (A-X ) pairs;
and nA2/X2, nAB/X2, nAB/XY , etc., the numbers of moles of A2X2,
ABX2, ABXY, etc., quadruplets. (Note that nAB/X2 and nBA/X2 1

ZA
5

2nA2/X2

ZA
A2/X2

1
2nA2/Y2

ZA
A2/Y2

1
2nA2/XY

ZA
A2/XY

1
nAB/X2

ZA
AB/X2

1
nAB/XY

ZA
AB/XY

1 ???

2nA2 /x2 1 2nA2/Y2 1 2nA2/XY 1 nAB/X2 1 nAB/XY 1 ???represent the same quantity and can be used interchange-
ably.) Let ZA be the SNN coordination number of A (i.e.,
the number of SNN pairs emanating from an A species). [13]
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and Z Cl
KMg/Cl2 5 3, then the quadruplet KMgCl2 is formally

treated as a K1/3Mg1/6Cl2/3 complex.
It must be stressed that this is only a formalism. The1

ZX
5

2nA2/X2

Z X
A2/X2

1
2nB2/X2

Z X
B2/X2

1
2nAB/X2

Z X
AB/X2

1
nA2/XY

Z X
A2/XY

1
nAB/XY

Z X
AB/XY

1 ???

2nA2/X2 1 2nB2/X2 1 2nAB/X2 1 nA2/XY 1 nAB/XY 1 ??? entropy expression in the quasi-chemical model (Section
II–D) is not obtained by distributing the quadruplets as if

[14] they were molecules (as is, in fact, done in various “associate
models”). It is not essential that this formalism be used.This composition dependence is chosen because substitution
However, it aids in the conceptualization and in many deriva-of Eqs. [13] and [14] into Eqs. [4] and [5] yields the following
tions. For example, if nA2/X2, nA2/XY, etc., in Eq. [15] aresimple relations:
replaced by nA2/ZA

A2/X2
X2/ZX

A2/X2
, nA2/ZA

A2/XYX1/ZX
A2/XYY1/ZY

A2/XY
, etc., then

the number of moles of A is the same on both sides ofnA 5
2nA2/X2

Z A
A2/X2

1
2nA2/Y2

Z A
A2/Y2

1
2nA2XY

Z A
A2/XY

1
nAB/X2

Z A
AB/X2

1
nAB/XY

Z A
AB/XY

1 ??
the equation, which, thereby, becomes a “normal” mass-
balance equation.[15]

Furthermore, it can be seen that all quadruplets such as
K1/3Mg1/6Cl2/3 in a molten salt solution must be electrically

nX 5
2nA2/X2

Z X
A2/X2

1
2nB2/X2

Z X
B2/X2

1
2nAB/X2

Z X
AB/X2

1
nA2/XY

Z X
A2/XY

1
nAB/XY

Z X
AB/XY

1 ?? neutral. This stoichiometry represents the composition of a
hypothetical solution formed exclusively of these quadru-
plets and containing one mole of quadruplets. That is, one[16]
mole of KMgCl2 quadruplets contains 1/3 mol K+, 1/6 mol

Note that in the A, B, C, . . .//X subsystem, where sublattice Mg2+, and 2/3 mol Cl2.
II is occupied only by the X species, the Z i

ij/X2 values are In general, for a molten salt solution, if qA , qB , . . . and
identical to the SNN coordination numbers Z i

ij/X, defined in qX , qY , . . . are the absolute cationic and anionic charges,
the previous articles.[1–4]

then the charge-neutrality condition for ABXY (i.e.
As in the previous article,[5] we may also define the FNN A1/ZA

AB/XY B1/ZB
AB/XY X1/ZX

AB/XYY1/ZY
AB/XY) quadruplets is as follows:

coordination number zA as the number of FNN pairs emanat-
ing from an A species and similarly for zX. Let z/2 be the qA

ZA
AB/XY

1
qB

ZB
AB/XY

5
qX

ZX
AB/XY

1
qY

ZY
AB/XY

[22]
ratio of SNN to FNN pairs:

Zi /zi 5 z/2 [17] This equation also holds when A 5 B and/or when X 5
Y. The previous example of K+

1/3 Mg2+
1/6Cl2

2/3 clearly satisfies
In the general case, the ratios ZA /zA , ZB /zB , ZC /zC , etc., Eq. [22]. In the most general form of the model, it is not

could all be different and could even depend upon composi- essential for Eq. [22] to apply. However, in practice, for
tion. However, this would make the model unnecessarily liquid solutions, which can be described as consisting of two
complex, particularly for the case of liquids. Hence, it is “sublattices,” this equation will almost always be satisfied.
assumed that the ratio Zi /zi is the same for all species i. Figure 2 shows a traditional composition square of a

It follows that the coordination-equivalent fractions reciprocal ternary, A,B//X,Y system. One charge equivalent
defined in Eq. [10] are also given by of each pure component is shown at each corner. For exam-

ple, in the Na,Ca//F,SO4 system, where the absolute ionicYA 5 zAnA /(zAnA 1 zBnB 1 ???) [18]
charges are qA 5 1, qB 5 2, qX 5 1, and qY 5 2, the

and similarly for YX ; the total numbers of pairs and quadru- components would be NaF, Ca1/2F, Na(SO4)1/2, and
plets are related by Ca1/2(SO4)1/2. The axes are the usual charge-equivalent frac-

tions Y 8A and Y 8X (not to be confused with YA and YX in Eq.o ni/j 5 (4/z ) o nij/kl [19]
[10]). The formal compositions of quadruplets such as

Each quadruplet contains one SNN pair and two FNN A2/ZA
A2/X2

X2/ZX
A2/X2

are at the corners. (Note that, from Eq. [22],
pairs emanating from a given ion. Hence, z is equal to the the ratio Z A

A2/X2 /Z X
A2/X2, is the same as the ratio (qA/qX).) The

number of quadruplets emanating from, or containing, a formal compositions of quadruplets such as
FNN pair. Therefore, A1/ZA

AB/X2
B1/ZB

AB/X2
X2/ZX

AB/X2
are found on the sides of the square,

z nA/X 5 4nA2/X2 1 2nAB/X2 1 2nA2/XY 1 nAB/XY 1 ??? [20] as shown in Figure 2.

Choice of Z m
ij/kland so, from Eq. [19],

For a solid solution, it is required that all cationic coordina-
XA/X 5 XA2/X2 1 1–2 XAB/X2 1 1–2 XA2/XY 1 1–4 XAB/XY 1 ??? tion numbers (Z i

ij/kl) be equal and that all anionic coordination
numbers (Z k

ij/kl) be equal. For liquid solutions, on the other[21]
hand, Z A

AB/X2 and Z B
AB/X2 are chosen to correspond to the

composition of maximum SNN SRO in the A,B//X binary
subsystem, as discussed previously.[1–4] For example, forB. Formal Treatment of Quadruplets as “Complexes”
KCl-MgCl2 solutions, SRO is at a maximum near the compo-or “Molecules”
sition K2MgCl4. Hence, we set Z Mg

KMg/Cl2 /Z K
KMg/Cl2 5 2.0.

The quadruplet ABXY may be treated formally as the Since the quasi-chemical expression for the entropy (Sec-
complex or molecule A1/ZA

AB/XY B1/ZB
AB/XY X1/ZX

AB/XY Y1/ZY
AB/XY. tion II–D) is, of necessity, only approximate, it is not neces-

Similarly, an A2X2 quadruplet is formally treated as sary that the values of Z m
ij/kl used in the model correspond

A2/ZA
A2/X2

X2/ZX
A2/X2

, etc. For example, in molten KCl-MgCl2 exactly to the actual coordination numbers. In fact, it is
found that better representations are frequently obtained withsolutions, if we were to choose Z K

KMg/Cl2 5 3, Z Mg
KMg/Cl2 5 6,
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Fig. 2—Composition square of the AB//XY reciprocal ternary system showing formal “compositions” of the various quadruplets.

intentionally nonphysical values of Z m
ij/kl, since one can

g8Al2/O2 5 1 6
Z Al

Al2/O2
2 g8Al1/3O1/2 5 1 4

Z O
Al2/O2

2 g8Al1/3O1/2thereby partially compensate for the error caused by the
entropy approximation. However, it is important that the
ratios of Z m

ij/kl correspond to the compositions of maximum [26]
SRO, as discussed previously.

That is, g8Al2/O2 is the standard Gibbs energy of Al2O3 perThe coordination numbers Z i
AB/XY, for the “reciprocal”

mole of Al2O2 quadruplets.ABXY quadruplets (A Þ B, X Þ Y ) can be chosen to reflect
Previously,[5] g8A/X was defined as the standard Gibbsa tendency to SRO at some particular composition in the

energy per mole of FNN pairs. Therefore,reciprocal A,B//X,Y solutions. However, in many cases, there
will be no such tendency, and one can set the value of g8A2/X2 5 (4/z)g8A/X [27]
Z i

AB/XY as an “average” of the values in the A2XY, B2XY, ABX2,
and ABY2 quadruplets. It is suggested that this be done by The Gibbs energy of the solution is given by the model as
defining the “composition” of the ABXY quadruplets as lying

G 5 (nA2/X2g8A2/X2 1 nB2/X2g8B2/X2 1 nA2/Y2g8A2/Y2 1 ???)at the average of the values of Y 8X of the quadruplets A2XY
and B2XY and at the average of the values of Y 8A of the

1 (nAB/X2gAB/X2 1 nAB/Y2gAB/Y2 1 nA2/XYgA2/XY 1 ???) [28]quadruplets ABX2 and ABY2, as illustrated in Figure 2. This
construction corresponds to the following “default” values: 1 (nAB/XYgAB/XY 1 ???) 2 T DS config

where gAB/X2, gAB/XY , etc., are the Gibbs energies of one mole1
Z A

AB/XY
5 1 Z X

AB/X2

qxZ A
AB/X2

1
Z Y

AB/Y2

qYZ A
AB/Y2

2 F

[23]
of the quadruplets.

Let us consider the following reaction for the formation
of quadruplets:1

Z X
AB/XY

5 1 Z A
A2/XY

qAZ X
A2/XY

1
Z B

B2/XY

qBZ X
B2/XY

2 F
(A2X2)quad 1 (B2X2)quad 5 2(ABX2)quad DgAB/X2 [29]

and similarly for Z B
AB/XY and Z Y

AB/XY, where
for which the Gibbs energy change is DgAB/X2. If we do not
use the shorthand notation, the Eq. [29] is written:

F 5
1
8 1 qX

Z X
AB/X2

1
qY

Z Y
AB/Y2

1
qA

Z A
A2/XY

1
qB

Z B
B2/XY

2 [24]

1Z A
A2/X2

Z A
AB/X2

2 A2/ZA
A2/X2

X2/ZX
A2/X2

1 1Z B
B2/X2

Z B
AB/X2

2 B2/ZB
B2/X2

X2/ZX
B2/X2

C. Gibbs Energy Equation
5 2A1/ZA

AB/X2
B1/ZB

AB/X2
X2/ZX

AB/X2
[30]

We now define

When DgAB/X2 5 0, the binary A,B//X system is ideal. In
g8A2/X2 5 1 2qA

Z A
A2/X2

2 g8A1/qAX1/qX
5 1 2qX

Z X
A2/X2

2 g8A1/qAX1/qX
[25] this case,

where g8A1/qAX1/qX is the standard Gibbs energy of the pure 2gAB/X2 5 1Z A
A2/X2

Z A
AB/X2

2 g8A2/X2 1 1Z B
B2/X2

Z B
AB/X2

2 g8B2/X2 [31]
component per charge equivalent. For Al2O3, for example,
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Now DgAB/X2 is an empirical parameter of the model. It Note that Eq. [22] applies, and that the definition in Eq.
[37] holds, even if one does not choose to define Z i

AB/XY asmay be expressed as
in Eqs. [23] and [24].

DgAB/X2 5 Dg8AB/X2 1 (DgAB/X2 2 Dg8AB/X2) [32] Substitution of Eqs. [33], [35], and [37] into Eq. [28] gives
where Dg8A2/X2 is a constant, independent of composition, and G 5 (nA2/X2g8A2/X2 1 ??? 1 nAB/X2g8AB/X2 1 nA2/XYg8A2/XY(DgAB/X2 2 Dg8AB/X2) is expanded as an empirical polynomial
in the quadruplet fractions Xij/kl . 1 ??? 1 nAB/XYg8AB/XY 1 ???)

As discussed in Section II–E, DgAB/X2 in the A,B,C, . . .//
X subsystem is identical to DgAB/X of reaction [1] in this

1
1
2 1nAB/X2 1

Z X
AB/X2

2 1nAB/XY

Z X
AB/XY

1
nAB/XZ

Z X
AB/XZ

1 ???22subsystem, and Dg8AB/X2 and the coefficients of the polyno-
mial expansion of (DgAB/X2 2 Dg8AB/X2) are all numerically
equal to the coefficients obtained from optimization of data

(DgAB/X2 2 Dg8AB/X2) 1
1
2 1nA2/XY 1

Z A
A2/XY

2 1nAB/XY

Z A
AB/XY

[38]in this subsystem, as described previously.[2,3,4]

We now define the “standard molar Gibbs energy of the
ABX2 quadruplets” as

1
nAC/XY

Z A
AC/XY

1 ???22 (DgA2/XY 2 Dg8A2/XY) 1
1
2

???

2g8AB/X2 5 1Z A
A2/X2

Z A
AB/X2

2 g8A2/X2 1 1Z B
B2/X2

Z B
AB/X2

2 g8B2/X2 1 Dg8AB/X2

1
1
2

(nAB/XY (DgAB/XY 2 Dg8AB/XY) 1 nAB/YZ
[33]

Similarly, for the quadruplet formation reaction, (DgAB/YZ 2 Dg8AB/YZ) 1 ????) 2 T DS config

(A2X2)quad 1 (A2Y2)quad 5 2(A2XY )quad DgA2/XY [34]

D. The Configurational Entropywe define

In Eq. [38], DSconfig is given by distributing all the quadru-
2g8A2/XY 5 1Z X

A2/X2

Z X
A2/XY

2 g8A2/X2 1 1Z Y
A2/Y2

Z Y
A2/XY

2 g8A2/Y2 1 Dg8A2/XY plets randomly over “quadruplet positions.” Unfortunately,
an exact mathematical expression for this is unknown, and
so approximations must be made. Letting DSconfig equal[35]
2R ( (nij/kl ln Xij/kl) would clearly overcount the number of

To now define g8AB/XY for the reciprocal ABXY quadruplet, possible configurations. The following expression is
consider that in an ideal solution, gAB/XY (when normalized proposed:
per charge equivalent) would vary linearly with composition

(2DSconfig /R) 5 (nA ln XA 1 nB ln XB 1 ????in Figure 2 between points x and y and between points a
and b. To this linear variation is added the sum of

1 nX ln XX 1 nY ln XY 1 ???)Dg8AB/X2, Dg8AB/Y2, Dg8A2/XY, and Dg8B2/XY (which were included
in Eqs. [33] and [35]) corrected to the same molar basis,

1 1nA/X ln
XA/X

YAYX
1 nB/X ln

XB/X

YBYX
and finally we add the composition-independent term
Dg8AB/XY of the Gibbs energy change Dg8AB/XY of the quadruplet
formation reaction:

1 nA/Y ln
XA/Y

YAYY
1 ???2

[39]
1–2 (ABX2 1 ABY2 1 A2XY 1 B2XY ) 5 2(ABXY )

[36]
DgAB/XY 5 Dg8AB/XY 1 (DgAB/XY 2 Dg8AB/XY)

1 1nA2/X2 ln
XA2/X2

X 4
A/X /Y 2

AY 2
X

1 ???
where DgAB/XY is an empirical parameter of the model,
obtained from optimization of data for the reciprocal A,B//
X,Y system, as discussed in Section II–E. In the ideal case,

1 nAB/X2 ln
XAB/X2

2X 2
A/XX 2

B/X /YAYBY2
X

DgAB/XY 5 0. The resultant definition of g8AB/XY is

g8AB/XY 5 1 qX

Z X
AB/XY

1
qY

Z Y
AB/XY

2
21

1 qXZ A
A2/X2

2Z A
AB/XYZ X

AB/XY
? g8A2/X2 1 nA2/XY ln

XA2/XY

2X 2
A/XX 2

A/Y /Y 2
AYXYY

1 ???

1
qXZ B

B2/X2

2Z B
AB/XYZ X

AB/XY
? g8B2/X2 1

qYZ A
A2/Y2

2Z A
AB/XYZ Y

AB/XY
? g8A2/Y2 1 nAB/XY ln

XAB/XY

4XA/XXB/XXA/YXB/Y /YAYBYXYY
1 ???2

Consider the case when all Dgij/kl values for reactions [32],
1

qYZ B
B2/Y2

2Z B
AB/XYZ Y

AB/XY
? g8B2/Y22 [37]

[34], and [36] are zero and also when all Dgexchange
ij/kl values

(as in reaction [3]) are zero. In this case, the distributions
of A,B,C, . . . and X,Y,Z, . . . on each sublattice are completely

1
1
4 1Z X

AB/X2

Z X
AB/XY

Dg8AB/X2 1
Z Y

AB/Y2

Z Y
AB/XY

Dg8AB/Y2 1
Z A

A2/XY

Z A
AB/XY

random. There is neither FNN nor SNN SRO. Hence, the
probability of finding an A-X FNN pair is equal to (YAXX),
that is,

Dg8A2/XY 1
Z B

B2/XY

Z B
AB/XY

Dg8B2/XY2 1 Dg8AB/XY
Xi/j 5 YiYj [40]
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Furthermore, the probability of finding an ABXY quadruplet
is given, with reference to Figure 1, by the probability that 1 o

n
gijk

AB(n)/X2 1 Yn

jAB/X2
2 11 2

YA

jAB/X2
2

k21

2pair 1 is an A-X pair, times the conditional probabilities that
pairs 2, 3, and 4 are A-Y, Y-B, and B-X pairs, respectively,
times 4.0, which is the number of possible permutations of where the summations over l, m, and n are as described
this order of bonds. Hence, previously.[2] Equation [45] may be compared to Eq. [32].

The empirical coefficients Dg8AB/X2 and gij
AB/X2 are found byXAB/XY 5 4XA/X (XA/Y /YA) (XB/Y /YY) (XB/X /YBYX) [41]

optimization of data in the A,B//X binary system, the other
Similarly, one can derive terms in Eq. [45] all being equal to zero in this binary system.

For example, if all gij
AB/X2 values are zero and if Dg8AB/X2 isXAB/X2 5 2X 2

A/XX 2
B/X /(YAYBY 2

X) and XA2/X2 5 X 4
A/X /Y 2

AY2
X small, then the model approaches regular-solution behavior,

with Dg8AB/X2 as the regular-solution parameter. The[42]
coefficients gijk

AB(C)/X2 are ternary parameters, which should
Substitution of Eqs. [40] through [42] into Eq. [39] gives not be large and which give the influence of the presence

the correct ideal (Temkin) entropy: 2R(nA ln XA 1 nB ln of a third cation, C, upon the energy of formation of SNN
XB 1 ??? 1 nX ln XX 1 nY ln XY 1 ???). Also, for this ideal (A-[X ]-B) pairs. These are found by optimization of available
case, substitution of Eqs. [20], [27], [33], [35], and [37] into data in the A,B,C//X ternary subsystem. In the absence of
Eq. [38] gives the correct expression for an ideal solution: such data, these coefficients can be set to zero. The variables,

Yi , xAB/X2, xBA/X2, jAB/X2, and jBA/X2 were defined pre-G 5 (nA/Xg8A/X 1 nA/Yg8A/Y 1 ???)
[43] viously.[2] They are functions of the quadruplet fractions

1 RT (nA ln XA 1 nB ln XB 1 nX ln XX 1 ???) Xij/X2, which are equal to the SNN bond fractions in the
A,B,C,…//X subsystem.Consider next the case, where the Dgexchange

ij/kl values of
The coefficients Dg8AB/X2, gij

AB/X2, and gijk
AB(C)/X2 are identicalreaction [3] are not all zero, so that there is FNN SRO. In

to the coefficients Dg8AB, gij
AB, and gijk

AB(C) of the previousthis case, Eq. [40] does not hold. Equations [41] and [42]
articles,[2,3,4] in which the quasi-chemical model was devel-hold exactly in subsystems such as A,B,C, . . .//X or A//X,Y,Z,
oped and applied for the case where sublattice II is occupied. . . , where one sublattice is occupied exclusively by one
solely by the X species.species, but do not hold exactly in general, because they

Equation [45] holds for the A,B,C,…//X subsystem. Thewere derived under the assumption of a random distribution
composition variables xAB/X2 and xBA/X2 were defined in Eq.of FNN pairs. Nevertheless, calculations show that Eqs. [41]
[27] of the previous article[2] in terms of ratios of the quadru-and [42] still hold approximately, and their use results in
plets fractions Xij/X2. For example, if the symmetric (Kohler)errors of only a few percent for absolute values of
model is used in all ternary subsystems (Reference 2), thenDgexchange

ij/kl as large as 100 kJ/mol. The approximation, of
xAB/X2 5 (XA2/X2/(XA2/X2 1 XAB/X2 1 XB2/X2)). In the multicom-course, becomes exact as Dgexchange approaches zero. Substi-
ponent A,B,C,. . .//X,Y,Z,. . . system, we assume thattution of Eqs. [41] and [42] into Eq. [39] gives the expression
DgAB/X2 is constant along composition paths where these

(2DS config /R) 5 (nA ln XA 1 nB ln XB 1 ???) ratios are constant. Hence, the factors xAB/X2 and xBA/X2 in
Eq. [45] remain unchanged in the multicomponent system.1 (nX ln XX 1 nY ln XY 1 ???) [44]

In the A,B,C,. . .//X subsystem, from Eq. [11], the equiva-
lent fraction Yi is equal to (Xi2/X2 1 1–2 (XiA/X2 1 XiB/X2 1 ???)),1 1nA/X ln

XA/X

YAYX
1 nB/Y ln

XB/Y

YBYY
1 ???2 which, from Eq. [21], is equal to Xi/X in this subsystem. In the

multicomponent system, we assume that the ternary terms in
which is identical to that given previously[5] for the two- Eq. [45] are constant along lines of constant Xi/X /YX values
sublattice quasi-chemical model with FNN, but no SNN, (where YX 5 1 in the A,B,C,. . .//X subsystem). Therefore,
SRO. the Yi factors in Eq. [45] are replaced by Xi/X /YX. The factors

jAB/X2
and jBA/X2

were defined previously[2] as sums of YA ,
YB , YC … Hence, in Eq. [45], these are replaced by theE. Second-Nearest-Neighbor Interaction Terms
corresponding sums of XA/X /YX , XB/X /YX , XC/X /YX , etc.

The term DgAB/X2 is an empirical parameter of the model, Finally, then, DgAB/X2 is given in the multicomponent sys-
obtained by optimization of data in the A,B,C,. . .//X subsys- tem by
tem, which is related to the Gibbs energy of formation of
SNN pairs according to reactions [29] or [1]. As in Eq. [30]

DgAB/X2 5 Dg8AB/X2 1 o
(i1j)$1

x i
AB/X2x

j
BA/X2g

ij
AB/X2of the previous publication,[2] in the A,B,C,. . .//X subsystem,

DgAB/X2 is expanded as

1 o
i$0
j$0
k$1

x i
AB/X2x

j
BA/X2 1ol

gijk
AB(l)/X2

Xl/X

YX
(1 2 jAB/X2DgAB/X2 5 Dg8AB/X2 1 o

(i1j)$1
x i

AB/X2x
j
BA/X2g

ij
AB/X2

1 o
i$0
j$0
k$1

x i
AB/X2x

j
BA/X2 1ol

gijk
AB(l)/X2Yl(1 2 jAB/X2

[45] 2 jBA/X2)
k21 1 o

m
gijk

AB(m)/X2 1 Xm/X

YXjBA/X2
2 [46]

11 2
XB/X

YXjBA/X2
2

k21

1 o
n

gijk
AB(n)/X2 1 Xn/X

YXjAB/X2
22 jBA/X2)

k21 1 o
m

gijk
AB(m)/X2 1 Ym

jBA/X2
2 11 2

YB

jBA/X2
2

k21
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In order to provide more flexibility in optimizing data in
reciprocal systems, the parameter DgAB/XY for reaction [36]11 2

XA/X

YXjAB/X2
2

k21

1 o
YÞX

gijk
AB/X2(Y)YY (1 2 YX)k212 can also be expanded as follows and substituted into Eq. [38]:

DgAB/XY 5 Dg8AB/XY 1 o
i$1

(gi
AB/XY(AX)X i

A2/X2where xAB/X2 and xBA/X2 are ratios of xij/X2, as defined pre-
viously,[2] and where jAB/X2 and jBA/X2, defined previously[2]

as sums of YA ,YB ,YC , . . , are now the corresponding sums 1 gi
AB/XY(BX)X i

B2/X2 [49]
of XA/X /YX , XB/X /YX , etc.

1 gi
AB/XY(AY) X i

A2/Y2 1 gi
AB/XY(BY) X i

B2/Y2)The final term in Eq. [46] is zero in the A,B,C,. . .//X
subsystem. The empirical coefficients gijk

AB/X2(Y) are reciprocal where Dg8AB/XY, gi
AB/XY(AX), etc., are additional empirical

ternary coefficients that give the effect of the presence of a parameters obtainable by optimization of available data for
Y anion upon the energy of formation of ABX2 quadruplets. the reciprocal ternary A,B,//X,Y system. In the absence of
These coefficients, which should not be large, are found by such data, these terms should be set to zero.
optimization of available data for the A,B//X,Y reciprocal
ternary subsystem. In the absence of such data, these coeffi- F. The Quasi-chemical Model in the “Complex”
cients may be set to zero. Formalism

A similar expansion of DgA2/XY for the formation of A2 XY
As discussed in Section II–B, if the quadruplets ABXYquadruplets may be written:

are formally treated as complexes or molecules (A1/ZA
AB/XY

DgA2/XY 5 Dg8A2/XY 1 o
(i1j)$1

x i
A2/XYx j

A2/YXgij
A2/XY B1/ZB

AB/XY X1/ZX
AB/XYY1/ZY

AB/XY), then the mass balances of Eq. [15]
become “normal” mass balances. Furthermore, all the
Dgij/kl parameters in Eq. [38] have been shown in Section

1 o
i$0
j$0
k$1

x i
A2/XYx j

A2/YX 1ol
gijk

A2/XY(l)
YA/l

YA
(1 2 jA2/XY II–E to be expressible solely in terms of the quadruplet

fractions Xij/kl. (The pair fractions Xi/j and equivalent fractions
of Eqs. [46] and [47] can be expanded in terms of Xij/kl

through the use of Eqs. [11], [12], and [21].) Hence, apart
2 jA2/YX)k21 1 o

m
gijk

A2/XY(m) 1 XA/m

YAjA2/YX
2 [47] from the (2TDSconfig) term, Eq. [38] is of the same form as

an expression for the Gibbs energy of a mixture of molecules
(A1/ZA

AB/XYB1/ZB
AB/XY X1/ZX

AB/XYY1/ZY
AB/XY) on a single lattice, with the11 2

XA/Y

YYjA2/YX
2

k21

1 o
n

gijk
A2/XY(n) 1 XA/n

YAjA2/XY
2 nonconfigurational “excess” terms expressed as polynomials

in the mole fractions XAB/XY of these molecules. Hence, the
same existing algorithms and computer subroutines that are

11 2
XA/X

YAjA2/XY
2

k21

1 o
BÞA

gijk
A2(B)/XYYB(1 2 YA)k212 commonly used for simple polynomial-solution models can

be used directly for the quasi-chemical model merely by
including the additional configurational entropy terms.In Eq. [45], DgAB/X2 in the A,B,C,. . .//X subsystem is

Furthermore, the fact that Eq. [38] can be written solelyexpanded as a polynomial in the quadruplet fractions
in terms of the fractions Xij/kl of the quadruplet “components”Xij/X2, which are equal to the SNN pair fractions in this
permits the chemical potentials to be calculated easily insubsystem. In earlier versions of the quasichemical model,
closed explicit form. By the same argument as that leadingDgAB/X2 was expanded in terms of the equivalent fractions
to Eq. [36] of Reference 1, the chemical potential of theYA ,YB ,YC . . . . The general expression is[2]

actual component A1/qAX1/qX is given in terms of the “chemi-
cal potential (mA2/X2) of the quadruplet A2X2” byDgAB/X2 5 Dg8AB/X2 1 o

(i1j)$1 1
jAB/X2

jAB/X2 1 jBA/X2
2

i

mA1/qAX1/qX
5 mA2/X2 (ZA

A2/X2 /2qA) 5 mA2/X2 (ZX
A2/X2 /2qX) [50]

where1 jBA/X2

jAB/X2 1 jBA/X2
2

j

qij
AB/X2 1 o

i$0
j$0
k$1

1 jAB/X2

jAB/X2 1 jBA/X2
2

i

mA2/X2 5 (­G/­nA2/X2)nij/kl [51]

Substitution of Eq. [38] into Eq. [51] then gives

1 jBA/X2

jAB/X2 1 jBA/X2
2

j

1ol
qijk

AB(l)/X2Yl (1 2 jAB/X2 2 jBA/X2)
k21

[48]

mA2/X2 5 g8A2/X2 1 RT 12 ln XA

Z A
A2/X2

1
2 ln XX

Z X
A2/X2 [52]

1o
m

qijk
AB(m)/X2 1 Xm

jBA/X2
2 11 2

XB

jBA/X2
2

k21

1 ln
XA2/X2

(X 4
A/X /(Y 2

AY 2
X))

1
4
z

ln
XA/X

YAYX
2 1 gE

A2/X2

where gE
A2/X2 is calculated from the nonconfigurational “gE”

1o
n

qijk
AB(n)/X2 1 Xn

jAB/X2
2 11 2

XA

jAB/X2
2

k21

2 polynomial terms of Eq. [38] in the usual way:

gE
A2/X2 5 gE 1 (­gE /­XA2/X2) 2 o

ij/klÞA2/X2

Xij/kl (­gE /­Xij/kl)This equation is clearly very similar to Eq. [45]. If the
A,B,C,. . .//X subsystem was optimized using this expansion,

[53]then Eq. [48] can be substituted into Eq. [38] after first
replacing all Yi terms by Xi/X /YX, replacing all jAB/X2 and

III. DISCUSSIONjBA/X2 terms by the corresponding sums of Xi/X /YX , and after
adding reciprocal ternary terms if required, just as was done Many binary and ternary common-ion systems A,B,C,

. . .//X have already been evaluated and optimized, by usingin Eq. [46].
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a random-mixing (Bragg–Williams) expression for DSconfig The model is well suited to liquid solutions where the
ratio of the number of sites on the two sublattices can varyand by expanding the excess Gibbs energy as a simple poly-

nomial in the mole fractions. For example, in a binary A,B// with composition. Further flexibility is provided by permit-
ting coordination numbers to vary with composition. Never-X system, this is equivalent to writing:
theless, the model also applies to solid solutions if the

G 5 (nA/Xg8A/X 1 nB/Xg8B/X) 1 RT (nA ln XA 1 nB ln XB)
[54]

number of lattice sites and coordination numbers are held
constant. The model can, thus, be combined with the com-1 nAB/X2 DgAB/X2 pound-energy formalism[8,9] to treat a wide range of types
of solutions (slags, mattes, ceramics, salts, and alloys), pointwith nAB/X2 now equal to (( nij/kl)XA/XXB/X and with DgAB/X2
defects, order-disorder phenomena, nonstoichiometricexpanded as
phases, etc. For a discussion of applications of the com-

DgAB/X2 5 Dg8AB/X2 1 o
(i1j)$1

qij
AB/X2Y

i
AY j

B [55] pound-energy formalism, refer to References 10 and 11. If
SRO is not included (by assuming Bragg–Williams random-
mixing entropy, as just mentioned), the model reducesFor example, if all qij

AB/X2 coefficients are zero, then this
exactly to the compound-energy formalism for two (oris a simple regular solution. Ideally, of course, all these
one) sublattices.systems should be reoptimized with the quasi-chemical

That is, several different models are limiting cases of themodel. However, this entails a great deal of work. For sys-
present model. These models can, thus, all be treated withtems in which DgAB/X2 is relatively small, the neglect of SRO
the same algorithms; the coefficients can all be stored in theinvolving SNN (A-[X ]-B) pairs will give rise only to small
same multicomponent databases; and different models forerrors. Hence, it would be very useful to be able to combine
different subsystems can be combined, in many cases.the large existing databases of evaluated simple polynomial

By formally treating the quadruplets as the componentscoefficients for such subsystems with the quasi-chemical
of the solution, a significant computational simplification iscoefficients obtained by optimization of other subsystems
realized. The model can then be treated with currently avail-where SRO is more important, in order to produce one large
able and relatively simple software.database for the multicomponent solution. It has been shown

The model has been applied to the molten salt phasepreviously[1–4] how this combination of coefficients can eas-
in an evaluation/optimization of the Li,Na,K,Mg,Ca//F,Clily be achieved for A,B,C, . . .//X systems. In the present
system using the F*A*C*T[12] thermodynamic computingcase, if a binary A,B//X system has been optimized using a
system. This work is presented in an accompanying article.[6]simple Bragg–Williams entropy and a polynomial expansion

as in Eq. [55], then the coefficients of Eq. [55] can be
substituted directly into Eq. [48]. (This is also true for simple ACKNOWLEDGMENTS
polynomial ternary coefficients, as described previously.[2])
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