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Acute myeloid leukemia (AML) is a malignant 
tumor caused by abnormal clonal proliferation of 
hematopoietic stem cells, where bone marrow 
hematopoietic cells lose their ability to further 
differentiate and mature, leading to termination of 
cell growth in the immature stage and the production 
of massive non-nucleated cells. These cloned non-
nuclear cells proliferate and aggregate in bone 
marrow, peripheral blood and other hematopoietic 
tissues, as well as invade other organs and tissues, 
thereby inhibiting the normal hematopoietic system.(1,2) 
The main clinical manifestations of AML are fever, 
infection, anemia, and extramedullary infiltration.(3,4) 
The incidence of AML is about 1.6 among 100,000 
patients and continues to increase, while elderly 
people are main victims of all leukemias (70%).(5,6)

Currently, the main treatment options for leukemia 
are combined chemotherapy, differentiation induction 
therapy and stem cell transplantation therapy,(7-11) 
among which differentiation induction therapy has 
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become the mainstay for the treatment of AML due to 
its low toxicity and high safety. Differentiation induction 
therapy can induce tumor cells to differentiate into 
normal or nearly normal cells by chemical drugs, and 
reverse malignant phenotypes such as abnormal 
proliferation, invasion, and metastasis of tumor cells, 
thereby achieving the goal of tumor treatment.(12,13) 
Activation of extracellular signal-related kinase (ERK) is 
a key step in the cascade mediating cell proliferation in 
response to a variety of extracellular signals.(14) ERK2 
and c-Jun N-terminal kinase (JNK) were reported to be 
involved in the generation of retinoid responses in the 
HL-60 AML cell line.(15) ERK inhibitor could offset the 
suppressive effect of L-ascorbic acid on the leukemic 
progenitor cell growth.(14) It has been reported that 
VPS9D1 antisense RNA 1 (VPS9D1-AS1) knockdown 
inhibits the MEK/ERK signaling pathway, and enhances 
the inhibitory effect of chidamide on the proliferation of 
AML cells.(16) These studies suggest that ERK pathway 
plays a regulatory role in the development of AML.

At present, many Chinese herbs and their 
monomer preparations have been proved to be highly 
effective in inducing the differentiation of leukemia 
cells.(17,18) For instance, ginsenoside Rd (GRd) is 
an active ingredient of Radix Ginseng, which can 
promote the proliferation and differentiation of neural 
stem cells and bone marrow stromal cells in vitro.(19,20) 
However, the function of GRd on treating leukemia 
is rarely reported in existing studies, and the effect 
of GRd on the differentiation of leukemia cells has 
not been reported as well. The present study strives 
to investigate GRd-induced differentiation in AML 
cells, with the purpose of discovering an effective 
differentiation inducer for AML treatment.

METHODS

Cell Culture and Treatment
AML cell lines (KG-1, K562, Hel and NB4) 

purchased from American Type Culture Collection 
(Manassas, VA, USA) were cultured in Roswell Park 
Memorial Institute (RPMI) 1640 medium containing 
10% fetal bovine serum (FBS, Gibco, USA), 100 U/mL 
penicillin and 100 μg/mL streptomycin at 37 ℃ under 
the atmosphere of 5% CO2. The cells in logarithmic 
growth phase were treated with GRd (CAS: 52705-93-8, 
purity: over 98%, HY-N0043, MedChemExpress, China) 
at different concentrations (25, 50, 100 and 200 μg/mL) 
for 72 h to detect cell viability.(21,22) Likewise, KG-1, 
K562 and NB4 cells were treated with GRd at different 

concentrations (25, 50, 100 and 200 μg/mL) for 14 days 
to detect cell proliferation.

Cell Viability Detection
Methylthiazolyldiphenyl-tetrazolium bromide 

(MTT) kit (C0009, Beyotime Biotechnology, China) 
was used to detect cell viability according to the 
instructions. Briefly, cells were treated with GRd at 
different concentrations (25, 50, 100 and 200 μg/mL) 
for 72 h. After treatment, 25 μL MTT solution was 
added into KG-1, K562, Hel and NB4 cells and kept at 
37 ℃ for 3–5 h. Subsequently, the supernatant was 
removed, and 200 μL dimethyl sulfoxide (DMSO) 
was added into the cells. Eventually, the absorbance 
was measured at 490 nm using a microplate reader 
(Molecular Devices, SpectraMax iD3, USA).

Colony Formation Assay
KG-1, K562 and NB4 cells were respectively 

treated with GRd at different concentrations (25, 50, 
100 and 200 μg/mL) for 14 days. The treated cells 
were then centrifuged at 1,000×g for 5 min at 4 ℃, and 
were rinsed twice in Dulbecco's phosphate buffered 
saline (DPBS, D8662, Sigma-Aldrich, Germany). 
The above mentioned cells were cultured in Iscove's 
modified Dulbecco medium (IMDM, PM150510, 
Procell, China) consisting of 30% new bovine serum, 
1% L-glutamine, penicillin-streptomycin, and 0.3% agar 
as viscous support. The experiments were performed 
in triplicate with 103 cells per well in a 24-well plate, 
and incubated at 37 ℃ in a humidified atmosphere 
supplemented with 5% CO2 for 7 days. The colony 
number (  40 cells) was counted under the microscope.

Cell Cycle
KG-1, K562 and NB4 cells were treated with GRd 

at different concentrations (25, 50 and 100 μg/mL) 
for 14 days. Thereafter, all cell suspensions were 
transferred to a centrifugal tube and centrifuged at 
1,000×g for 5 min at 4 ℃. After the supernatant was 
discarded, cells were fi xed by 3 mL 70% ice ethanol 
for 48 h and then stained by 400 μL 50 μg/mL 
propidium iodide (PI, 85-BMS500PI, Multi Sciences, 
China) solution. Finally, the stained cells were 
analyzed by a flow cytometer (version 10.0, FlowJo, 
FACS Calibur™, BD, USA).

Wright-Giemsa Staining
Wright-Giemsa Stain kit (9990710, Thermo Fisher 

Scientifi c, USA) was used to observe cell morphology. 
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In brief, K562 cells were treated with GRd (25 and 
50 μg/mL) or the positive control retinoic acid (RA, 
0.1 g/L, U1674004, Sinopharm Chemical Reagent 
Beijing Co., Ltd., China). Afterwards, the cells were 
centrifuged at 1,000×g for 5 min at 4 ℃, the culture 
medium was discarded and the cell smear was 
prepared. After natural drying, the cells were immersed 
in Wright-Giemsa staining solution for 5 min. Finally, 
the cell morphology was observed under an optical 
microscope (BX-51, Olympus, Japan).

Peroxidase Chemical Staining
For the preparation of compound benzidine dye 

solution, 0.3 g 4,4'-DiaMinobiphenyl (CAS:92-87-5, 
purity: higher than 99%, Beijing Ouhe Technology Co., 
Ltd., China), 1 mL sodium nitroferricyanide (Ⅲ) dihydrate 
(CAS: 13755-38-9, Beijing Ouhe Technology Co., Ltd., 
China), and 99 mL ethanol were thoroughly mixed.

K562 cells were treated with the positive control 
RA (0.1 g/L), or GRd (25 and 50 μg/mL). In addition, 
K562 cells received treatments of GRd (25 μg/mL) 
and PD98059 (a non-ATP competitive ERK inhibitor; 
20 mg/mL, S1805, Beyotime Biotechnology, China). 
The treated cells were then centrifuged at 1,000×g 
for 5 min at 4 ℃, the culture medium was discarded 
and the cell smear was prepared. Next, 3–8 drops 
of compound benzidine dye were added into the 
cell smear and held for 2 min. Next, 3–8 drops of 
hydrogen peroxide solution (SW010764, Beijing 
Ouhe Technology Co., Ltd., China) were added into 
the smear and held for another 10 min. Finally, the 
cell smear was washed by water, naturally dried, and 
observed under an optical microscope.

Cellular Immunochemistry Assay
The cells were inoculated into the culture flask 

at a concentration of 1×105 cells/mL. K562 cells were 
treated with GRd (25 and 50 μg/mL) or the positive 
control RA, and centrifuged at 1,000×g for 5 min at 
4 ℃. Five days later, immunochemistry chemical 
staining was performed for identifying the cells. The cell 
smear was washed by phosphate buffer saline (PBS) 
3 times and fixed on ice acetone (01000356-25 g, 
Beijing Ouhe Technology Co., Ltd., China) for 15 min. 
Next, the dried cells were washed by PBS 3 times. 
After that, the cells were incubated first with 0.5% 
Triton X-100 (ST795, Beyotime Biotechnology) for 
20 min and then with 3% hydrogen peroxide solution 
(H2O2, S0051, Beyotime Biotechnology) for 15 min, 

followed by being washed 3 times using DPBS 
(14190250, Thermo Fisher Scientifi c). Thereafter, the 
serum was used to incubate the cells for 20 min. Next, 
the cells were incubated with primary antibodies [anti-
purine rich Box-1 (PU.1), anti-GATA binding protein 1 
(GATA-1), anti-γ-globulin and anti-cEPB antibodies] 
at 4 ℃ overnight and washed by PBS for 3 times, 
followed by being further incubated with a secondary 
antibody at 37 ℃ for 30 min and washed with PBS 
3 times. Subsequently, cells were stained with DAB 
developing kit (P0202, Beyotime Biotechnology) 
for 10 min, and washed by distilled water for 1 min. 
Afterwards, the cells were stained by hematoxylin 
(Shanghai Ruji Biotechnology Development Co., Ltd., 
China) for 1 min, washed by tap water for 30 min 
and then sealed by gum. Ultimately, the erythroid 
and granulated cells were observed under an optical 
microscope.

Western Blot
After the cells were washed twice by cold PBS, 

the total proteins were lysed in RIPA lysis buffer (Tianjin 
Yitailong Technology Co., Ltd., China) and then boiled 
at 100 ℃ for 5 min of denaturation. Next, protein sample 
(20 μg) was separated on sodium dodecyl sulfate 
polyacrylamide gel electrophoresis (SDS-PAGE) and 
then transferred onto nitrocellulose blotting membranes 
(A10464264, GE Healthcare Life Science, USA), 
subsequent to which the membranes were sealed by 
5% skim milk at room temperature for 1 h. Afterwards, 
the membranes were incubated with primary antibodies 
(obtained from Cell Signaling Technology, CST) against 
GATA-1 (rabbit, 1:1,000, 4589), PU.1 (rabbit, 1:1,000, 
2258), phosphorylated-extracellular signal-related 
kinase (p-ERK, rabbit, 1:500, 4370S), ERK (rabbit, 
1:500, 4695S), phosphorylated-glycogen synthase 
kinase-3 beta (p-GSK3β) (rabbit, 1:1,000, 5558), 
GSK3β (rabbit, 1:1,000, 12456), signal transducer 
and activator of transcription 1 (STAT1; rabbit, 1:1,000, 
14995, CST), GAPDH (rabbit, 1:1,000, 5174), and 
β-actin (rabbit, 1:1,000, 4970) at 4 ℃ overnight. 
Following these, the membranes were further incubated 
with a horseradish peroxidase (HRP)-conjugated 
secondary antibody goat anti-mouse or goat anti-rabbit 
IgG (H+L) (Protein Tech, USA) for 2 h and washed by 
PBS 3 times. Finally, the protein bands were detected 
by electrochemiluminescence (ECL) Western blot 
kit (MAB5350, Sigma-Aldrich, USA) and scanned by 
a super sensitive multifunctional imager (Image J, 
version 4.7, National Institutes of Health, USA).



• 591 •Chin J Integr Med 2024 Jul;30(7):588-599

Animal Ethics Statement
On the premise of obtaining the approval from 

Ethics Committee of Zhejiang Tongde Hospital (Approval 
No. ZJTDH2019120121), and animal experiments were 
conducted in strict accordance with the guidelines of the 
Animal Welfare Act.

Establishment of Tumor-Bearing Model in Nude 
Mice

Totally 36 male athymic nude mice (aged 6 
weeks, weighing approximately 25 g) were purchased 
from Shanghai Lab. Animal Research Center 
[License No. SCK (Shanghai) 2008-0016]. During 
the experiment, all the mice were kept in a controlled 
specific pathogen-free (SPF) environment with a 
temperature of 22±2 ℃ and a humidity of 40%–70% 
under a 12 h light/dark cycle and given free access 
to food and water. Later, 1×PBS (100 μL) was used 
to resuspend the K562 cells (1×107/mL), and the cell 
suspension was injected into the mice via the right 
fl ank to establish a tumor-bearing model.

The model mice were randomly divided into 
3 groups (12 mice in each group) using a random 
number table: model control group (non-treatment), 
GRd group [treated with 200 mg/(kg•d) GRd, which 
is equivalent to 9.1 times clinical administration] 
and homoharringtonine (HTT) group [treated with 
1 mg/(kg•d) HTT, which is equivalent to 9.1 times 
clinical administration].(23,24) After a week, the short 
and long diameters of mice were measured by vernier 
calipers every 3 days. All the mice were fed for 
4 weeks and then the experiment was terminated. 
The mice were sacrifi ced when obvious tumor burden 
hampered their movement or feeding behavior on 
daily inspection or at the end of 4 weeks, whichever 
came first. Mice were sacrificed by intraperitoneal 
injection of pentobarbital sodium (100 mg/kg). 
Tumor weight and volumes were noted at the time 
of sacrifice. Tumor volume was calculated by the 
formula: tumor volume = (L×W2)/2. This study was 
approved by the Committee of Experimental Animals 
of Zhejiang Chinese Medical University (approval No. 
ZSLL-2013-105). Every effort was made to minimize 
the pain and discomfort to the animals.

Hematoxylin and Eosin Staining
The sections containing subcutaneous tumor 

tissues were stained by hematoxylin and eosin (HE). 
Concretely, the subcutaneous tumor tissues derived 

from the nude mice were fixed by formaldehyde 
(SF877503, Sinopharm Chemical Reagent Beijing Co., 
Ltd., China), dehydrated by gradient alcohol (80%, 90%, 
95% and 100%), and treated with xylene (10023418, 
Sinopharm Chemical Reagent Beijing Co., Ltd., China). 
Next, the tissues were immersed in wax, embedded, 
and cut into sections. Subsequently, the sections 
were dewaxed by xylene, rehydrated by ethanol at the 
concentrations of 100%, 95%, 80% and 70% for 2 min, 
and rinsed in distilled water twice. Then, the sections 
were stained with hematoxylin for 20 min, and washed 
under running water. After being washed by tap water for 
10 min, the sections were further stained by eosin (Beijing 
Zhongshan Golden Bridge Biotechnology Co. Ltd., 
China) for 15 min. Later, the sections were dehydrated in 
100% ethanol for 15 min and then treated with xylene for 
15 min. Finally, the sections were sealed by the neutral 
gum, whose pathological changes were observed under 
an optical microscope (CKX31, Olympus, Japan).

Immunohistochemical Staining
The subcutaneous tumor tissues of the mice 

were fi xed with formaldehyde, dehydrated in gradient 
alcohol, and transparentized by xylene, followed by 
being immersed in wax, embedded, and sectioned 
into tissue slices. Next, the slices were dewaxed by 
xylene, rehydrated by ethanol at the concentrations 
of 100%, 95%, 80% and 70% for 2 min, and washed 
by PBS twice. Afterwards, 30 mL EDTA antigen repair 
buffer (P0086, Beyotime Biotechnology) was diluted 
by 1,500 mL distilled water, and then the diluted buffer 
was boiled in a microwave box. Subsequently, the 
tissue slices were fully immersed in the buffer above 
to repair the antigen, heated for 10 min, naturally 
cooled, and rinsed in PBS 3 times. Following these, 
each tissue slice was added with 3 drops of 3% 
H2O2, incubated at room temperature for 15 min 
under the light to eliminate the activity of endogenous 
peroxidase, and then rinsed in PBS 3 times. Later, the 
slices were incubated with primary antibodies against 
WT1 (83535, CST) and GATA-1 (3535, CST) at 4 ℃ 
overnight and washed by PBS 3 times, followed by 
being incubated with the secondary antibody at 37 ℃ 
for 30 min and washed by PBS 3 times. Then, the 
slices were stained with DAB developing kit (P0202, 
Beyotime Biotechnology) for 10 min and washed by 
distilled water for 1 min. After these, the slices were 
stained by hematoxylin for 1 min, washed by tap water 
for 30 min and then sealed by gum. Finally, the slices 
were observed under an optical microscope.
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Flow Cytometry for Detecting Cell Apoptosis
K562, KG-01 and NB4 cells were washed with 

pre-cooled PBS twice and then diluted in 200 μL 
binding buffer to a concentration of 1×106 cells/mL. 
In accordance with the guidance of Annexin V-FITC 
kit (556547, Shanghai Weijin Biotechnology Co., Ltd., 
China), 5 μL Annexin V and 5 μL PI were added to 
100 μL cell suspension. Subsequently, cells were 
incubated at room temperature for 15 min in the 
dark, and then resuspended with 400 μL binding 
buffer. Finally, cells were loaded in a flow cytometer 
(BD FACSVerse™, Becton Dickinson, USA) for the 
determination of their apoptosis rates.

Statistical Analysis
Graphpad Prism software (version 6.01; 

GraphPad Software, Inc., USA) was introduced 
for statistical analysis. All the experiments were 
independently repeated 3 times. The data were shown 
as mean±standard deviation (x–±s) of at least 3 
independent experiments. The differences among 
multiple groups were analyzed by One-Way Analysis of 
Variance (ANOVA), followed by Tukey's post hoc test. 
P<0.05 was considered to be statistical signifi cance.

RESULTS

GRd Inhibited Survival of AML Cells
The result revealed that GRd inhibited the viability 

of 4 AML cells in a dose-dependent manner (P<0.05 
or P<0.01, Figure 1A). As Figure 1B denoted, GRd 
inhibited KG-1, K562 and NB4 cell proliferation in a dose-
dependent manner, and GRd at 200 μg/mL induced the 
notably suppression (P<0.01). Details of KG-1, K562 and 
NB4 cell colonies are presented in Figure 1C. Moreover, 

fl ow cytometry results showed that GRd could cause cell 
arrest in G0/G1 phase (P<0.01, Figure 2). 

GRd Induced Differentiation of AML Cells
Western blot result revealed that the expressions 

of GATA-1 and PU.1 were increased in K562 and 
KG-1 cells treated with GRd (P<0.05 or P<0.01, 
Figures 3A and 3B). In addition, the expression of 
PU.1 was increased in NB4 cells treated with GRd 
(P<0.01, Figure 3C). After GRd and RA treatments, 
some cells showed pseudopodia and increased cell 
vacuoles under the optical microscope. Moreover, 
Wright-Giemsa staining results uncovered that the 
cytoplasm of cells became lighter and the ratio of 
nuclear plasma was decreased (Figure 3D).

The POX chemical staining assay results 
demonstrated that the expression of POX was 
increased in ALM cells after GRd and RA treatments 
(Figure 4). Furthermore, the results of cellular 
immunochemical experiments revealed that the specifi c 
protein expressions of PU.1 and γ-globulin were 
upregulated in KG-1 cells treated with GRd and RA 
(P<0.01), and the expressions of GATA-1 and PU.1 
were also elevated in K562 cells after GRd and RA 
treatments (P<0.05 or P<0.01, Figure 5).

GRd Induces AML Cell Differentiation via ERK 
Pathway

Western Blot was performed to detect the 
expressions of p-ERK and ERK in AML cells, and the 
result uncovered that the ratio of p-ERK/ERK was 
overtly increased in KG-1, K562 and NB4 cells treated 
with 25, 50 and 100 μg/mL GRd (P<0.01, Figure 6). 

Figure 1. GRd Inhibited Proliferation of AML Cells 
Notes: A: Methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay was used to detect the viability of AML cells (KG-1, K562, 

Hel and NB4) after treatment with different concentrations of GRd (0, 25, 50, 100 and 200 μg/mL). B: Colony formation assay was 
performed to determine the cell proliferation after treatment with different concentrations of GRd (0, 25, 50, 100 and 200 μg/mL). x–±s, 
n=4. C: KG-1, K562 and NB4 cell colonies (magnifi cation: 400×, scale bar: 40 μm). P<0.05;  P<0.01 vs. control. GRd: ginsenoside 
Rd; AML: acute myeloid leukemia. The same below
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In addition, the levels of p-GSK-3β/GSK-3β and 
STAT1 expressions were increased in K562 and NB4 
cells treated with 25, 50 and 100 μg/mL GRd (P<0.05 
or P<0.01, Figures 7A and 7B).

The ERK pathway inhibitor PD98059 was used to 
culture AML cells, and POX chemical staining assay was 
performed to observe NB4 cell differentiation. The results 

demonstrated that the expression of POX was obviously 
inhibited in NB4 cells treated with PD98059, whereas 
GRd promoted the expression of POX and reversed the 
effect of PD on inhibiting the POX expression (Figure 8A). 
Meanwhile, the result from Western blot revealed that the 
expressions of GATA-1 and PU.1 were conspicuously 
promoted in GRd-treated cells, and the alteration was 
reversed by PD treatment (P<0.01, Figure 8B).

Figure 2. GRd Inhibited AML Cell Cycle ( ±s, n=3) 
Notes: Cell cycle was measured by fl ow cytometry after cells were treated with different concentrations of GRd (0, 25, 50, 100 and 

200 μg/mL). P<0.05,  P<0.01 vs. control
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Figure 3. GRd Induced Differentiation of AML Cells
Notes: A: The expressions of GATA-1 and PU.1 in K562 cells treated with GRd (0, 25, 50, 100 μg/mL) detected by Western 

blot. β-actin was the housekeeping control. B: Western blot was employed to quantify the expressions of GATA-1 and PU.1 in KG-1 
cells after treatment with GRd (0, 25, 50, 100 μg/mL). GAPDH was the housekeeping control. C: The expression of PU.1 in NB4 cells 
treated with GRd (0, 25, 50, 100 μg/mL), GAPDH acted as the housekeeping control. x–±s (n=3). D: The morphology of NB4, K562 and 
KG-1 cells observed by Wright-Giemsa staining after cells were treated with GRd (0, 25, 50 μg/mL) and RA (0.1 g/L). Magnifi cation: 
400×, scale bar: 40 μm. P<0.05,  P<0.01 vs. control. GATA-1: GATA binding protein 1; GAPDH: glyceraldehyde-3-phosphate 
dehydrogenase; RA: retinoic acid
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In addition, the effect of GRd on apoptosis of 
K562 cells was also detected. The result showed that 
the apoptosis rate of K562 cells in GRd group was 
increased compared with that in control group, and the 
apoptosis rate of K562 cells in GRd+PD980509 group 
was increased compared with those in control and 
PD980509 groups (P<0.01), while no signifi cant change 
was observed between GRd and GRd+PD980509 

groups (P>0.05, Figure 8C).

GRd Inhibited AML Tumor Development
To further analyze the role of GRd, the tumor 

model of nude mice was established and mice were 
treated with GRd and HTT. It was found that the tumor 
volume and weight were decreased significantly in the 
mice treated with GRd (P<0.05) or in the mice treated 

Figure 4. GRd Induced POX Expression in ALM Cells
Notes: Effect of GRd on inducing NB4, K562, and KG-1 cell differentiation evaluated by chemical staining of POX after cells were 

treated with GRd (0, 25, 50 μg/mL) and RA (0.1 g/L). Magnifi cation: 400×, scale bar: 40 μm. POX: peroxidase
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Figure 5. GRd Induced Expressions of Specifi c Proteins Concerning Erythroid or 
Granulocytic Differentiation in AML Cells

Notes: A: The expression of erythroid differentiation protein (γ-globulin) and granulocyte-differentiated protein (PU.1) in KG-1 
cells detected by cytoimmunochemistry after cells were treated with GRd (0, 25, 50 μg/mL) and RA (0.1 g/L). B: The expression of 
erythroid differentiation protein (GATA-1) and PU.1 in K562 cells detected by cytoimmunochemistry after cells were treated with GRd 
(0, 25, 50 μg/mL) and RA (0.1 g/L). Magnifi cation: 400×, scale bar: 40 μm. x–±s (n=3); P<0.05,  P<0.01 vs. control
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Figure 6. GRd Regulated ERK Pathway in AML Cells ( ±s, n=3)
Notes: A: The protein expressions of p-ERK and ERK in KG-1, K562 and NB4 cells after cells were treated with different 

concentrations of GRd (0, 25, 50, 100 μg/mL). P<0.01 vs. control. GAPDH was used as the loading control. ERK: extracellular signal-
related kinase; p-ERK: phosphorylated-extracellular signal-related kinase

Figure 7. GRd Regulated p-GSK-3β and STAT1 Expressions in AML Cells ( ±s, n=3)
Notes: Western blot was performed to detect the expressions of p-GSK-3β, GSK-3β and STAT1 in K562 (A) and NB4 (B) cells after 

cells were treated with different concentrations of GRd (0, 25, 50, 100 μg/mL). GAPDH was used as a loading control. *P<0.05, **P<0.01, 
vs. control. p-GSK-3β: phosphorylated-glycogen synthase kinase-3 beta. STAT1: signal transducer and activator of transcription 1

Figure 8. GRd Induced AML Cell Differentiation via ERK Pathway 
Notes: A: Chemical stainning of POX was applied to observe NB4 cell differentiation (magnifi cation: 400×, scale bar: 40 μm). 

B: The expressions of GATA-1 and PU.1 after cells were treated with GRd and PD98059 measured by Western blot. GAPDH was used 
as the loading control. C: The apoptosis of K562 cells detected by fl ow cytometry. x–±s (n=3). P<0.01 vs. control; △P<0.01 vs. GRd 
group; ▲P<0.01 vs. PD98059 group
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with HTT (P<0.01, Figures 9A and 9B). Furthermore, 
the subcutaneous tumor tissues were observed after HE 
staining. It could be observed that the tumor tissue cells 
in the control group showed clear morphology, tight cell 
growth, and fewer apoptotic cells. The morphology of 
tumor tissue cells in the GRd treatment group and HTT 
group were unclear, with a signifi cant increase in apoptotic 
and necrotic cells (Figure 9C). Immunohistochemical 
staining assay was performed to determine the 
expressions of WT1 and GATA-1 in subcutaneous tumor 
tissues. The results showed that WT1 expression was 
signifi cantly reduced, however, GATA-1 expression was 

greatly increased in subcutaneous tumor tissues treated 
with GRd and HTT (P<0.05 or P<0.01, Figure 9D).

DISCUSSION 

AML cel ls prol i ferate and accumulate in 
bone marrow and other hematopoietic tissues due 
to uncontrolled proliferation and differentiation 
dysfunction, and also invade other non-hematopoietic 
tissues and organs, thereby affecting the normal 
hematopoietic function.(1) In recent years, many 
Chinese herbal monomers such as vincristine, 
paclitaxel, and cytidine have been used in the 
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treatment of AML,(25-27) and anti-AML functions of 
Chinese herbal monomers such as triptolide, baicalin, 
and icariin have been recently discovered.(28-30) 
In addition, the functional mechanism of Chinese 
herbal monomers on inhibiting the proliferation and 
promoting the differentiation of AML cells has been 
investigated as well. At present, Chinese medicine 
and its monomer preparations have become important 
aspects in anti-leukemia pharmacology research.

GRd, an extract of Panax notoginseng and 
Radix Ginseng, is one of the main metabolites of 
diol ginsenoside in human intestinal tract, and has 
many biological activities.(31,32) Though GRd has been 
proved to have unique functions in the treatment of 
cardiovascular, cerebrovascular, and neurological 
diseases and exert anti-tumor effects, (33-35) i ts 
therapeutic effects on AML have not been reported 
yet. GRd has also been found to significantly inhibit 
the proliferation of human glioma U251 cells(36) and 
human cervical cancer cells.(37) Thanks to its effect 
in inhibiting phenylephrine-induced cardiomyocyte 
hypertrophy, GRd has been applied in the treatment 
of cardiomyocytes.(38) Ginsenoside Re and GRd 
have been manifested to enhance the expressions 
of cholinergic markers and neuronal differentiation 
in Neuro-2a cells.(19) GRd extracted from Panax 
notoginseng has been found to enhance the astrocyte 
differentiation from neural stem cells.(14) GRd can 
also induce the differentiation of MC3T3-E1 cells by 
activating AMPK/BMP-2/Smad signaling pathways.(20) 
In the current study, GRd at different concentrations 

was used to treat AML cells. It turned out that GRd 
inhibited the proliferation of AML cells in a dose-
dependent manner, and the cells were arrested at 
G0/G1 phase, proving that GRd yielded an inhibitory 
effect on the development of AML cells.

Cell differentiation is an important biological 
process in the development and maturation of 
advanced organisms.(39) Abnormal cell differentiation 
can lead to the occurrence of diseases such as 
malignant tumors,(40) and cell differentiation disorder is 
a pivotal cause to AML. Cell differentiation is regulated 
by various proteins, and GATA-1 is only expressed 
in hematopoietic cell lines and has the function of 
regulating the proliferation and differentiation of 
erythroid cell lines.(41) PU.1 is mainly expressed in 
hematopoietic system. Besides, cells such as myeloid 
cells and B lymphocytes can regulate the transcription 
of myeloid genes, thereby regulating the differentiation 
of hematopoietic system. Several studies revealed 
that the absence of PU.1 could induce AML.(42,43) 
The results of the present study displayed that the 
expressions of GATA-1 and PU.1 were increased 
in AML cells after GRd treatment. The activation of 
STAT1 has a vital role in the terminal differentiation 
of immature leukemia cells.(44,45) In this research, RA 
treatment served as the positive control, which induced 
cell differentiation. Similar to the results after RA 
treatment, pseudopodia appeared in cells treated with 
GRd, and the ratio of nucleoplasm was decreased, 
whereas the expressions of POX and specifi c proteins 
concerning erythroid or granulocytic differentiation were 

Figure 9. GRd Inhibited AML Tumor Development
Notes: A: Mouse tumor-bearing model was established and mice were treated with GRd [200 mg/(kg•d)] and HTT (homoharringtonine, 

1 mg (kg•d), positive control), and the tumor weight was measured. B: The tumor volume of mice was calculated after the establishment 
of the tumor-bearing mouse model. x–±s (n=12); C: HE staining was used to analyze the effects of GRd and HTT on subcutaneous 
tumor tissue of the mice. D: The protein expressions of WT1 and GATA-1 in subcutaneous tumor tissues of nude mice determined by 
immunohistochemical staining (magnifi cation: 400×, scale bar: 50 μm). P<0.05,  P<0.01 vs. control.
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increased. These results indicated that GRd could 
promote the differentiation of AML cells.

ERK signaling pathway is closely related to cell 
proliferation and differentiation, and it acts on a variety 
of transcription factors through phosphorylation of 
downstream molecules, and promotes the transcription 
and expressions of target genes.(46) Currently, the 
activation of ERK/GSK-3β signaling pathway has 
been used to regulate cell differentiation.(47,48) It was 
found that LukS-PV could induce the differentiation 
of AML cells via activating ERK signaling pathway.(49) 
Several studies have shown that GRd promotes or 
inhibits cellular function by regulating ERK signaling 
pathway.(50-52) For example, GRd promotes neurite 
outgrowth of PC12 cells by upregulating GAP-43 
expression via MAPK/ERK-dependent pathways.(53) 
At present, it is not clear whether GRd can promote 
the differentiation of AML cells through regulating 
ERK/GSK-3β signaling pathway. The results of this 
study exhibited that p-ERK and p-GSK-3β levels were 
increased in GRd-treated AML cells, and GRd reversed 
the effects of PD98059 on inhibiting the expressions 
of POX, PU.1 and GATA-1, suggesting that GRd 
could induce the differentiation of AML cells through 
upregulating ERK/GSK-3β signaling pathway-related 
proteins. Specifi cally, GRd promoted the differentiation 
of AML cells by upregulating POX, PU.1 and GATA-1 
levels via activating ERK/GSK-3β signaling pathway. 

GRd was evidenced to significantly reduce the 
volume and weight of breast tumor in a dose-dependent 
manner.(35) A previous study also discovered that GRd 
treatment obviously reduces the number of tumor 
lesions in mice inoculated with breast cancer 4T1 cells.(54) 
In this research, K562 cells were used to induce the 
formation of tumors in nude mice to further explore 
the inhibitory effect of GRd on solid AML tumors. 
Notably, the tumor weight and volume in GRd-treated 
mice were lower than those in the model control 
mice. In addition, the histological and pathological 
changes observed after HE staining showed that tumor 
cells underwent substantial apoptosis and necrosis. 
Moreover, WT1 level was decreased, however, 
GATA-1 level was visibly increased in the cells after 
GRd treatment. These results indicate that GRd can 
inhibit the development of tumors in vivo. However, 
there are limitations in this study. In in vitro experiment, 
nude mice were also treated with PD98059 to further 
analyze the effect of GRd-mediated ERK signaling 

pathway on tumors. In addition, the markers indicating 
the specifi c differentiation directions need to be further 
analyzed as well.

Collectively, this study attests through in vivo 
experiments that GRd can inhibit the proliferation and 
induce the differentiation of AML cells to hinder the 
development of AML tumor, hinting its potent potential as 
a benefi cial anti-leukemic agent for differentiation therapy. 
The current findings further improve the understanding 
on GRd's role in AML at a molecular level.
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