

pressure, *T* is the thickness of the sheet, and σ_c is the flow
stress of the material that is being formed. The slope of the
stress of the material that is being formed. The slope of the
stress imilar to the strain ra

-
- not participate in the reaction. 2. H.W. Hayden, R.C. Gibson, H.F. Merrik, and J. Brophy: *Trans. ASM*, The as-prepared Cu-Mo-O and The as-prepared Cu-Mo-O and J. Brophy: *Trans. ASM*, 1967, vol. 60, pp. 3-14.
- 3. J. Pilling and N. Ridley: *Acta Metall.*, 1986, vol. 34, pp. 669-79.
- 4. Y. Maehara: *Metall. Trans. A*, 1991, vol. 22A, pp. 1083-91.
-
-
- 7. D. Pulino-Sagaradi, A.M.M. Nazar, J.J. Ammann, and R.E. Medrano: *Acta Metall.*, 1997, vol. 45, pp. 4663-66. Manuscript submitted March 28, 2000.

J. STOLK and A. MANTHIRAM

Heat dissipation and thermal expansion mismatch are extremely important issues in many electrical and electronics Fig. 6—Plot of forming pressure, *P*, against average rate of forming, *dH*/*dt*. applications, and the materials used for thermal management in such applications have attracted a great deal of attention in recent years. The move in the microelectronics industry toward higher circuit board chip densities and packageless

cavitation is likely to be delayed if superplastic forming

is done at temperatures beyond 950 °C.

Cone heights as a function of forming pressure after 1

cone heights as a function of forming pressure after 1

mismatch

In conclusion, preliminary attempts were made to super-
plastically form duplex stainless steel. Because of the limita-
plastically form duplex stainless steel. Because of the limita-
tion posed by the SPF machine, maximu molybdenum content. The copper molybdate precipitate that formed during the reaction was greenish, and the silver **REFERENCES** molybdate precipitate was pale yellow. The precipitates were washed repeatedly with water to remove any ions that did

The as-prepared Cu-Mo-O and Ag-Mo-O powders were

^{5.} M. Sagaradi, D. Pulino-Sagaradi, and R.E. Medrano: *Acta Metall.*, J. STOLK, Visiting Assistant Professor, formerly at Texas Materials 1998, vol. 46, pp. 3857-62.

1998, pp. Xashyap, and S. Banerjee: *Mater. Sci.* neering Department, Bucknell University, Lewisburg, PA 17837. A. *Forum*, 1997, vols. 243–245, pp. 663-68. MANTHIRAM, Professor, is with the Texas Materials Institute, The Univer-
D. Pulino-Sagaradi, A.M.M. Nazar, J.J. Ammann, and R.E. Medrano: sity of Texas at Austin, Austin, TX 78712.

initially heated in H₂ to reduce the compounds to metallic small grain size, and hardness increases with molybdenum Cu and Mo or Ag and Mo. After annealing, the powders content. Were compacted in a hydraulic press and s were compacted in a hydraulic press and sintered at 800 °C In summary, nanocrystalline Cu-Mo-O and Ag-Mo-O to 1050 °C in a H₂ atmosphere X-ray diffraction (XRD) were prepared using simple chemical precursor techniques. to 1050 °C in a H₂ atmosphere. X-ray diffraction (XRD),
energy dispersive X-ray spectroscopy (EDS), and scanning
electron microscopy (SEM) were used to characterize the
products. Thermal expansion behavior was evaluated ⁸C to 300 °C with a thermomechanical analyzer. Electrical tivity of the Cu-Mo and Ag-Mo alloys decrease with conductivity was measured by a four-probe technique, and increasing molybdenum content, and specific values of conductivity was measured by a four-probe technique, and increasing molybdenum content, and specific values of CTE
thermal conductivity was estimated using the Wiedemann-
and conductivity are easily obtainable by this proc thermal conductivity was estimated using the Wiedemann– Franz law. The thermal and electrical properties of the Cu-Mo and

by EDS of several as-prepared Cu-Mo and Ag-Mo powders existing low CTE-high conductivity materials, and the small are shown in Table I. The X-ray diffraction patterns of the grain size and isotropic properties of the fineare shown in Table I. The X-ray diffraction patterns of the as-prepared and heat-treated sample A (52.5 wt pct Cu- offer distinct mechanical property advantages over some of 47.5 wt pct Mo) are shown in Figure 1. In the as-prepared the materials currently in use.

condition, relative intensity is low and no distinct X-ray diffraction reflections are present, indicating extremely small grain size in the as-prepared powder. The broad reflections that are observed in Figure 1(a) for the as-prepared powder correspond to the major peaks of several different Cu*x*Mo*y*O*^z* copper molybdate compounds such as $CuMo₄, Cu₃Mo₂O₉$, and Cu₂MoO₅. After annealing at 500 °C in H₂, reflections corresponding to metallic Cu and molybdenum dioxide $(MoO₂)$ are evident, indicating partial reduction of the Cu_x - Mo_yO_z powder. Above 800 °C, only metallic (Cu) and (Mo) diffraction peaks are present, indicating complete reduction of the oxide precursor.

The as-prepared powders are approximately 5 to 10 nm in size and tend to agglomerate into larger powder clusters of approximately 50 nm in size, as shown in Figure $2(a)$ for as-prepared Ag-Mo-O. After annealing at 500 $^{\circ}$ C for 2 hours in $H₂$, the Cu particle size increases to approximately 500 nm, and the particle size of the Mo-rich phase increases to approximately 150 nm, as shown in Figure 2(b). Sintering Cu-Mo at 1050 °C in H_2 for 1 hour yields a uniform distribution of Cu and Mo grains and an average grain size of approximately 0.5 μ m, as shown in Figure 2(c). Phases in the heat-treated alloys were identified by spot EDS analysis.

Table I shows the average coefficient of thermal expansion (CTE) in the temperature range of 25 \degree C to 100 \degree C, electrical conductivity, estimated thermal conductivity, and hardness Fig. 1—XRD patterns of sample A (52.5 wt pct Cu-47.5 wt pct Mo): (a)
as-prepared copper molybdate precursor and after annealing in H₂ at (b)
500 °C and (c) 1050 °C.
500 °C and (c) 1050 °C. and close to Cu-Mo and Ag-Mo values predicted by a ruleof-mixtures, or isostress, model. Electrical conductivity decreases with increasing molybdenum content. Hardness values of sintered Cu-Mo and Ag-Mo are high due to the

Sample identifications and compositions as determined Ag-Mo alloys prepared by this method are comparable to

Table I. Sample Identification, Composition, and Properties of Sintered Cu-Mo and Ag-Mo

Sample	Composition, Wt Pct	Average CTE, $^{\circ}$ C ⁻¹	Electrical Conductivity, S/cm	Estimated Thermal Conductivity, $W/m \cdot K$	Hardness, $HV_{5k\sigma}$
А	52.5Cu - 47.5Mo	11.9×10^{-6}	3.2×10^5	240	200
B	44.6Cu - 55.4Mo	9.98×10^{-6}	2.9×10^5	210	252
\mathcal{C}	36.1Cu - 63.9Mo	8.65×10^{-6}	2.9×10^{5}	210	257
D	$44.0Ag - 56.0Mo$	10.2×10^{-6}	2.7×10^5	200	239
Е	$38.1Ag - 61.9Mo$	9.48×10^{-6}	2.3×10^{5}	170	251

Fig. 2—SEM images of Ag-Mo and Cu-Mo: (*a*) sample D (44 wt pct Ag-56 wt pct Mo) as-prepared powder agglomerates, (*b*) sample A (52.5 wt pct Cu-47.5 wt pct Mo) after annealing in H₂ at 500 °C for 2 h, and (*c*) sample A (52.5 wt pct Cu-47.5 wt pct Mo) after sintering in H₂ at 1050 °C (backscattered electron image). In Fig. 2(b), the large, darker particles are Cu and small, and the lighter particles are MoO₂. In Fig. 2(c), light grains are (Mo), dark gray grains are (Cu), and black spots are pores.

- 1. W.R. Johannes and W. Johnson: *Int. J. Microcircuits Elec. Packaging*, 1994, vol. 17 (2), pp. 135-42.
- 2. D.E. Jech and J.L. Sepulveda: *Int. Symp. on Microelectronics*, Las Fukui: *Int. Symp. on Microelectronics*
Vegas, NV, 1997, SPIE Proc. Series 3235, SPIE, pp. 90-96. Proc. Series 3582, SPIE, pp. 675-80. Vegas, NV, 1997, SPIE Proc. Series 3235, SPIE, pp. 90-96.
- **REFERENCES** 3. P. Yih and D.D.L. Chung: J. Mater. Sci., 1997, vol. 32, pp. 2873-82.
	- 4. C. Zweben: *JOM*, 1992, vol. 44(7), pp. 15-22.
	- 5. R. Kumar, J.J. Stiglich, T.S. Sudarshan, and C.C. Yu: *Mater. Manufac-*
	- 6. S. Yamagata, M. Imamura, Y. Hirose, Y. Abe, Y. Takano, and A. Fukui: Int. Symp. on Microelectronics, San Diego, CA, 1998, SPIE