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Abstract
Summary  A machine learning model using clinical, laboratory, and imaging data was developed to predict 10-year risk of 
menopause-related osteoporosis. The resulting predictions, which are sensitive and specific, highlight distinct clinical risk 
profiles that can be used to identify patients most likely to be diagnosed with osteoporosis.
Purpose  The aim of this study was to incorporate demographic, metabolic, and imaging risk factors into a model for long-
term prediction of self-reported osteoporosis diagnosis.
Methods  This was a secondary analysis of 1685 patients from the longitudinal Study of Women’s Health Across the Nation 
using data collected between 1996 and 2008. Participants were pre- or perimenopausal women between 42 and 52 years 
of age. A machine learning model was trained using 14 baseline risk factors—age, height, weight, body mass index, waist 
circumference, race, menopausal status, maternal osteoporosis history, maternal spine fracture history, serum estradiol level, 
serum dehydroepiandrosterone level, serum thyroid-stimulating hormone level, total spine bone mineral density, and total 
hip bone mineral density. The self-reported outcome was whether a doctor or other provider had told participants they have 
osteoporosis or treated them for osteoporosis.
Results  At 10-year follow-up, a clinical osteoporosis diagnosis was reported by 113 (6.7%) women. Area under the receiver 
operating characteristic curve of the model was 0.83 (95% confidence interval, 0.73–0.91) and Brier score was 0.054 
(95% confidence interval, 0.035–0.074). Total spine bone mineral density, total hip bone mineral density, and age had the 
largest contributions to predicted risk. Using two discrimination thresholds, stratification into low, medium, and high risk, 
respectively, was associated with likelihood ratios of 0.23, 3.2, and 6.8. At the lower threshold, sensitivity was 0.81, and 
specificity was 0.82.
Conclusion  The model developed in this analysis integrates clinical data, serum biomarker levels, and bone mineral densities 
to predict 10-year risk of osteoporosis with good performance.
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Introduction

Osteoporosis may not have clinical manifestations prior 
to the onset of a fragility fracture, which poses challenges 
for early prevention and diagnosis [1, 2]. This is of clini-
cal importance because increased bone fragility and osteo-
porotic fractures may be associated with debilitating conse-
quences such as spinal cord compression [3–5], avascular 
necrosis [6, 7], need for surgical intervention, and increased 
mortality rates [8–11]. Pain, disability, and loss of independ-
ence are additional noteworthy complications that occur in 
the setting of osteoporosis and fragility fractures. Women 
who are undergoing or have recently undergone menopause 
are at particularly elevated risk of developing osteoporosis 
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[12]. However, several other factors have been implicated 
in the development of osteoporosis, and a comprehensive 
understanding of the nuanced interactions of such factors 
on the magnitude of risk for osteoporosis development has 
not been well studied [13, 14].

Previous work has demonstrated that differences in serum 
concentrations of hormones such as estradiol [15, 16], dehy-
droepiandrosterone (DHEAS) [17-19], and thyroid-stimulat-
ing hormone (TSH) [20–22] are associated with important 
differences in risk of osteoporosis or osteoporotic fractures. 
Recent reports in the literature, however, have suggested that 
menopause and its associated changes in steroid hormone 
levels may not make as significant of a contribution to the 
pathophysiology of the disease as was previously thought 
[23–25]. In fact, periodically updated guidelines from the 
International Society of Clinical Densitometry have included 
an increasing number of indications for bone density screen-
ing in recent years [26]. This suggests that the etiology of the 
disease is multifactorial, as risk may depend on individual 
patient phenotypes, and that the complete array of factors 
contributing to its pathogenesis is not fully known [27–30].

Existing prediction models pertaining to this patient 
demographic, such as the Fracture Risk Algorithm (FRAX) 
tool for predicting osteoporosis-related fracture risk in post-
menopausal women and men aged 50 years and older[1], 
may serve as important clinical adjuncts in patients with 
osteoporosis. However, FRAX is not intended for premeno-
pausal women or women younger than 50, two additional 
patient populations at risk of developing osteoporosis [31, 
32]. In addition, the goal of FRAX is to predict fractures; 
however, a diagnosis of osteoporosis based on low BMD can 
guide clinical management even in the absence of a fracture. 
Moreover, patient awareness of their diagnosis likely plays 
a role in fracture risk and other clinical outcomes; however, 
there has been little investigation into factors influencing 
patient awareness. While several studies have demonstrated 
that machine learning models can outperform conventional 
clinical tools at predicting osteoporosis in postmenopausal 
women[33–36], the included populations have been limited 
to respondents of the Korea National Health and Nutrition 
Examination Surveys and a single medical center in northern 
Taiwan, thereby reducing the generalizability of their find-
ings. Although fracture risk is an important metric when 
considering osteoporosis management, the likelihood of 
receiving a clinical diagnosis is a clinically relevant outcome 
that is also used to guide treatment decisions.

There is limited research on the prediction of long-term 
risk of osteoporosis in women younger than 50, premeno-
pausal women, and perimenopausal women, especially in the 
USA. While several known risk factors for osteoporosis exist 
in clinical practice, a combined predictive model incorpo-
rating these factors to provide an individualized assessment 
of long-term osteoporosis risk does not exist in a Western 

population. The extent to which these risk factors influence 
patient awareness of a diagnosis is also unclear. Treatment 
is generally recommended in postmenopausal women who 
have a bone density T-score of −2.5 or less, a history of 
spine or hip fracture, or a FRAX score indicating increased 
fracture risk [37]. Therefore, a clinical model capable of 
predicting those outcomes at an earlier stage in the course 
of the disease may be of clinical benefit.

Given this important gap in the literature and its clini-
cal implications, the purpose of the current study was to 
perform a predictive analysis integrating a comprehensive 
profile of risk factors in order to better understand osteopo-
rosis risk. The authors hypothesized that (1) the integrated 
prediction model would demonstrate good to excellent risk 
discrimination and (2) long-term risk of osteoporosis in pre- 
and perimenopausal women would be predicted by clinical 
risk factors, serum biomarker levels, and bone mineral den-
sity (BMD) measurements.

Methods

Study design

This is a secondary analysis of 3302 patients using base-
line and 10-year follow-up data from the longitudinal 
Study of Women’s Health Across the Nation (SWAN) 
[38]. Between 1996 and 1997, participants joined SWAN 
through seven designated research centers throughout the 
USA—Ann Arbor, MI; Boston, MA; Chicago, IL; Alam-
eda and Contra Costa County, CA; Los Angeles, CA; Jer-
sey City, NJ; and Pittsburgh, PA. At the time of enroll-
ment, women were pre- or perimenopausal with an intact 
uterus and at least one ovary, not taking hormones, and 
between 42 and 52 years of age. Premenopausal women 
were defined as those having no change in bleeding pat-
terns; perimenopausal women were defined as a those with 
a change in length of the bleeding or inter-bleeding inter-
val with at least one occurrence of bleeding in the past 
3 months. At each visit, data was recorded via physical 
measures, fasting morning blood draw, and both interview- 
and self-administered questionnaires.

BMD of the posterior-anterior lumbar spine and total 
hip was measured by dual x-ray absorptiometry (DXA) 
using either a Hologic QDR 2000 densitometer (Hologic 
Inc., Waltham, MA) or a Hologic QDR 4500A [39]. All 
centers employed a standard quality control program that 
included daily measurement of a Hologic anthropomor-
phic spine phantom at each site, cross-site calibration 
with a single anthropomorphic spine phantom, visual 
review of every scan image by a local site investigator 
experienced in bone densitometry, and random review 
of 5% of scans plus all problem scans by Synarc, Inc. 
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(Waltham, MA). Measurements of the local spine phan-
toms and the circulating spine phantom were analyzed 
by Synarc and used to adjust DXA measurements for 
minor temporal or geographic variations. Using stand-
ard reference values for the total hip, these measurements 
were then converted to T-scores [40]. Determination of 
the presence of an osteoporosis diagnosis was based on 
the participants’ answers to the question, “Has a doctor, 
nurse practitioner or other health care provider told you 
that you had osteoporosis (brittle or thinning bones) or 
treated you for osteoporosis?”

Each longitudinal follow-up wave included participants 
from the initial wave. For this analysis, a total of 1,617 
participants had incomplete baseline data or did not have 
10-year follow-up and were excluded. Demographic data 
and values of risk factors for the remaining 1,685 par-
ticipants are shown in Table 1. Additionally, this data is 
reported for the 1617 who were excluded from the study 
and compared with that of those who were included 
(Online Table 1 in the Supplementary Information).

Statistical analysis

Of the 1685 women who met the inclusion criteria, 337 
(20%) were randomly selected as a holdout set for model 
evaluation, while the other 1348 (80%) were used to train the 
predictive model. A generalized additive model with pair-
wise interactions (GA2M) was implemented in Python using 
the Explainable Boosting Machine, a visually interpretable 
machine learning model from the open-source InterpretML 
package [41, 42]. The primary outcome of interest was 
whether participants reported they had been told they had 
a diagnosis of osteoporosis by a doctor or other healthcare 
provider at 10-year follow-up. For comparison, we also ran 
a logistic regression.

Based on previous literature, we included 14 risk fac-
tors available in the SWAN dataset at baseline: age, height, 
weight, body mass index (BMI), waist circumference, race, 
menopausal status, maternal osteoporosis history, maternal 
spine fracture history, serum estradiol level, serum DHEAS 
level, serum TSH level, total spine BMD, and total hip 

Table 1   Values of each of the 
demographic characteristics 
and risk factors included 
in the model for those not 
diagnosed and those diagnosed 
with osteoporosis at 10-year 
follow-up. Data are expressed 
as mean ± SD unless 
otherwise noted. P-values were 
calculated via Student’s t-test, 
Pearson’s chi-squared test, or 
Fisher’s exact test with α set 
to 0.05

Not diagnosed (n = 
1572)

Diagnosed (n = 113) P

Age (years) 45.8 ± 2.7 46.9 ± 2.8 <0.0001
Height (cm) 162.4 ± 6.5 160.6 ± 6.5 0.0045
Weight (kg) 72.6 ± 19.1 65.0 ± 18.4 <0.0001
BMI (kg/m2) 27.4 ± 6.7 25.2 ± 6.9 0.0006
Waist circumference (cm) 84.5 ± 14.8 78.5 ± 14.3 <0.0001
Race (n [%]) 0.1688
  Black 405 (25.8) 19 (16.7)
  Chinese 181 (11.5) 12 (10.6)
  Japanese 205 (13.0) 17 (15.0)
  White 781 (49.7) 65 (57.5)
Menopausal status (n [%]) 0.0113
  Premenopausal 895 (56.9) 49 (43.4)
  Perimenopausal 663 (42.2) 62 (54.9)
  Unknown 14 (0.9) 2 (1.8)
Maternal osteoporosis history (n [%]) 0.0146
  Yes 221 (14.1) 27 (23.9)
  No 1221 (77.7) 76 (67.3)
  Unknown 130 (8.3) 10 (8.8)
Maternal spine fracture history (n [%]) 0.0732
  Yes 40 (2.5) 7 (6.2)
  No 1453 (92.4) 100 (88.5)
  Unknown 79 (5.0) 6 (5.3)
Estradiol (pg/mL) 77.2 ± 90.3 87.1 ± 91.6 0.2620
DHEAS (ug/dL) 135.7 ± 81.9 132.6 ± 80.4 0.6911
TSH (uIU/mL) 2.5 ± 4.3 2.3 ± 1.9 0.6034
Total spine BMD (g/cm2) 1.08 ± 0.13 0.95 ± 0.13 <0.0001
Total hip BMD (g/cm2) 0.96 ± 0.14 0.85 ± 0.14 <0.0001
T-score < −2.5 (n [%]) 7 (0.4) 2 (1.8) 0.1178
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BMD. To maximize validity, the GA2M also considered 
six pairwise interaction effects among the 14 risk factors 
[41]. Summary statistics were reported for all variables and 
compared via Student’s t-test, Pearson’s chi-squared test, or 
Fisher’s exact test with α set to 0.05 (Table 1).

Importance scores for each risk factor in the Explain-
able Boosting Machine were calculated as the “logit,” or 
log-odds ratio (OR), averaged across all observations in 
the training dataset (Table 2) [41, 43]. Therefore, a greater 
importance score corresponds to a larger contribution in 
predicting risk of diagnosis. Age- and BMI-adjusted odds 
ratios calculated using logistic regression are also reported 
in Table 2. Performance of the model was assessed using 
area under the receiver operating characteristic curve 
(AUC), Brier score, sensitivity, specificity, accuracy, and 
kappa. Univariate and pairwise partial dependence plots 
were created to visualize how, if at all, each risk factor (and 
pairwise interaction of factors) was related to osteoporosis 
risk. AUC values between variations of the model were 
compared via paired t-test.

Two discrimination thresholds for predicting a diagno-
sis—one at which Youden’s J index was maximized and one 
at which kappa was maximized—were calculated using an 
exhaustive search and then assessed. Specifically, a sequen-
tial search algorithm was implemented across thresholds 
between 0 and 1 to identify the threshold values at which 

both of these predictive performance metrics reached a 
global maximum. These thresholds were used to separate 
women in the evaluation dataset into three categories (low, 
medium, and high) based on predicted risk. Confidence 
intervals (CIs) for AUC and Brier score were calculated 
using bootstrapping by resampling the validation dataset 
200 times with replacement. A calibration curve[44] was 
also plotted using Python.

Results

Risk factor analysis

At 10-year follow-up, 113 (6.7%) of the 1685 women 
reported that they had been diagnosed with osteoporosis. 
Compared to those who were not diagnosed, women who 
reported diagnosis were, on average, older by 1.1 years 
(P < 0.0001), shorter in height by 1.8 cm (P = 0.0045), 
weighed 7.6 kg less (P < 0.0001), had a lower BMI by 2.2 
kg/m2 (P = 0.0006), were more likely to be perimenopausal 
(P = 0.0113), and were more likely to have a mother who 
was diagnosed with osteoporosis (P = 0.0146). In addition, 
those who were diagnosed had lower total spine BMD meas-
urements by 0.13 g/cm3 (P < 0.0001) and lower total hip 
BMD measurements by 0.11 g/cm3 (P < 0.0001) at baseline 

Table 2   Importance scores and age- and BMI-adjusted odds ratios of each predictor as computed by GA2M and logistic regression, respectively

Predictor Importance score Adjusted OR (95% CI)

Total spine BMD 0.197160 0.42 (0.35–0.51) per 0.1 g/cm2 increase
Total hip BMD 0.161848 0.43 (0.35–0.53) per 0.1 g/cm2 increase
Age 0.120628
Menopausal status 0.095324 1.55 (1.05–2.29) for perimenopausal
Weight 0.091292 0.96 (0.92–0.99) per kg increase
Serum DHEAS level 0.072141 1.00 (0.97–1.02) per 10 ug/dL increase
Waist circumference 0.069442 0.95 (0.91–0.99) per cm increase
Serum estradiol level 0.058510 1.01 (0.99–1.03) per 10 pg/mL increase
Total spine BMD x weight 0.052425 1.01 (1.01–1.02) per 0.1 g/cm2 and kg increase
Serum TSH level 0.051661 0.98 (0.91–1.06) per uIU/mL increase
Height 0.051332 0.72 (0.53–0.96) per 10 cm increase
BMI 0.051255
Maternal osteoporosis history 0.050803 1.70 (1.07–2.70)
Total spine BMD x waist circumference 0.050120 1.02 (1.01–1.03) per 0.1 g/cm2 and cm increase
Race 0.048825 0.78 (0.46–1.33) for Black

0.74 (0.39–1.38) for Chinese
0.85 (0.49–1.48) for Japanese
1.42 (0.96–2.09) for White

Total spine BMD x total hip BMD 0.030806 1.19 (1.10–1.29) per 0.1 g/cm2 and 0.1 g/cm2 increase
Age x total hip BMD 0.030492
Total spine BMD x menopausal status 0.030293 0.93 (0.64–1.34) per 0.1 g/cm2 for perimenopausal
Age x total spine BMD 0.028619
Maternal spine fracture history 0.010480 1.98 (0.85–4.60)
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(Table 1). Importance scores for each of the 14 risk factors 
and six pairwise interaction effects, as well as age- and BMI-
adjusted odds ratios calculated using logistic regression, are 
shown in Table 2.

For each of the six pairwise interactions that were 
selected by the GA2M, a partial dependence plot was cre-
ated to visualize how the given combination of variables 
was incorporated into the model as a predictor of 10-year 
osteoporosis risk (Online Figure 1 in the Supplementary 
Information). Each plot represents the change in predicted 
risk as a function of a pairwise combination of risk factors. 
Total spine BMD was a member of five of the six pairs; total 
hip BMD and age were both members of two of the six pairs.

Osteoporosis risk prediction and stratification

On the 337 observations that were initially held out for 
evaluation of model performance, the GA2M predicted 
10-year risk of osteoporosis with an AUC of 0.83 (95% CI, 
0.73–0.91) (Fig. 1). Brier score for the model was 0.054 
(95% CI, 0.035–0.074).

Using the same predictors and outcome measure, a 
logistic regression model had an AUC of 0.62 (95% CI, 
0.49–0.76) and Brier score of 0.057 (95% CI, 0.039–0.079). 
This AUC was significantly less than that of the GA2M (P = 
0.0115). Furthermore, to assess the degree to which baseline 
BMD and age contributed to predictive performance alone, 
two additional models were developed and tested. In the 
first, BMD at both the hip and the spine, as well as age, were 
excluded from the predictors. This model had an AUC of 
0.70 (95% CI, 0.60–0.80) and a Brier score of 0.057 (95% 
CI, 0.038–0.079). The AUC was not significantly less than 
that of the full GA2M (P = 0.082). In the second, hip and 
spine BMD and age were the only predictors included. This 
model had an AUC of 0.82 (95% CI, 0.71–0.90) and a Brier 

score of 0.054 (95% CI, 0.036-0.074). The AUC was not 
significantly less than that of the full GA2M (P = 0.822).

Two discrimination thresholds for predicted probability 
of diagnosis (pdx) were calculated: the threshold at which 
Youden’s J index was maximized, which was determined to 
be pdx = 0.063, and the threshold at which kappa was maxi-
mized, which was determined to be pdx = 0.140. Using pdx = 
0.063, sensitivity was 0.81, specificity 0.82, accuracy 82%, 
and kappa 0.28. Using pdx = 0.140, sensitivity was 0.43, 
specificity 0.94, accuracy 91%, and kappa 0.31.

These two thresholds established three risk-stratified 
categories of women according to predicted 10-year risk 
of osteoporosis (Fig. 2). In the lowest-risk category were 
those with pdx ≤ 0.063 (n = 262), 4 of whom (1.5%) were 
diagnosed with osteoporosis at 10-year follow-up (likelihood 
ratio [LR] of 0.23). In the medium-risk category were those 
with 0.063 < pdx ≤ 0.140 (n = 46), 8 of whom (17.4%) were 
ultimately diagnosed (LR of 3.2). In the high-risk category 
were those with pdx > 0.140 (n = 29), 9 of whom (31.0%) 
were ultimately diagnosed (LR of 6.8). Across the three risk 
categories, observed rates of osteoporosis diagnosis were 
determined to be significantly different via Pearson’s chi-
squared test (P < 0.0001).

Calibration of prediction model

A calibration curve was plotted to visualize the relation-
ship between predicted risk of diagnosis at baseline and 
actual diagnosis rates at follow-up in each of the ten risk-
stratified deciles of the evaluation dataset (Fig. 3). R2 for the 
curve was 0.81 based on a least-squares regression, which 
yielded a line of best fit with a slope of 1.32 and y-intercept 
of −0.02. In four of the ten deciles, the GA2M overestimated 

Fig. 1   Receiver operating characteristic curve

Fig. 2   Histogram showing the distribution of 10-year osteoporo-
sis risk predictions made by the model at baseline, categorized by 
follow-up outcome. Frequencies are represented using a logarith-
mic scale on the y-axis. Dotted lines indicate stratifications of low-, 
medium-, and high-risk individuals



	 Archives of Osteoporosis (2023) 18:78

1 3

78  Page 6 of 10

risk of osteoporosis. In the other six, the GA2M underesti-
mated risk. Importantly, of the ten deciles, only one—the 
ninth—had a mean pdx that was more than one standard error 
away from the observed rate.

A decision curve is shown in Online Figure 2 in the Sup-
plementary Information.

Discussion

The main finding of the current study was that a novel clini-
cal prediction model integrating clinical risk factors, serum 
biomarker levels, and BMD measurements demonstrated 
good performance across several metrics for predicting the 
10-year likelihood of having been told of a diagnosis of 
osteoporosis. Of the 14 risk factors included in this analysis, 
total spine BMD and total hip BMD were the two features 
with the highest predictive power in estimating 10-year risk 
of osteoporosis. However, several other factors were found 
to be of predictive importance, including those pertaining to 
demographics, physical measurements, and metabolic pro-
files. Finally, we implicated several discrimination thresh-
olds that reliability classified patients into low-, medium- 
and high-risk categories for osteoporosis development. 
With further validation of this model, it may be possible for 
clinicians to diagnose osteoporosis earlier in the course of 
the disease and potentially reduce adverse events associated 
with osteoporosis by identifying those at greatest long-term 
risk and subsequently implementing prophylactic strategies.

As independent risk factors, total spine BMD (impor-
tance score = 0.197) and total hip BMD (importance score 
= 0.162) were the two top-ranked factors in predicting 
10-year risk of osteoporosis (Table 2). These importance 
scores, expressed in logits, had corresponding age- and 
BMI-adjusted ORs of 0.42 (95% CI, 0.35–0.51) per 0.1 g/
cm2 increase and 0.43 (95% CI, 0.35–0.53) per 0.1 g/cm2 

increase, respectively. This finding is in accordance with pre-
viously published analyses of longitudinal data from SWAN, 
which have demonstrated that during this 10-year observa-
tion period, BMD decreased by between 8.5 and 11.2% 
at both the lumbar spine and femoral neck [45–48]. The 
machine learning-based analysis we present in this paper 
extends the existing literature by quantifying the increase in 
risk of a clinical diagnosis of osteoporosis associated with 
bone loss in this population. Notably, while we found that 
spine BMD demonstrated a higher importance score than did 
hip BMD, only T-score from the femoral neck is included 
as input to the FRAX model, possibly limiting its predic-
tive ability. Furthermore, while knowledge of a low baseline 
BMD would hold the potential to influence diagnosis aware-
ness in this study population, this is not a likely source of 
bias in the current study, as the raw BMD measurements 
required cross-calibration and quality control for validation, 
and only 9 (0.5%) of the included participants had baseline 
T-scores in the osteoporotic range. This distinction is impor-
tant to consider, as low baseline BMD may be a significant 
independent risk factor for osteoporosis and/or fractures 
irrespective of the rate of bone loss.

After BMD, the third- and fourth-ranked risk factors in 
our model were age (importance score = 0.121) and meno-
pausal status (importance score = 0.095), corresponding to 
ORs of 1.32 and 1.25, respectively (Table 2). This finding 
corroborates previously published work suggesting that 
osteoporosis is associated with aging independently of its 
association with menopause [11, 23–26, 30, 49]. Addition-
ally, age exhibited pairwise interaction effects with both 
spine BMD and hip BMD: therefore, in women with BMD 
measurements indicative of inferior bone quality, 10-year 
risk of osteoporosis was higher at a younger age and earlier 
menopausal status (Online Figures 1D and 1F in the Sup-
plementary Information). Notably, while a model with BMD 
and age alone does not perform significantly worse than the 
model with all 14 predictors (BMD and age included), a 
separate model composed exclusively of the other 11 fac-
tors demonstrated good predictive performance. This result 
suggests that some combination of these 11 predictors might 
be clinically meaningful in predicting long-term diagnosis, 
and their marginal predictive value when incorporated into 
a model based on BMD and age alone would likely become 
more apparent in a larger cohort. However, further work 
is needed to evaluate the clinical importance of their con-
tribution to risk assessment. Even in the absence of such 
work, these findings are nevertheless pertinent for clinical 
consideration, given the lack of indications for routine BMD 
screening in this age group. In addition, compared to DXA 
scans, it is less expensive and less invasive to obtain the 
remainder of these patient factors, as they require only tak-
ing a complete history, performing a physical examination, 
and collecting bloodwork.

Fig. 3   Calibration curve. Each plotted point represents 10 percent of 
the evaluation dataset (n = 337)



Archives of Osteoporosis (2023) 18:78	

1 3

Page 7 of 10  78

This modeling technique highlighted other pairwise 
interaction effects as well. The interaction between spine 
BMD and weight had the highest importance score among 
all pairwise interactions at 0.052, corresponding to an OR 
of 1.13 (Online Figure 1A in the Supplementary Informa-
tion). Overall, the combination of low spine BMD and low 
bodyweight at baseline conferred a particularly elevated 
10-year risk of osteoporosis. However, this relationship 
was nonlinear with respect to bodyweight: for those at the 
lower extreme of spine BMD, a weight at the upper extreme 
was associated with a greater 10-year risk than an inter-
mediate weight. This suggests that those at the extremes of 
bodyweight (i.e., both underweight and overweight) may 
be at elevated risk of osteoporosis. These findings might 
be explained by the effects of the increased release of adi-
pokines in patients with obesity on bone quality[50, 51] or 
lifestyle factors (e.g., diet and exercise) that concomitantly 
contribute to the pathogenesis of osteoporosis [52]. Given 
that BMD is both one of the inputs and a key component 
of the outcome variable, there does exist some degree of 
inherent circularity within the model; however, we believe 
that this model still yields several important insights into 
osteoporosis risk.

While the current standard of care is to perform DXA 
screening in women aged 65 or older without risk factors 
for osteoporosis, the findings in the current study suggest 
several patient risk profiles in which it may be beneficial 
to initiate screening at an earlier age. Of the 113 women 
in this dataset who were ultimately diagnosed with osteo-
porosis, the mean age at baseline, when the DXA scans 
were captured, was 46.9 years. Even at that age, which is 
18 years younger than guidelines call for screening to take 
place, the women exhibited significantly decreased BMD 
in both the spine (0.95 versus 1.08 g/cm2, P < 0.0001) and 
the hip (0.85 versus 0.96 g/cm2, P < 0.0001) compared to 
those who were not ultimately diagnosed. While some of 
those women had risk factors that would otherwise justify 
early screening, for those who did not, adherence to the 
current guidelines would have precluded a physician from 
taking advantage of data that could be used to diagnosis 
osteoporosis at an earlier age. By the age of 65, regardless 
of symptoms and risk factors, it may be too late to inter-
vene effectively.

Using the two discrimination thresholds calculated 
to maximize Youden’s J index and kappa, respectively 
pdx = 0.063 and pdx = 0.140, this analysis established 
a systematic approach to classify women as low risk, 
medium risk, or high risk based on estimated probability 
of osteoporosis diagnosis within 10 years (Fig. 3). On 
the evaluation dataset, 1.5% of the low-risk, 17.4% of the 
medium-risk, and 31.0% of the high-risk women were 
ultimately diagnosed at follow-up. While stratification 
into the high-risk category yielded a sensitivity of only 

0.43, it was highly specific, yielding a specificity of 0.94. 
Even at the more aggressive pdx of 0.063, where sensitiv-
ity increased to 0.81, specificity only fell to 0.82. This 
suggests that women in the high- and medium-risk groups 
might be candidates for prophylactic strategies against 
osteoporosis. These strategies might include conservative 
management, such as educational programs or protective 
equipment; medical management, such as early adminis-
tration of bisphosphonates or monoclonal antibodies; or 
even novel surgical techniques.

We believe the relatively small size of the high-risk group 
is acceptable, because in a clinical setting this highest-risk 
designation should be adequately specific in order to mini-
mize unwarranted treatment of women in whom the devel-
opment of osteoporosis is not certain or almost certain, as 
treatment has its own downsides. This group may be rela-
tively smaller due to the relative paucity of women with the 
extensive combinations of risk factors seen in the high-risk 
group. Given the numerous unmeasured and immeasurable 
factors that influence risk, it may be difficult for this model 
to identify members of this high-risk group with high speci-
ficity, especially given the limited amount of available train-
ing data.

At an even finer level of granularity, a calibration curve 
divided the evaluation data into ten deciles based on pre-
dicted osteoporosis risk (Fig. 3). This curve demonstrated a 
strong correlation between predicted risk and observed risk, 
with R2 = 0.81, an indicator of robust model validity. In the 
future, a regression model might be used to predict follow-
up BMD as a continuous outcome, rather than the classifica-
tion model presented here for predicting a binary outcome.

This analysis has limitations. First, for the purpose of this 
study, time to diagnosis was not considered in this model; 
however, this is an important factor in predicting fracture 
risk. Further work is required to validate this model on exter-
nal datasets, as discussed above. However, the trained model 
has excellent internal validity, demonstrated by its perfor-
mance on an evaluation dataset to which it was naïve during 
training. This is indicated by several performance metrics 
including AUC, Brier score, sensitivity, specificity, accuracy, 
kappa, and calibration curve analysis. Second, the model 
also designates as its outcome variable a self-reported osteo-
porosis diagnosis, which may fail to capture a population 
of patients with poor awareness of their condition. Further 
work is warranted to investigate underlying risk factors for 
and causes of lack of patient awareness of a diagnosis in the 
presence of low BMD. Despite its subjectivity, we contend 
that a strength of this self-reported questionnaire response is 
its consideration of the multifactorial nature of osteoporosis, 
which is a complex pathological process. Moreover, given 
stark differences in biological processes including aging and 
metabolism, it is reasonable to believe that in populations 
characterized by different demographic features, it would 
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be necessary to develop a separate model with a different 
set of risk factors. Third, because of the longitudinal design 
of SWAN, which lacks a randomization protocol, it is not 
possible to establish causative relationships between risk 
factors and predicted 10-year probability of osteoporosis. 
However, most of the predictors included in this model are 
unmodifiable and knowing how each relates to risk of osteo-
porosis would nevertheless be quite influential in motivating 
a clinical approach. Fourth, limiting the analysis to the 1685 
women with 10-year follow-up does not allow for the consid-
eration of validity for those without 10-year follow-up, who 
may exhibit different risk profiles.. Fifth, this dataset does 
not include BMD for the femoral neck in isolation, which is 
incorporated into the FRAX model and commonly utilized 
when performing BMD assessments. In the absence of com-
plete data, it is impossible for the model to account for this 
fact. Finally, the exclusion of approximately half of the origi-
nal participants based on data availability may have biased 
results, as those who died might have had lower BMD given 
that low BMD is a predictor of mortality and loss to follow-
up is unlikely to be completely random. However, no differ-
ences were observed in hip or spine BMD, nor in prevalence 
of having a baseline T-score below −2.5, between those ulti-
mately included and those excluded (Online Table 1 in the 
Supplementary Information).

The model developed in this analysis integrates clinical 
data, serum biomarker levels, and bone mineral densities 
to predict 10-year risk of osteoporosis with good perfor-
mance. This statistical modeling technique highlighted the 
importance of baseline BMD measurements, especially 
those of the spine, as long-term predictors of osteopo-
rosis risk, and had superior discriminative ability to that 
of a logistic regression model. However, the current data 
demonstrates that BMD alone does not entirely determine 
risk, as numerous other factors including demographics 
and metabolic profiles contribute to predicted probabilities 
of diagnosis, both independently and as parts of pairwise 
interaction effects. Given the powerful discriminative abil-
ity of this model, physicians may reliably stratify pre- and 
perimenopausal women into categories based on predicted 
osteoporosis risk and determine potential target popula-
tions for the investigation of preventative strategies during 
earlier stages of the disease. Contextualized alongside the 
clinically important assessment of fracture risk, these risk 
assessments add novel and meaningful information regard-
ing a distinct clinical endpoint. While further research and 
validation will be important to assess performance and 
generalizability outside of this cohort, this clinical pre-
diction model effectively integrates multiple categories 
of risk factors, highlighting its potential to facilitate ear-
lier identification for more robust prevention and possible 
interventions in the management of osteoporosis.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s11657-​023-​01292-0.
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