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Cervical cancer is a common malignant tumor 
of the female reproductive system with a high degree 
of malignancy and rapid progression, which seriously 
affects the normal life of patients.(1) According to 
statistics, there were about 570,000 new cases and 
310,000 deaths worldwide in 2018.(2) The main cause 
of cervical cancer is related to human papillomavirus 
(HPV) infection, 70% of invasive cervical cancer is 
related to HPV16 and/or 18 infections,(3) and other risk 
factors include immunocompromised, smoking and 
passive smoking, oral contraceptives, etc.(4) At present, 
the early treatment of cervical cancer is mainly surgery, 
and some early patients with high-risk factors for 
postoperative recurrence and patients with intermediate 
and advanced cervical cancer all need radiotherapy 
and chemotherapy, however, the treatment of cervical 
cancer still has certain limitations.(5) Finding a method 
with fewer side effects and harm to the human body to 
treat cervical cancer is still an urgent clinical need.

Plant extracts and their derivatives have attracted 

more and more attention as natural medicinal products 
due to their low side effects.(6,7) Asperuloside (ASP) 
is an iridoid glycoside, mainly derived from Rubia 
Tinctorum L. (Rubiaceae), such as Hedyotis diffusa, 
which has a wide range of pharmacological effects.(8) 
In recent years, studies have shown that ASP has 
good anti-cancer activity, and has cytotoxicity to human 
breast cancer, leukemia and oral cancer cells, which 
can be used as a potential anticancer compound.(9,10) 
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The studies on the anti-cancer activity of ASP indicate 
that it may play a role through anti-angiogenesis, 
cytotoxicity, immunotherapy and anti-chromosome 
break.(11) However, the effects and possible mechanism 
of ASP on cervical cancer need to be further studied.

It is widely believed that the anti-cancer effects 
of various compounds are based on apoptosis.(12) The 
endoplasmic reticulum (ER) is an important organelle 
responsible for protein biosynthesis and folding, cell 
and calcium homeostasis, etc., and is considered to be 
the key to regulating cell apoptosis.(13) When unfolded 
proteins accumulate in the ER, cells respond by initiating 
ER stress to protect themselves.(14,15) However, when 
there is long-term ER stress or correction deficiency, 
cells will undergo apoptosis through the mitochondrial 
pathway.(16) ER stress has been shown to be abnormal 
in many cancers, and GRP78 has been reported to 
be up-regulated in many cancers.(17-19) ER-mediated 
unfolded protein response and mitochondrial apoptosis 
are potential targets for cancer therapy.(20) In this study, 
human cervical cancer cell lines Hela and Ca Ski were 
used to investigate the effects of ASP on the apoptosis 
of cervical cancer cells.

METHODS

Cell Culture and Treatment
Human cervical cancer cell lines Hela (Cat. 

No. CL-0101) and Ca Ski (Cat. No. CL-0048) were 
purchased from Procell Life Science & Technology 
Co., Ltd. (China) and authenticated by STR profi ling. 
Cells were cultured in Dulbecco's modified Eagle's 
medium (DMEM; HyClone, USA) containing 10% 
fetal bovine serum (FBS, HyClone, USA), 100 U/mL 
penicillin and 100 μg/mL streptomycin (Gibco, USA) 
with an incubator at 37 ℃ with 5% CO2.

ASP (CAS: 14259-45-1) was obtained from the 
resources platform of the national standard material 
(Cat. No. D107234, purity  98%; China). Hela and 
Ca Ski cells were treated with 0.1% dimethyl sulfoxide 
(DMSO) as the control and 12.5, 25, 50, 100, 200, 
400, 800 μg/mL ASP for 24 h, respectively, and the 
half maximal inhibitory concentration (IC50) of ASP was 
detected. The subsequent experiment was divided 
into two parts. In the fi rst part of the experiment, cells 
were divided into 4 groups: control, 325, 650 and 
1,300 μg/mL (approximately equal to the 1/2×IC50, 
IC50 and 2×IC50) ASP groups, respectively, to 
analyze the effects of ASP on cervical cancer. In the 

second part of the experiment, cells were divided into 
4 groups: control, 4-phenyl butyric acid (4-PBA, Sigma, 
USA, 10 mmol/L), ASP (652 μg/mL) and 4-PBA + ASP 
groups. 4-PBA is an ER stress inhibitor, and this 
part was used to confi rm the role of ER stress on the 
apoptosis of cervical cancer cells inducted by ASP.

Cell Counting Kit-8 Detection
Hela and Ca Ski cells were inoculated into 96-well 

culture plates at a density of 5×103 per well and treated 
with different concentrations of ASP (0, 12.5, 25, 50, 
100, 200, 400, 800 μg/mL) for 24 h. Cell viability was 
detected using a cell counting kit-8 (CCK-8; Beyotime, 
China) at 37 ℃ for 1 h. The absorbance was measured 
at 450 nm using a microplate spectrophotometer (cat. 
No. 1681150; Bio-Rad, USA) and cell viability was 
calculated as follows: Cell viability (%) = (Aexperimental – 
Ablank)/(Acontrol – Ablank)×100%. The concentration-effect 
curve was drawn according to cell viability, and the IC50 
of ASP in Hela and Ca Ski cells was obtained.

Clone Formation Assay
Colony formation analysis was used to analyze the 

effect of ASP on the proliferation of cervical cancer cell 
lines Hela and Ca Ski. Hela and Ca Ski cells undergoing 
different treatments were inoculated into 6-well culture 
plates and incubated for 14 days under normal growth 
conditions to form colonies. Then the cells were fixed 
with 4% paraformaldehyde (Beyotime) for 15 min, 
stained with 0.1% crystal violet (Beyotime) and counted.

Apoptosis Analysis
Annexin V-APC/PI apoptosis kit (Elabscience, 

China) was used to analyze the apoptosis of cervical 
cancer cells under different treatments by flow 
cytometry. The Hela and Ca Ski cells undergoing 
different treatments were collected and centrifuged 
at 1,000 r/min for 5 min, then resuspended with 
phosphated buffered saline (PBS). After counting, 
1×105 resuspended cells were centrifuged and 
resuspended with 500 μL 1×Annexin V binding 
buffer. The Annexin V-APC and propidium iodide (PI) 
dyeing solution were added and stained for 15 min. 
Then the fluoresence was immediately examined 
by flow cytometry with Annexin V-APC selected 
APC channel and PI selected PE channels (Becton, 
Dickinson and Company, USA).

Intracellular Reactive Oxygen Species Detection
Reactive oxygen species (ROS) are involved 
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in the regulation of cell signaling pathways including 
cancer cell apoptosis.(21) Hela and Ca Ski cells 
undergoing different treatments were collected, cell 
suspension concentration was adjusted to about 
1×106/mL, 2',7'-dichlorodihydrofluorescein diacetate 
(DCFH-DA) probe (Cat. No. CA1410; Solarbio, 
China) with a final concentration of 10 pmol/L 
was added and incubated at 37 ℃ for 20 min. The 
cells were washed 3 times with a serum-free cell 
culture medium to fully remove DCFH-DA that did not 
enter the cells. Fluorescence intensity was detected 
by fl ow cytometry (Becton, Dickinson and Company).

Mitochondrial Membrane Potential Detection
Mitochondrial membrane potential assay kit with 

JC-1 (Cat. No. C2006, Beyotime) was used to analyze 
the changes of mitochondrial membrane potential 
in cervical cancer cells treated with different doses 
of ASP. About 5×104 cells with different treatments 
were taken and re-suspended in 0.5 mL cell culture 
medium. Then 0.5 mL JC-1 staining solut ion 
(Beyotime) was added to the cell suspension and 
incubated at 37 ℃ for 20 min. After incubation, the 
cells were centrifuged at 1,000 r/min for 5 min at 4 ℃, 
and the supernatant was discarded. Then cells were 
washed with 1×JC-1 staining buffer for twice, then 
suspended with 1×JC-1 staining buffer and analyzed 
by fl ow cytometry (Becton, Dickinson and Company).

Western Blot Analysis
In order to investigate whether ER stress is involved 

in ASP-induced apoptosis of cervical cancer cells, the 
expression of ER stress marker protein glucose-regulated 
protein 78 (GRP78) and ER stress-induced apoptotic 
protein cleaved-caspase-4 was detected by Western blot. 
Hela and Ca Ski cells undergoing different treatments 
were collected separately. Total cellular proteins were 
obtained by lysing cells in radio immunoprecipitation 
assay (RIPA) buffer (Cat. No. P0013, Beyotime) and the 
proteins were determined by bicinchoninic acid (BCA) 
protein assay kit (Cat. No. P0009, Beyotime). Protein 
samples were denatured, separated via sodium dodecyl 
sulfate polyacrylamide gel electrophoresis (SDS-PAGE), 
and subsequently transferred onto poiy vinylidene fl uoride 
(PVDF) membranes (Cat. No. ISEQ00010, Sigma-
Aldrich, USA). The membranes were blocked for 1 h 
at room temperature in TBST containing 5% skimmed 
milk, then incubated overnight at 4 ℃ with anti-β-actin 
(1:100,000; Cat. No. AC026; Abclonal, China), anti-
Cleaved-caspase-3 (1:2000; Cat. No. A2156; Abclonal), 

anti-Bcl-2 (1:2,000; Cat. No. A19693; Abclonal), anti-Bax 
(1:2,000; Cat. No. A19684; Abclonal), anti-Cyt-c (1:2,000; 
Cat. No. A1561; Abclonal), anti-Cleaved-caspase-4 
(1:2,000; Cat. No. A19305; Abclonal), anti-GRP78 
(1:10,000; Cat. No. ab108615; Abcam, USA) antibodies. 
After washing 3 times with TBST, the membranes were 
incubated with horseradish peroxidase (HRP)-conjugated 
secondary antibody (1:4,000; Cat. No. ab6721; Abcam) 
for 2 h at room temperature. Proteins on the membranes 
were visualized with an enhanced chemiluminescence 
detection kit (Cat. No. KF001, Affi nity, China) using Tanon 
5200 Automatic chemiluminescence image analyzer 
(Tanon, China).

Statistical Analysis
All experimental data were analyzed using SPSS 

20.0 software, and expressed as mean ± standard 
deviation (x–±s). The differences among groups were 
statistically compared by one-way analysis of variance 
(ANOVA) and Tukey HSD post hoc, and P<0.05 was 
considered statistically significant. All experiments 
were independently repeated at least 3 times.

RESULTS

Effects of ASP on Cell Proliferation and Apoptosis 
of Cervical Cancer Cells

To explore the effects of ASP on cervical cancer, 
cervical cancer cell lines Hela and Ca Ski were treated 
with different doses of ASP (0, 12.5, 25, 50, 100, 200, 
400, 800 μg/mL), and it was found that ASP could inhibit 
the proliferation of both Hela and Ca Ski cells in a dose-
dependent manner, with IC50 of 683.0 μg/mL in Hela 
cells and 639.8 μg/mL in Ca Ski cells (Figure 1). Then, 
Hela and Ca Ski cells were treated with 325, 650 and 
1,300 μg/mL (approximately equal to the 1/2×IC50, IC50 
and 2×IC50) doses of ASP respectively to analyze the 
effects of ASP on proliferation and apoptosis of cervical 
cancer. The clone formation assay results indicated that 

Figure 1. Concentration-Effect Curve of 
ASP in Hela and Ca Ski Cells

Notes: Cervical cancer cell lines Hela and Ca Ski were 
treated with different doses of ASP (0, 12.5, 25, 50, 100, 200, 
400, 800 μg/mL). ASP: asperuloside
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ASP Promoted Cervical Cancer Cells Apoptosis 
through Mitochondrial Pathway

ASP could significantly increase intracellular 
ROS level in a concentration-dependent manner 
(Figure 3A, P<0.01). When ROS levels rise to a 
certain level, mitochondrial transmembrane potential 
decreases and nuclear apoptosis is initiated. Compared 
with the control group, ASP significantly reduced the 
mitochondrial membrane potential of cervical cancer 
cells (Figures 3B and 3C, P<0.01). In addition, ASP 

ASP significantly inhibited the proliferation of Hela and 
Ca Ski cells compared with the control group in a dose-
dependent manner (Figures 2A and 2B, P<0.01). And 
the flow cytometry analysis showed that the apoptosis 
rates of Hela and Ca Ski cells were significantly 
increased in all doses of ASP compared with the control 
group (Figures 2C and 2D, P<0.01). Western blot 
analysis showed that the protein expression of cleaved-
caspase-3 was signifi cantly increased in Hela and Ca Ski 
cells after ASP treatment (Figures 2E and 2F, P<0.01). 

 

Figure 2. ASP Inhibited Cell Proliferation and Promoted Apoptosis in Cervical Cancer
Notes: (A) Cell proliferation of Hela and Ca Ski cells after ASP treatment was detected by clone formation assay. (B) The number 

of cloned cells in clone formation assay. (C) Cell apoptosis was detected by fl ow cytometry in Hela and Ca Ski cells. (D) Apoptotic rats 
of Hela and Ca Ski cells. (E) Protein expressions of cleaved-caspase-3 in Hela and Ca Ski cells were detected by Western blot. (F) 
Densitometry analysis of protein expression (x–±s, n=6). P<0.05,  P<0.01 vs. control group. ASP: asperuloside

Figure 3. ASP Induced Apoptosis of Cervical Cancer Cells through Mitochondrial Pathway
Notes: (A) Intracellular ROS content was analyzed by fl ow cytometry using a DCFH-DA probe and homogenized with the control 

group. (B) The fl uorescence intensity of the JC-1 polymer refl ects the mitochondrial membrane potential. (C) The mitochondrial membrane 
potential of cervical cancer cells was determined by fl ow cytometry using a JC-1 probe. (D, E) Protein expressions of Bcl-2, Bax and Cyt-c 
in Hela and Ca Ski cells were detected by Western blot (x–±s, n=6). P<0.05,  P<0.01 vs. control group. ASP: asperuloside
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could significantly reduce the protein expression of 
Bcl-2 and increase the protein expressions of Bax and 
Cyt-c (Figures 3D and 3E, P<0.01).

 

ASP Induced Endoplasmic Reticulum Stress in 
Cervical Cancer Cells

Western blot results showed that the ASP 
signifi cantly increased GRP78 and cleaved-caspase-4 
protein expressions in both Hela and Ca Ski cells in a 
concentration-dependent manner (Figure 4, P<0.01).

Effects of ER Stress on Apoptosis of Cervical 
Cancer Cells Induced by ASP

As shown in Figure 5, 4-PBA significantly 
promoted the proliferation and inhibited the apoptosis of 
Hela and Ca Ski cells (P<0.05). ASP could signifi cantly 
reverse the increase in cell proliferation and decrease in 
apoptosis induced by 4-PBA, and signifi cantly decrease 
the increased expression of cleaved-caspase-3, cleaved-
caspase-4 and GRP78 induced by 4-PBA (P<0.05).

 
DISCUSSION

Cervical cancer is a growing problem due to 
high incidence, high mortality and limited availability 
of effective treatments.(22) Medicinal natural products 

have been widely studied and used in the treatment 
of various diseases. ASP is a common secondary 
metabolite of iridoid glycosides and has a wide range 
of pharmacological effects.(11) The present study 
found that ASP plays an important role in cervical 
cancer, which can inhibit the proliferation of cervical 
cancer cells and promote cell apoptosis. ER stress 

Figure 4. Effects of ASP on ER Stress of Cervical 
Cancer Cells by Western Blot ( ±s, n=6)

Notes: P<0.05,  P<0.01 vs. control group. ASP: asperuloside
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and mitochondrial pathways are considered to be 
important pathways of cancer cell apoptosis.(23) In this 
study, it was found that ASP can signifi cantly increase 
intracellular ROS levels, reduce mitochondrial 
membrane potential, and promote cell apoptosis 
in the mitochondrial pathway. In addition, ASP can 
also induce ER stress and apoptosis of cervical 
cancer cells. ER stress-mitochondrial pathways play 
important roles in the apoptosis of cervical cancer 
cells induced by ASP.

ASP was the first iridoid glycoside isolated 
from the roots of Rubia Tinctorum L. (Rubiaceae), 
and a large number of it has been demonstrated the 
multifaceted properties of ASP in preclinical settings.(8) 
In recent years, it has been shown that ASP has good 
anti-cancer effects.(24) ASP can destroy the formation 
of new cancer cells by inhibiting cell metastasis and 
microvascular formation,(25) and restore mammary 
tumor-induced osteolysis through immune regulation, 
resulting in a good therapeutic effect for breast cancer.(26) 
In addition, ASP inhibits the growth of liver cancer 
by regulating the release of inflammatory factors to 
enhance the function of immune effector cells,(27) 
and inhibits the growth and formation of colorectal 
cancer by enhancing the cytokine-induced killer cell 
effect, inducing apoptosis and promoting the death 
of apoptotic cells(28) In this study, it was found that 
ASP signifi cantly inhibited proliferation and promoted 
apoptosis of cervical cancer cells Hela and Ca Ski, 
and signifi cantly increased the expression of apoptosis 
protein cleaved-caspase-3 in cells, suggesting that 
ASP played an important role in promoting cervical 
cancer cells apoptosis.

Mitochondrial pathway-caused apoptosis is 
a classical form of cell death, and mitochondrial 
depolarization is a landmark event of early apoptosis.(29) 
Intracellular oxidative stress can trigger the decline 
of mitochondrial membrane potential, thereby 
activating caspase and initiating apoptosis.(30) In this 
study, it was found that ASP significantly increased 
intracellular ROS levels and decreased mitochondrial 
membrane potential, suggesting that ASP may play an 
important role in mitochondrial apoptosis. Apoptosis 
of the mitochondrial pathway is mainly regulated by 
Bcl-2 family proteins.(31) Changes in mitochondrial 
membrane permeabi l i ty lead to up-regulated 
expression of pro-apoptotic protein Bax, while down-
regulated expression of anti-apoptotic protein Bcl-2 in 

the Bcl-2 family, and Cyt-c and Bax are released into 
the cytosol to promote apoptosis.(32) The results of this 
study showed that the protein expression of Bcl-2 was 
signifi cantly decreased, and the protein expressions of 
Bax and Cyt-c were signifi cantly increased in cervical 
cancer cells after ASP treatment, which confirmed 
that ASP could promote the mitochondrial pathway 
apoptosis.

ER is a dynamic organelle that regulates many 
cellular functions by interacting with mitochondria.(16) 

Studies have confi rmed that ER stress is also closely 
related to the apoptosis of cancer cells.(33) GRP78, also 
known as BiP, is a member of the heat shock protein 
70 family and acts as a molecular chaperone. An 
elevated GRP78 level is a key signal of ER stress.(34) 
Caspase-4 is mainly located in the outer membrane of 
ER, and has been confi rmed to play a key role in ER 
stress-induced human cell apoptosis.(35) The present 
study found that the protein levels of GRP78 and 
cleaved-caspase-4 in cervical cancer cell lines Hela 
and Ca Ski were signifi cantly increased after treatment 
with ASP, suggesting that ASP promoted ER stress-
induced apoptosis. In addition, 4-PBA acts as an 
inhibitor of ER stress and primarily acts as a chemical 
chaperone, protecting proteins from aggregation, 
promoting protein folding, and reducing ER stress.(36,37) 
The present study found that ASP could signifi cantly 
reverse the inhibitory effect of 4-PBA on the apoptosis 
of cervical cancer cells, further confirming that ER 
stress plays an important role in the ASP-induced 
apoptosis of cervical cancer cells.

In conclusion, ASP significantly inhibited the 
proliferation of cervical cancer cells and promote 
apoptosis in a dose-dependent manner. ASP 
also increased intracellular ROS levels, reduced 
mitochondrial membrane potential, and significantly 
induced mitochondrial damage and ER stress. In 
addition, ER inhibitor 4-PBA could induce cervical 
cancer cell proliferation and inhibit apoptosis, and 
the inhibiting effect of 4-PBA on cervical cancer cell 
apoptosis can be reversed by ASP. These results 
suggest that ASP can inhibit the proliferation and 
promote apoptosis of cervical cancer cells, and 
the pro-apoptotic effect may be exerted through 
ER stress-mitochondrial pathway. However, this 
study was only conducted in vitro, and the lack of in 
vivo experiments may be a limitation of this study. 
Follow-up studies should use animal models to 



• 40 • Chin J Integr Med 2024 Jan;30(1):34-41

carry out in vivo experiments to further verify the 
anti-cervical cancer effects of ASP, so as to lay a 
foundation for the clinical application of ASP.
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