The Modified Quasi-chemical Model: Part IV. Two-Sublattice

Quadruplet Approximation

ARTHUR D. PELTON, PATRICE CHARTRAND, and GUNNAR ERIKSSON

The modified quasi-chemical model is further extended, in the quadruplet approximation, to treat,
simultaneously, first-nearest-neighbor (FNN) and second-nearest-neighbor (SNN) short-range ordering
(SRO) in solutions with two sublattices. When one sublattice is occupied by only one species, or is
empty, themodel reducesto the modified quasi-chemical model for onesublatticeinthe pair approxima:
tion. The coordination numbers and the ratio of the number of sites on the two sublattices are permitted
to vary with composition, thereby making the model ideally suited to the treatment of liquid solutions
such as molten salts. The model also appliesto solid solutions if the number of sites and coordination
numbers are held constant and may be combined with the compound-energy formalism to treat SRO
in a wide variety of types of solutions. A significant computational simplification is achieved by
formally treating the quadruplets as the “components’ of the solution.

. INTRODUCTION

I N thefirst two articlesin the present series, !> the modi-
fied quasi-chemical model for short-range ordering (SRO)
in the pair approximation was developed for solutions in
which the species mix on only one lattice or sublattice. The
application of the model was illustrated in two accompa-
nying articles by the evaluation and optimization of all avail-
able thermodynamic and phase-equilibrium data for the
common-anion systems Li,NaK,Rb,CsMg,Ca//CI® and
Li,Na,K,Mg,Cal/F.¥ The next article in the seried™ devel-
oped the model, in the pair approximation, for SRO involv-
ing first-nearest-neighbor (FNN) pairs in solutions with two
sublattices. The present article extends the treatment, in the
quadruplet approximation, to take account, simultaneously,
of FNN SRO between sublattices and of second-nearest-
neighbor (SNN) SRO within a sublattice.

In solid solutions, the existence of two sublattices is a
manifestation of long-range ordering. For example, inasolid
ionic solution, one can distinguish anionic and cationic sub-
lattices. In a liquid solution, on the other hand, there is no
long-range ordering and, strictly speaking, it is incorrect to
speak of sublattices. In molten NaCl, for example, the Na*
and Cl~ ions should be treated as residing on one sublattice,
but with a very high degree of SRO, such that the nearest-
neighbors of Na* ions are amost exclusively Cl~ ions, and
vice versa. Solutions of molten salts could, thus, in principle,
be treated with a single-sublattice model. However in such
solutions, in which the degree of SRO is very high, it is
conceptually and mathematically simpler to treat the liquid
solution as if it consisted of two distinct sublattices. This
does not precludethe possibility of asmall number of cation-
cation or anion-anion nearest neighbors, since these can
be treated within the two-sublattice model as substitutional
defects (cations on anion sites and anions on cation sites).

In a solid solution, the ratio of the number of sites on the
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two sublattices is necessarily constant. However, in aliquid,
thisratio can vary with composition. For example, in molten
NaCl-CaCl, solutions, theratio of cation to anion sitesvaries
from 1/1 to 1/2 as the composition varies from pure NaCl
to pure CaCl,.

It is an important feature of the present model that the
ratio of the number of sites on thetwo sublatticesis permitted
to vary with composition. Further flexibility is also provided
by permitting coordination numbers to vary with composi-
tion. The model is, thus, ideally suited to describing molten
ionic solutions.

In an accompanying article® the use of the model is
illustrated by application to the thermodynamic evaluation/
optimization of the Li,NaK,Mg,Ca/F,Cl system.

Il. THE MODEL
A. Definitions and Coordination Numbers

The solution consists of two sublattices, | and Il. Let
AB,C,...and X,Y,Z, . . . bethe speciesthat reside on sublat-
tices | and Il, respectively. In a salt solution, for example,
AB.CC, ... arethecationsand X,Y,Z, . . . are the anions, and,
in the present article, we shall refer to them as “cations”
and “anions.” However, the model isalso applicableto other
solutions. For example, in asolid spinel solution, sublattices
| and 11 would be associated with the tetrahedral and octahe-
dral cationic sublattices. Although there is a third anionic
sublattice, as long as this is occupied by only one species
(0?7), the present mode! can be applied. In other examples,
lattice vacancies could aso be considered as “species,” or
the same chemical species could occupy both sublattices.
For instance, in an ordered Cu-Au aloy, Cu and Au reside
mainly on the | and Il sublattices, respectively. However,
due to substitutional disordering, some Cu is found on the
Il sublattice and some Au on the | sublattice. That is, in this
example, A and X would both be Cu, and B and Y would
both be Au.

When sublattice |l is occupied only by the X species, then
the mode!, as developed in the previous publications,*
considered the formation of SNN (A-[X]-B) pairsfrom SNN
(A-[X]-A) and (B-[X]-B) pairs, according to
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Fig. 1—Some quadruplets.

(A[X]-A) + (B-[X]-B) = 2(A-[X]-B) AQaex  [1]

The entropy expression was obtained™? by distributing
the pairs over “pair positions.” Theterm Agag/x iSan empiri-
cal parameter of the model, which may be composition
dependent. If Agagx = 0, then ideal random mixing results.
If Agagix < 0, then reaction [1] is displaced to the right and
SRO results, with (A-[X]-B) pairs becoming predominant.
Similarly, when sublatticel isoccupied only by the A species,
the model considered the formation of (X-[A]-Y) SNN pairs,
according to

(X[A-X) + (F[A]-Y) = 20C[A]-Y) Agaxy (2]

In the next article in the present series,® the following
exchange reaction among FNN pairs was considered:

(AX) + (B-Y) = (AY) + (B-X) AgRERY*  [3]

and the FNN pairs were distributed over pair positions. If
AgRSHee < 0, then there is SRO of FNN pairs, with (A-X)
and (B-Y) pairs predominating. As a result, the probability
of an (A-[X]-B) pair is less than that in a random mixture,
and so the contribution of the (A-[X]-B) SNN energy
(Agag/x) to the total Gibbs energy of the solution is reduced.
It was shownl® that this effect becomes very important when
|Ag®ha%| js greater than about 50 kJ/mol.

Sincethe previous articlel® considered the quasi-chemical
model only in the pair approximation, it was not possible
to treat both FNN and SNN SRO simultaneously. For sys-
tems such as K,Mg//Cl,F, a large degree of SNN SRO is
observed in the binary KCI-MgCl, and KF-MgF, subsys-
tems, and this cannot be neglected in a quantitative model.
In the present article, we consider the distribution, not of
pairs, but of “quadruplets.” A,X,, ABX,, AXY, ABXY, etc.
Asiillustrated in Figure 1, each quadruplet consists of two
SNN cations and two SNN anions, the cations and anions
being mutual FNNs. Both FNN and SNN SRO can, thereby,
be treated simultaneously.

In a solid, al the various possible configurations of the
quadruplets on the sublattices could be considered, as is
done in the cluster variation method (CVM),[ and this is
necessary for thefull quantitative modeling of order-disorder
phenomena. However, this additional complexity is neither
necessary nor possible in the case of liquid solutions and
can also be neglected in the modeling of solid solutionswith
a limited amount of SRO.

Letn (i = AB, ... XY ...) bethe number of moles of
species i; nyy the number of moles of FNN (A-X) pairs;
and Nagix, Nag/xor Nagixy ELC., the numbers of moles of AX;,
ABX;, ABXY, etc., quadruplets. (Note that nagx, and Ngax,
represent the same quantity and can be used interchange-
ably.) Let Z, be the SNN coordination number of A (i.e.,
the number of SNN pairs emanating from an A species).
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Since each quadruplet contains just one SNN pair, Z, isaso
the number of quadruplets emanating from an A species.
The term Zy is defined similarly. Then,

ZaNa = 2Mpyix, T 205y, + 2Npgxy + Nagix, (4

+ Nagry, T Nagixy + +°°

Zynx = 2Mpyx, + 2Ngyx, T 2Nagix, + Nagixy [5]

+ Neyxy T Nagixy +

Overdl mole (or site) fractions (X;), FNN pair fractions
(X;), and quadruplet fractions (Xj;,q) are defined as

XA:nA/(nA+ nB+"') XX:nxl(nx+ ny+) [6]
Xax = Nax/(Nax + Ngyx + Nagy =+°) [7]
Xagixy = Nagrxv! Y, Niju (8]

where (2 nj) is the total number of moles of quadruplets.
From Egs. [4] and [5],

203, Nijm) = (Zana + Zgng + )
= (anx + ZYny + "')

(9

The “ coordination-equivalent site fraction” () is defined as
YA = ZAnA/(ZAnA + ZBnB + "')
YX = anxl(ZXnX + ZYny + )

(10]

These are called coordination-equivalent fractions to dis-
tinguish them from the more usua “charge-equivalent” frac-
tions, in which the n; values are multiplied by the ionic
charges rather than by the coordination numbers. It may be
noted that the Y; values, as defined in Eq. [10], are identical
to those defined in the previous publications.[*3 Substitution
into Egs. [4] and [5] gives

Ya = XA2/X2 + XA2/Y2 + XA2/XY + %XAB/XZ + %XAB/XY + e
(11]

Yy = Xagixa T Xegxo T Xagixo T 2 Xagxy + 2 Xagixy + ++*
(12]

In a solid solution, it is clearly required that Z, = Zg =
Zc = ...and that Zx = Zy = Z, = ... However, in aliquid,
thisisnot necessary and, furthermore, the coordination num-
bers can vary with composition. As shown previously,[*-3!
the use of variable coordination numbers is an important
feature of the present model, which provides the necessary
flexibility to fix the compositions of maximum SRO in
each subsystem.

Let ZAz/xy be the SNN coordination number of an A spe-
cies when (hypothetically) all A species exist in ABXY qua
druplets. We then let
2nA2/XY nAB/X2 Nag/xy

2nA2/ X2 2r']Azl Yo

+ ...

A A A A A
1 ZA2/ Xo ZA2/ Yo ZAQ/ XY ZAB/X2 ZAB/ XY

Zn  20p,I% + 2Npyv, T 2Npgixey + Nagrxy + Nagrxy + -+

(13]

METALLURGICAL AND MATERIALS TRANSACTIONS A



2Npyix,  2MBoixs  2NABIX,  Magixy  Nagyxey
X
1 ZA2/X2

Zx  2Npyix, T 2Ny, T 2Nagix, + Nagixy + Nagixy + *°
[14]

This composition dependence is chosen because substitution
of Egs. [13] and[14] into Egs. [4] and [5] yieldsthefollowing
simple relations:

—+ ..

X X X X
Ziyix,  Zasix,  Zagixy  Zaeixy

_ Mpoix,  2Mporvy,  2axy  Nagix, Nag/xy .
= Zhxe  Zhorv,  Zigxy  ZReix,  Zieixy
[19]
L 20, 2yixe  2MaBixy | MaoixY  Nagixy L
M= ZXoxy,  ZBuxy  ZRaixy,  Zhuxy  ZReixy
[16]

Note that inthe A, B, C, . . .//X subsystem, where sublattice
I is occupied only by the X species, the ZEJ-_,X2 values are
identical to the SNN coordination numbers Zj;x, defined in
the previous articles.™

Asin the previous article,™ we may also define the FNN
coordination number z, asthe number of FNN pairs emanat-
ing from an A species and similarly for zy. Let (/2 be the
ratio of SNN to FNN pairs:

Zlz, = 2 [17]

In the general case, the ratios Za/za, Zs/Zs, Zc/z:, €tc.,
could all be different and could even depend upon composi-
tion. However, this would make the model unnecessarily
complex, particularly for the case of liquids. Hence, it is
assumed that the ratio Z;/z is the same for all speciesi.

It follows that the coordination-equivalent fractions
defined in Eq. [10] are also given by

Ya = ZaNa/(Zaa + ZsNg + ) [18]

and similarly for Yy; the total numbers of pairs and quadru-
plets are related by

>y = (40 X My [19]

Each quadruplet contains one SNN pair and two FNN
pairs emanating from a given ion. Hence, ¢ is equal to the
number of quadruplets emanating from, or containing, a
FNN pair. Therefore,

{Nx = Bagix, T 2Npgix, + 2Npgixy T Nagixy + -+ [20]

and so, from Eq. [19],
Xax = Xpgixy T 5 Xngixs T 3 Xngixy + 5 Xagxy +

[21]

B. Formal Treatment of Quadruplets as “ Complexes’
or “ Molecules’

The quadruplet ABXY may be treated formally as the
cgm_plex or molecule AJJZQB/XY B:UZEB/XY X:UZXB/XY YJJZXB/XY'
Similarly, an AxX, quadruplet is formally treated as
Az, Xaiz%, i, EC. For example, in molten KCI-MgCl,

solutions, if we were to choose Zygci, = 3, ZWgc, = 6,
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and Zgyga, = 3, then the quadruplet KMgCl, is formally
treated as a K1sMgy6Cl,z complex.

It must be stressed that this is only a formalism. The
entropy expression in the quasi-chemical model (Section
[1-D) is not obtained by distributing the quadruplets as if
they weremolecules (asis, infact, donein various*“ associate
models’). It is not essential that this formalism be used.
However, it aidsin the conceptualization and in many deriva-
tions. For example, if Nayx,, Nayxv, €tC., in Eq. [15] are
repl aced by nAZ’Z/QQ/XZXZ/ZKZ/xz’ nAZ/ZﬁzlxvxﬂzﬁzlxvYﬂZ\Afz/xv' etc,, then

the number of moles of A is the same on both sides of
the equation, which, thereby, becomes a “normal” mass-
balance equation.

Furthermore, it can be seen that all quadruplets such as
K13MgyeClys in a molten salt solution must be electrically
neutral. This stoichiometry represents the composition of a
hypothetical solution formed exclusively of these quadru-
plets and containing one mole of quadruplets. That is, one
mole of KMgCl, quadruplets contains 1/3 mol K*, 1/6 mol
Mg?*, and 2/3 mol Cl~.

In general, for a molten salt solution, if g, g, ... and
Ox, Qy, . .. are the absolute cationic and anionic charges,
then the charge-neutrality condition for ABXY (i.e.
Adsz0 10 BUzBaiey X1z Xmmey Y1z X QUaAruplets is as follows:

qA_’_qB_qX_’_?Y [22]
ZAB/)(Y

A B - X
Zngixy  Zpsixy  Zhmixy

This equation also holds when A = B and/or when X =
Y. The previous example of Ki;Mg35Clzs clearly satisfies
Eq. [22]. In the most general form of the model, it is not
essential for Eqg. [22] to apply. However, in practice, for
liquid solutions, which can be described as consisting of two
“sublattices,” this equation will amost always be satisfied.

Figure 2 shows a traditional composition square of a
reciprocal ternary, A,B//X,Y system. One charge equivalent
of each pure component is shown at each corner. For exam-
ple, in the Na,Cal/lF,SO, system, where the absolute ionic
charges are gy, = 1, gg = 2, gx = 1, and gy = 2, the
components would be NaF, Cay,F, Na(SO,)y,, and
Cay/5(SO,) 1. The axes are the usua charge-equivalent frac-
tions Y and Yy (not to be confused with Y, and Yy in Eq.
[1Q]). The formal compositions of quadruplets such as
Aoizhx, Xaiz%,x, € at the corners. (Note that, from Eq. [22],

the ratio ZA4,x,/ZX,x,, IS the same as the ratio (0a/dy).) The
formal  compositions of quadruplets such as
Avzhgx, Buziax, Xaizksx, arefound onthesidesof the square,

as shown in Figure 2.

Choice of Z{jjy

For asolid solution, itisrequired that al cationic coordina-
tion numbers (Z}j,k,) be egual and that all anionic coordination
numbers (Z¥) be equal. For liquid solutions, on the other
hand, ZAgx, and ZZgx, are chosen to correspond to the
composition of maximum SNN SRO in the A,B//X binary
subsystem, as discussed previously.!4 For example, for
K CI-MgCl, solutions, SRO isat amaximum near the compo-
sition K,MgCl,. Hence, we set Z{8qyci,/ZiEmgar, = 2.0.

Since the quasi-chemical expression for the entropy (Sec-
tion 11-D) is, of necessity, only approximate, it is not neces-
sary that the values of Zffj; used in the model correspond
exactly to the actual coordination numbers. In fact, it is
found that better representations are frequently obtained with
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Fig. 2—Composition square of the AB//XY reciproca ternary system showing formal “compositions’ of the various quadruplets.

intentionally nonphysical values of ZfJ, since one can
thereby partially compensate for the error caused by the
entropy approximation. However, it is important that the
ratios of Z{jjy correspond to the compositions of maximum
SRO, as discussed previously.

The coordination numbers Zhgxy, for the “reciprocal”
ABXY quadruplets (A # B, X # Y) can be chosen to reflect
a tendency to SRO at some particular composition in the
reciprocal A,B//X,Y solutions. However, in many cases, there
will be no such tendency, and one can set the value of
Zhgxy 8san “average” of thevaluesin the A,XY, BoXY, ABX,,
and ABY, quadruplets. It is suggested that this be done by
defining the “ composition” of the ABXY quadrupletsaslying
at the average of the values of Yy of the quadruplets A XY
and B,XY and at the average of the values of Y, of the
quadruplets ABX, and ABY,, asillustrated in Figure 2. This
construction corresponds to the following “default” values:

1 (Zhex,  Zlew
ZRexy  \GZAsix,  OvZAsiv, 23]
1 [ Zaxv Z8yixv
Z Reixy QAZ)A(Q/XY qBZéZ/XY
and similarly for Z8gxy and ZXgxy, where
1/ O Qv Oa Os
F== + + + 24
8 (ZéB/XZ ZXB/YZ Zﬁz/XY ZEz/XY) [ ]

C. Gibbs Energy Equation
We now define

e} —_ ZqA O —_ 2qx O
Jaoix, = (m) JayigXua, = (m) Jaygwe, [29]
where ga;,xy e 1S the standard Gibbs energy of the pure
component per charge equivaent. For Al,Os, for example,
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o] 6 O 4 o]
gAIz/Oz = <Zﬁl 0 ) gA|]J30:]j2 = (Z% o > gAI;ug,O;uz
21992 21992
[26]

That is, gai,o, IS the standard Gibbs energy of Al,O; per
mole of Al,O, quadruplets.

Previously,!® gxx was defined as the standard Gibbs
energy per mole of FNN pairs. Therefore,

Jaoixy = (40 ax [27]
The Gibbs energy of the solution is given by the model as
G = (NayxRoixz T NeprxTBoixo + NagvTagry, T ++°)
+ (Nasix,On8i%, T Naev,Oasry, T NagixvOayxy + =7) [28]
+ (Naesy@asixy + ++7) — T AS™M9

where gagix,, Oasixy, ELC., are the Gibbs energies of one mole
of the quadruplets.

Let us consider the following reaction for the formation
of quadruplets:

(AX)quad + (B2X)quad = 2(ABX)quad AQneix, [29]

for which the Gibbs energy change is Agag/x,. If we do not
use the shorthand notation, the Eq. [29] is written:

A B
ZA2/X2 A X i ZBz/Xz B X
—_— A X —_— B X
A 2AZRH1Xy TNUAZR I B 2ZB,y 1%, TNAZB, /X
VA AB/Xo 2/X2 2/X2 VA ABIXo 2/X2 2/X2
= 2A1/Zﬁs/x2 BJJZEB/XZ XZ/ZKB/X2 [30]

When Agagix, = O, the binary AB//X system is ided. In
this case,

_ Zﬁz/Xz o ZBQ/XZ o
20p81%, = 2o Oagix, T 2% OBix, [31]
2, 2,
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Now AQagx, IS an empirical parameter of the model. It
may be expressed as

AQpeix, = AlReix, T (AQpeix, — AQaeixy) [32]

where Aga,x, is aconstant, independent of composition, and
(AQaix, — AGagix,) isexpanded as an empirical polynomial
in the quadruplet fractions Xiq .

As discussed in Section I1-E, Agagx, in the AB,C, .. .//
X subsystem is identical to Agagyx Of reaction [1] in this
subsystem, and Agagx, and the coefficients of the polyno-
mial expansion of (Agagix, — Adasix,) are al numerically
equal to the coefficients obtained from optimization of data
in this subsystem, as described previously.[#34

We now define the “standard molar Gibbs energy of the
ABX, quadruplets’ as

" Zﬁg/Xg N ZBz
20heix, = m Onprx, + ZB ng/Xg + AdReix,
2

[33]
Similarly, for the quadruplet formation reaction,
(AX2)quad + (AoY2)quad = 2(AoXY)quad  Alagixy [34]
we define

5 Z/)ﬁ(\z/Xz o ZAZ/ Y2 o
205,xy = 7% Qe T 57— | Ghorve T AlRyixy

Ap/IXY ZA2/X

(35]

To now define gag/xy for the reciprocal ABXY quadruplet,
consider that in an ideal solution, gagxy (When normalized
per charge equivalent) would vary linearly with composition
in Figure 2 between points x and y and between points a
and b. To this linear variation is added the sum of
AGAeix» Alagiv, AJayxy, and Agg,xy (Which were included
in Egs. [33] and [35]) corrected to the same molar basis,
and finaly we add the composition-independent term
Adagxy Of the Gibbs energy change Agag/xy Of the quadrupl et
formation reaction:

$(ABX; + ABY, + AXY + BoXY) = 2(ABXY) [36]
AQpeixy = AQaeixy + (Adagixy — AdAgixy)

where Agagixy IS an empirical parameter of the model,
obtained from optimization of data for the reciproca A,B//
XY system, as discussed in Section I1-E. In the ideal case,
Agasixy = 0. The resultant definition of gagxy IS

T Qv Z Ao o
Granxy = (Zﬁslxv ZXB/XY) <ZZﬁB/XYZ,)A(B/XY e
OxZ B, /%, WZ R, 5
2oy " ey P
N2, 5
2R gBZ’YZ) (37
1 (ZAB/XZ Ago + % AO3 + %
4\ Zhoor = 2T Zhapey T T Zy
ZE,x
AQayxy + 55— 28 Ang/XY) + Aghgixy
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Note that Eq. [22] applies, and that the definition in Eq.
[37] holds, even if one does not choose to define Zhg/xy as
in Egs. [23] and [24].

Substitution of Egs. [33], [35], and [37] into Eq. [28] gives
G = (Nagxaoixe T = + MagxRamixe + NagixyGAg/xy
+ o+ Napxy@aeixy + )

X
1 Zheixo (Magixy  Napixz
T35 (nAB/XZ R + o

X X
ZAB/XY ZAB/XZ

Nag/xy

o 1 ZA IXY
(AQpeix, — AQReix,) + 5 (nAZIXY — ( [38]
2 ZReixy
n o 1
+ /ZL/XY + )) (AQayxy — AQRyixv) + 5 -
Zacixy 2

+ 5 (Nasixy (AQag/xy — AQagixy) + Nasivz

(AQpevz — AQRenz) + -+--) — T AS™nfig

D. The Configurational Entropy

In Eq. [38], AS™9 js given by distributing all the quadru-
plets randomly over “quadruplet positions.” Unfortunately,
an exact mathematical expression for this is unknown, and
S0 approximations must be made. Letting AS®™9 equal
—R 2 (niju In Xijuq) would clearly overcount the number of
possible configurations. The following expression is
proposed:

(—ASPM9/R) = (NaINXa + NgINXg + -+
+ nxlnXX+ nY|an+ "')

Keix

+ In
Ngx1N Y Yy

+(n InX
A/X YY

+n InX + -
AIY YAYY

4 ( XAz/X 2

(39]

Meelyg vavg

Xagixo

+ Nagry N s
R R P AA

XA2/XY 4.
2X 2 X2 1Y 2 Y Yy

Xngixy - )
AX 5 X s Xy Xery! YAYBYXYY

+ NagxyIn

+ Nagixvln

Consider the casewhen all Agjjq valuesfor reactions[32],
[34], and [36] are zero and also when all AgZii™° values
(asin reaction [3]) are zero. In this case, the distributions
of AB,C,...and X)Y,Z,. . .oneach sublattice are completely
random. There is neither FNN nor SNN SRO. Hence, the
probability of finding an A-X FNN pair is equal to (YaXx),
that is,

Xi/j = Yin [40]
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Furthermore, the probability of finding an ABXY quadrupl et
is given, with reference to Figure 1, by the probability that
pair 1 isan A-X pair, times the conditional probabilities that
pairs 2, 3, and 4 are A-Y, Y-B, and B-X pairs, respectively,
times 4.0, which is the number of possible permutations of
this order of bonds. Hence,

Xngixy = AXax (Xary!Ya) Ken!Yy) (Xeix/YeYx) [41]
Similarly, one can derive
Xagix, = 2X&xX&x/(YaYsY%) and Xayx, = Xix/Y4

[42]

Substitution of Egs. [40] through [42] into Eq. [39] gives
the correct ideal (Temkin) entropy: —R(na In X, + ng In
Xg + -+ + ngln X« + nyIn Xy + --+). Also, for thisideal
case, substitution of Egs. [20], [27], [33], [35], and [37] into
Eq. [38] gives the correct expression for an ideal solution:

G = (NwxGax + NavJay + ) )
+ RT(MalnXs + ngIn Xg + Ny In Xy + -++)

Consider next the case, where the Agﬁ?ﬁhange values of
reaction [3] are not al zero, so that there is FNN SRO. In
this case, Eq. [40] does not hold. Equations [41] and [42]
hold exactly in subsystemssuch asA,B,C, . . .//Xor AlIIX,Y,Z,

, Where one sublattice is occupied exclusively by one
species, but do not hold exactly in general, because they
were derived under the assumption of arandom distribution
of FNN pairs. Nevertheless, calculations show that Eqgs. [41]
and [42] still hold approximately, and their use results in
errors of only a few percent for absolute values of
Aggighe as large as 100 kI/mol. The approximation, of
course, becomes exact as Ag™¥% gpproaches zero. Substi-
tution of Egs. [41] and [42] into Eq. [39] givestheexpression

(—AS™9/R) = (N, In Xa + Ng In Xg + ++)

+ (ng In Xy + nyIn Xy + ++*) [44]
(a1 22X 4 2B
A/X YAYX B/Y YBYY

which is identical to that given previoudy® for the two-
sublattice quasi-chemical model with FNN, but no SNN,
SRO.

E. Second-Nearest-Neighbor Interaction Terms

The term Agag/x, is an empirical parameter of the model,
obtained by optimization of datain the A,B,C,. . .//X subsys-
tem, which is related to the Gibbs energy of formation of
SNN pairs according to reactions [29] or [1]. Asin Eqg. [30]
of the previous publication,? inthe A,B,C,. . .//X subsystem,
AQngix, 1S expanded as

AQpeix, = Adsix, + (i+j2)>1 X n8ixoX BanoOABIG

+ Eo X g1 XA, (2 QE\IE(D/szl(l — &raixy

B [45)

k-1
N Y, Y,
— &)+ Y I (—m ) (1 -t )
m 2,

Eaaix Eaaixy
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k-1
Y, Y,
+29AB(n/X2( n)(l— A) )
Ermixs Enmixy

where the summations over |, m, and n are as described
previously.[Z Equation [45] may be compared to Eq. [32].
The empirical coefficients Agagx, and gigx, are found by
optimization of data in the A,B//X binary system, the other
termsin Eq. [45] all being equal to zeroin thisbinary system.
For example, if al gigy, values are zero and if Adagx, iS
small, then the model approaches regular-solution behavior,
with AgAB,X2 as the regular-solution parameter. The
coefficients gAB(C yx, are ternary parameters, which should
not be large and which give the influence of the presence
of athird cation, C, upon the energy of formation of SNN
(A-[X]-B) pairs. These arefound by optimization of available
data in the A,B,C//X ternary subsystem. In the absence of
such data, these coefficients can be set to zero. Thevariables,
Y, XaBixy XBAXy EABixy AN &eax, Were defined pre-
viously.”? They are functions of the quadruplet fractions
Xijxpr Which are equal to the SNN bond fractions in the
AB,C,.../IX subsystem.

The coefficients Agagx,, gAB,XZ, and AB(C),XZ are identical
to the coefficients Agas, g, and gAB(c) of the previous
articles,>34 in which the quasi-chemical model was devel-
oped and applied for the case where sublattice |1 is occupied
solely by the X species.

Equation [45] holds for the AB,C,...//X subsystem. The
composition variables yag/x, and xsax, Were defined in Eq.
[27] of the previous articlel? in terms of ratios of the quadru-
plets fractions X;x,. For example, if the symmetric (Kohler)
model is used in al ternary subsystems (Reference 2), then
Xaix, = (Kagixod (Kagix, T Xasix, T Xayix,))- 1N the multicom-
ponent AB,C,.../[XYZ,... system, we assume that
Agagix, is constant along composition paths where these
ratios are constant. Hence, the factors yag/x, ad xysax, in
Eq. [45] remain unchanged in the multicomponent system.

Inthe A,B,C,. . /IX subsystem, from Eq. [11], the equiva
lent fraction Y; is equal to (Xiyx, + $(Xiax, + Xigx, + +*)),
which, from Eq. [21], isequal to Xx in this subsystem. Inthe
multicomponent system, we assume that the ternary termsin
Eq. [45] are constant along lines of constant Xix/Yy values
(where Yy = 1 in the AB,C,. . .//X subsystem). Therefore,
the Y, factorsin Eq. [45] are replaced by Xix/Yx. The factors
Exmix, aNd Eaax, Were defined previously!? as sums of Yj,
Ys, Yc ... Hence, in Eq. [45], these are replaced by the
corresponding sums of Xax/Yx, Xgx/Yx, Xex!Yx, €tC.

Finally, then, Agagx, is given in the multicomponent sys-
tem by

Agpgix, t+ E . X s X, Ohsi,
| J >

AQasix, =

Xix
+ 2 X 8o XA, (2 9AB(|)/><2 Yy *1- Erpix,

l>0
k=1

! X
— o)+ D gxlxlé(m)/xz (_m/x [46]
m

Yxéi BA/XZ)

k—1
XB/X Xn/X )
1 _ -
( YxfBA/x) + 2 gl (Y Ea,
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Yxéagix,

k-1
X ’ )
(1 - i) + 2 It Ye (L — Y0¥ l)

where yagix, and xsux, are ratios of i x,, as defined pre-
viously,? and where &pix, and &sax,, defined previously!?
as sums of Ya,Yg,Yc, .., are now the corresponding sums
of XleYx, XB/X/YX1 etc.

The final term in Eq. [46] is zero |n the AB,C,. . ./IX
subsystem. The empirical coefficients gAB,Xz(Y) arereci procal
ternary coefficients that give the effect of the presence of a
Y anion upon the energy of formation of ABX, quadruplets.
These coefficients, which should not be large, are found by
optimization of available data for the A,B//XY reciprocal
ternary subsystem. In the absence of such data, these coeffi-
cients may be set to zero.

A similar expansion of Aga,xy for the formation of A, XY
quadruplets may be written:

AQayxy = AQayxy + > X X norvx oy

(i+j)=1
Yai
+ E X ol X agrvx 2 gA2/>(Y(I) Ya (1 — &axv

J>o
k=1

) Xam
— &)<+ D dhsvim) (—YA 52/ /Yx> [47]
m 2/

k—1
XAIY X n
1 _
( YY§A2/YX) + 2 g (Y £ m)

k—1
(1 - M) + > dhsEmvYa(l — YA)k_1>
YA§A2/><Y B#A

In Eq. [45], AQagix, in the AB,C,.. .//X subsystem is
expanded as a polynomia in the quadruplet fractions
Xijx,» Which are equal to the SNN pair fractions in this
subsystem. In earlier versions of the quasichemical model,
AQapix, Was expanded in terms of the equivalent fractions
Ya,Ys,Yc . ... The genera expression is?

Enixy )i

ey T Eenixs

( Seax, ) o, + S ( Ereixy )

Ensix, T &, =0 Enpix, T EBAixo
j=

AQagix, = AdAsix, + (H%ﬂ(

kzl

gBA/X J .
(M) (2 Y (1= Ea, — Goams)<
2 2
k—1
i X X [48]
+ E qgll(s(m)/xz (—m) (1 - )
m Eaix; &nix,

k-1
X, X
+2QABn)/X2( )(1_ 2 ) )
Ereixy Erpixy

This equation is clearly very similar to Eq. [45]. If the
AB,C,. . ./IX subsystem was optimized using this expansion,
then Eq. [48] can be substituted into Eq. [38] after first
replacing al Y terms by Xix/Yx, replacing all &ygx, and
&eaix, terms by the corresponding sums of Xix/Yx, and after
adding reciprocal ternary termsif required, just as was done
in Eq. [46].
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In order to provide more flexibility in optimizing data in
reciprocal systems, the parameter Agagxy for reaction [36]
can al so be expanded asfollows and substituted into Eq. [38]:

AQpeixy = AQaeixy + 21 (Gasrviay X agixs
1=

+ dhexveXbaxe [49]

+ dherxvian Xagvs T Garxvey) Xbyy,)

where AQRgixy, Ghixviax), €iC., are additional empirical
parameters obtainable by optimization of available data for
the reciprocal ternary A,B,//X)Y system. In the absence of
such data, these terms should be set to zero.

F. The Quasi-chemical Model in the “ Complex”
Formalism

As discussed in Section I1-B, if the quadruplets ABXY
are formally treated as complexes or molecules (Aqz4gyy
B /280 5y XuzXay YUz aiy)» then the mass balances of Eq. [15]
become “norma” mass balances. Furthermore, al the
Agij parameters in Eq. [38] have been shown in Section
II-E to be expressible solely in terms of the quadruplet
fractions X;j,. (The pair fractions X;; and equivalent fractions
of Egs. [46] and [47] can be expanded in terms of X
through the use of Egs. [11], [12], and [21].) Hence, apart
from the (—TAS™"9) term, Eq. [38] is of the same form as
an expression for the Gibbs energy of amixture of molecules
(A28 Bz8a ey Xz ey YUz ay) ONASiNglelattice, with the
nonconfigurational “excess’ terms expressed as polynomials
in the mole fractions X,g/xy Of these molecules. Hence, the
same existing algorithms and computer subroutines that are
commonly used for simple polynomial-solution models can
be used directly for the quasi-chemical model merely by
including the additional configurational entropy terms.

Furthermore, the fact that Eq. [38] can be written solely
interms of the fractions X of the quadruplet “ components’
permits the chemical potentials to be calculated easily in
closed explicit form. By the same argument as that leading
to Eq. [36] of Reference 1, the chemical potential of the
actual component Ayyq,Xyq, IS given in terms of the  chemi-
cal potential (uayx,) Of the quadruplet AX," by

I’LA]_/qAX]_/qx = Magixo (Zﬁ2/X2/ 2qA) = MagiXo (Zéﬂ)(z/ ZQX) [50]
where
Maoix, = (aG/an/-\z/Xz)nij/H [51]
Substitution of Eqg. [38] into Eq. [51] then gives
o 2In Xy  21In Xy
MAZ/XZ = gAz/Xz + RT ZA x Zﬁ x
/X2 2/X2 [52]
Knoix, 4 Xaix

E
MR RV A R ) T Grxy

where g5, x, is caculated from the nonconfigurational “g=”
polynomial terms of Eq. [38] in the usua way:

Oaix, = OF + (095/0Xayx,) — > Xijna (0950 Xi0)

ij/Kkl#AglXo

(53]

1. DISCUSSION

Many binary and ternary common-ion systems A,B,C,
. /IX have aready been evaluated and optimized, by using
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a random-mixing (Bragg—Williams) expression for AS"ig
and by expanding the excess Gibbs energy as a simple poly-
nomial in the mole fractions. For example, in abinary A,B//
X system, this is equivalent to writing:

G = (Naxgux T Neixdax) + RT (Na In Xy + ng In Xg)
[54]
+ Nagix, AQneix,

With Nag/x, Now equal to (2 Nijg) XaxXe/x and with Agagx,
expanded as

AQagix, = Alasix, T+ (;): ) Qheix, YhYk [55]
I JZ

For example, if all gy, coefficients are zero, then this
is a simple regular solution. Ideally, of course, al these
systems should be reoptimized with the quasi-chemical
model. However, this entails a great deal of work. For sys-
temsinwhich Agag/x, isrelatively small, the neglect of SRO
involving SNN (A-[X]-B) pairs will give rise only to small
errors. Hence, it would be very useful to be able to combine
the large existing databases of evaluated simple polynomial
coefficients for such subsystems with the quasi-chemical
coefficients obtained by optimization of other subsystems
where SRO is more important, in order to produce one large
database for the multicomponent solution. It has been shown
previously™=4 how this combination of coefficients can eas-
ily be achieved for AB,C, .. .//X systems. In the present
case, if abinary A,B//X system has been optimized using a
simple Bragg—Williams entropy and a polynomial expansion
as in Eqg. [55], then the coefficients of Eq. [55] can be
substituted directly into Eq. [48]. (Thisisalso truefor simple
polynomial ternary coefficients, as described previously.ld)
Itis I’equi red that ZﬁB/XZ = Zﬁz/x2 and that ZEB/XZ = ZEZ/XZ'

1
The term E(nAB/XZ + (ZRexd D (neixv/Zheixy  + )

(Adamix, — Adaeix,) in Eq. [38] is replaced by (2 nju)
(XayxXerx/Yx) AQagix,, and the term Agagx, must be removed
from Egs. [33] and [37]. It is aso recommended that if any
binary subsystem of the A,B,//X,Y system has been optimized
with a simple polynomial expansion, then all coefficientsin
the expansion for Agagxy in EQ. [49] should be set to zero.

IV. CONCLUSIONS

A quasi-chemical model for treating SRO in the quadru-
plet approximation has been proposed for solutions with two
sublattices. Both SRO of FNN pairs and SRO of SNN pairs
are taken into account. If one sublattice is occupied by only
one species, or is empty, then the present model reduces
exactly to the quasi-chemical model for SRO on one sublat-
tice in the pair approximation, as developed previously.*=
Also, by means of aminor alteration to the entropy expres-
sion, the Gibbs energy expression can be made identical to
that of a randomly mixed (Bragg—Williams) solution with
asimple polynomial expansion for the excess Gibbs energy.
This is of much practical importance, because the large
existing databases of evaluated simple polynomial coeffi-
cients of certain subsystems can, thereby, be combined in
one database with the quasi-chemical coefficients of other
subsystems, in order to produce one large database for a
multicomponent solution.
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The model is well suited to liquid solutions where the
ratio of the number of sites on the two sublattices can vary
with composition. Further flexibility is provided by permit-
ting coordination numbersto vary with composition. Never-
theless, the model also applies to solid solutions if the
number of lattice sites and coordination numbers are held
constant. The model can, thus, be combined with the com-
pound-energy formalism®? to treat a wide range of types
of solutions (slags, mattes, ceramics, salts, and aloys), point
defects, order-disorder phenomena, nonstoichiometric
phases, etc. For a discussion of applications of the com-
pound-energy formalism, refer to References 10 and 11. If
SROisnot included (by assuming Bragg—Williams random-
mixing entropy, as just mentioned), the model reduces
exactly to the compound-energy formalism for two (or
one) sublattices.

That is, several different models are limiting cases of the
present model. These models can, thus, all be treated with
the same algorithms; the coefficients can all be stored in the
same multicomponent databases; and different models for
different subsystems can be combined, in many cases.

By formally treating the quadruplets as the components
of the solution, a significant computational simplification is
realized. The model can then be treated with currently avail-
able and relatively simple software.

The model has been applied to the molten salt phase
in an evaluation/optimization of the Li,NaK,Mg,Ca//FCl
system using the F*A*C*T112 thermodynamic computing
system. Thiswork is presented in an accompanying article.[®!

ACKNOWLEDGMENTS

Financial support from the Natural Sciences and Engi-
neering Research Council of Canada is gratefully acknowl-
edged. One of the authors (PC) istherecipient of afellowship
from the FCAR (Fonds pour la Formation de Chercheurs et
I’ Aide a la Recherche) of Québec.

REFERENCES

1. A.D. Pdlton, SA. Degterov, G. Eriksson, C. Robelin, and Y. Dessure-
ault: Metall. Mater. Trans. B, 2000, vol. 31B. pp. 651-59.

2. A.D. Pelton and P. Chartrand: Metall. Mater. Trans. A, 2001, vol. 32A,
pp. 1355-60.

3. P Chartrand and A.D. Pelton: Metall. Mater. Trans. A, 2001, vol. 32A,
pp. 1361-83.

4. P Chartrand and A.D. Pelton: Metall. Mater. Trans. A, 2001, vol. 32A,
pp. 1385-96.

5. A.D. Pelton and P. Chartrand: Metall. Mater. Trans. A, 2001, vol. 32A,
pp. 1397-1407.

6. P. Chartrand and A.D. Pelton: Metall. Mater. Trans. A, 2001, vol. 32A,
pp. 1417-30.

7. W. Pitsch and G. Inden: in Materials Science & Technology, R.W.
Cahn, P. Haasen, and E.J. Kramer, eds., VCH, New York, NY, 1991,
vol. S, pp. 495-552,

8. B. Sundman and J. Agren: J. Phys. Chem. Solids, 1981, val. 42, p. 297.

9. M. Hillert, B. Jansson, and B. Sundman: Z. Metallkd., 1988, vol. 79,
p. 81

10. T.I. Barry, A.T. Dinsdale, JA. Gisby, B. Hallstedt, M. Hillert, B.
Jansson, B. Sundman, and J.R. Taylor: J. Phase Equilibrium, 1992,
vol. 13, pp. 459-76.

11. A.D. Pelton: in Advanced Physical Chemistry for Process Metallurgy,
N. Sano, W.-K. Lu, PV. Riboud, and M. Maeda, eds., Academic Press,
New York, NY, 1997, pp. 87-117.

12. C.W. Bale, A.D. Pelton, and W.T. Thompson: F*A*C*T (Facility for
the Analysis of Chemical Thermodynamics), Ecole Polytechnique,
Montreal, 2000, http:\ \www.crct.polymtl.ca

METALLURGICAL AND MATERIALS TRANSACTIONS A



