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Myocardial infarction (MI) is the death of 
myocardial cells due to prolonged myocardial 
ischemia resulting from insufficient blood flow and 
oxygen supply.(1) Hypoxia is one of the factors that 
affect physiological processes including energy 
metabolism, autophagy, cell motility, angiogenesis, 
and erythropoiesis.(2) Study has shown that hypoxia is 
a potential pathogenic factor for myocardial ischemia. 
Acute or persistent hypoxia can cause cardiomyocyte 
apoptosis and autophagy, resulting in cardiomyocyte 
damage, which progresses to MI.(3) Currently, MI 
treatment focuses on angiotensin converting enzyme 
inhibitors/angiotensin receptor blockers, statins, and 
β blockers,(4) but the effi cacy is not ideal. Therefore, 
there has been an increasing number of approaches 
for treating MI such as protection against hypoxia-
induced myocardial cell injury.(5)

circRNA is a special subclass of ncRNA, which 
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is characterized by linking of 3' and 5' ends to form 
a covalent closed loop structure. It has been shown 
that varieties of circRNAs are involved in regulation 
of myocardial cell injury repair. CircNfi x can promote 
cardiac regeneration and repair and functional 
recovery after MI.(4) CircMFACR,(6) circFndc3b,(7) 
c i rcITCH,(8) and circ_0010729(9) can regulate 
myocardial cells apoptosis and improve myocardial 
function. Wang, et al(10) found that circHIPK3 was 
overexpressed in myocardial ischemia/reperfusion 
(I/R) model cells and could regulate the oxidative 
damage of cardiac microvascular endothelial cells 
through mir-29a/IGF-1 pathway. Chen, et al(11) found 
that circHIPK3 could regulate autophagy in non-small 
cell lung cancer through miR-124-3P-STAT3-PRKAa/
AMPKα signaling pathway.(11) Therefore, the ability 
of circHIPK3 to regulate myocardial cell injury by 
infl uencing autophagy needs to be studied further.

Dihydromyricetin (Dmy) is an important plant 
flavonoid isolated from the Chinese medicinal 
plant, Ampelopsis Grossedentata ,(12) which has 
heart protection, anti-diabetes, liver protection, 
neuroprotection, anti-tumor, and skin protection 
benefi ts.(13) Studies have shown that Dmy can protect 
vascular endothelial cells from oxidative stress 
injury by activating PI3K/AKT signaling pathway and 
increasing the expression of PI3K/AKT pathway, which 
plays a protective role against myocardial ischemia-
reperfusion injury.(14,15) Tan, et al(16) found that Dmy 
can eliminate TFEB-dependent cell autophagy in 
cutaneous squamous cell carcinoma cells by reducing 
the expression of lncRNA MALAT1; however, the effect 
of Dmy on autophagy in PI3K/AKT/mTOR pathway 
by regulating circRNA remains unclear. Thus, in this 
study, we constructed H9C2 cell injury model, and then 
observed the changes in cell proliferation, apoptosis, 
and autophagy after Dmy intervention, and further 
studied the potential mechanism of Dmy to provide a 
theoretical basis for Dmy in clinical treatment of MI.

METHODS

Cell Culture and Cell Hypoxia Injury Model 
Construction

H9C2 cells were obtained from Shanghai Institute 
for Biological Sciences, Chinese Academy of Sciences. 
The cells were cultured in Dulbecco's modified 
Eagle's medium (DMEM, SH30022.01B, HyClone) 
supplemented with 10% fetal bovine serum (FBS, No. 
10270-106, Gibco, USA) in an atmosphere containing 

5% CO2 and 95% air at 37 ℃. The medium was 
replaced every 24 h, and the cells were subcultured or 
cryopreserved when the confl uence reached 80%.

Cell hypoxia injury model was constructed according 
to references.(17,18) Precisely, H9C2 cells were cultured in 
serum-free DMEM in a constant incubator temperature at 
37 ℃, with 94% N2, 5% CO2, and 1% O2 for 24 h.

si-circHIPK3 Construction and Treatment
pCDH-CMV-MCS-EF1-CopGFP-T2A-Puro 

vector (ZY5BB-1, ZYbscience, China) with Green 
fl uorescent protein (GFP) tag was used for circHIPK3 
interference vector and the host bacteria was DH5α. 
The cells' RNAs were isolated using RNA extraction 
kit (Wuhan Hualian Biotechnology LTD, Co. China), 
and reverse transcription was conducted followed by 
polymerase chain reaction (PCR) amplification using 
circHIPK3-F and circHIPK3-R primers (Wuhan Hualian 
Biotechnology Co., Ltd, China). PCR products were 
collected using gel extraction kit (NPK-600, TOYOBO, 
China) and pCDH-CMV-MCS-EF1-CopGFP-T2A-
Puro vector was linearized using restriction enzymes, 
XhoI and BamHI at 37 ℃ for 2 h, and the linearized 
vectors were then recycled using purifi ed column. After 
the digested PCR gene fragments were inserted into 
the linearized vectors, they were incubated at 16 ℃ 
overnight, and the acquired circHIPK3 interference 
vectors were transformed into competent DH5α 
cells. Then, target plasmids were extracted from the 
bacterial liquid according to the instructions. Cells were 
transfected with pCDH-CMV-MCS-EF1-CopGFP-
T2A-Puro-circHIPK3-shRNA1 (short hairpin RNA 
sequence: 5'-GCAAACCAACATGGGAAATCC-3'), 
p C D H - C M V - M C S - E F 1 - C o p G F P - T 2 A - P u r o -
circHIPK3-shRNA2 (short hairpin RNA sequence: 
5'-GCAGCCTTACAGGGTTAAAGT-3'), or empty 
pCDH-CMV-MCS-EF1-CopGFP-T2A-Puro vectors 
(sh-circHIPK3 negative control, NC) using Lipofectamine 
2000 (No. 11668-027, Invitrogen, USA) according to the 
manufacturer's instruction. Non-transfected H9C2 cells 
were served as controls. After 48 h of transfection, the 
transfection rate was evaluated.

H9C2 cells were divided into 7 groups, namely 
control (not subjected to any transfection), model (not 
subjected to any transfection), EV (empty pCDH-CMV-
MCS-EF1-CopGFP-T2A-Puro vector), IV (circHIPK3 
interference), Dmy (Dihydromyricetin, 50 μmol/L),(19) 
and Dmy+IV, Dmy+EV groups respectively.
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Reverse Transcription Quantitative PCR
The whole RNA of the tissue and cell samples 

were extracted using Trizol reagent according to the 
manufacturer's procedures, and cDNA was synthesized 
using reverse transcriptase kit (Takara, USA). 
Quantitative polymerase chain reaction (qPCR) was 
performed in real-time system (BIO-RAD) using YBR 
Green PCR kit (KM4101, KAPA Biosystems, USA). 
Each qPCR reaction was performed in duplicates. The 
results were analyzed using 2-△△Ct method. The primers 
were designed and confi gured by Wuhan Tianyi Huayu 
Gene Technology Co., Ltd, China (Table 1).

Western Blot 
Protein extracts (20 μg) prepared from cells 

were separated using 12% sodium dodecyl sulfate-
polyacrylamide gel electrophoresis and were 
transferred to polyvinylidene fluoride membranes 
(Millipore, MA, USA). The membranes were blocked 
with 5% milk in Tris-buffered saline (pH 7.6) containing 
0.1% Tween-20, incubated with specific primary 
antibodies overnight at 4 ℃, and further incubated 
with horseradish peroxidase-conjugated secondary 
antibody for 2 h at 4 ℃. The primary antibodies used 
were anti-LC3 (1:1,000, No. PAB30697, Bioswamp, 
Ch ina) ,  ant i -P I3K (1 :1 ,000,  No.  PAB30084, 
Bioswamp), anti-p-PI3K (1:1,000, ab182651, Abcam, 
USA), anti-AKT (1:500, PAB30596, Bioswamp), 
anti-p-AKT (1:1,000, No. 4060T, CST), anti-mTOR 
(1:1,000, No. PAB30674, Bioswamp), anti-p-mTOR 
(1:1,000,  No. 5536T, CST), and anti-β-actin (1:1,000,  
No. PAB36265, Bioswamp). After 3 washes with 
PBS/Tween 20, the membranes were incubated with 
horseradish peroxidase-conjugated secondary goat 
anti-rabbit IgG (1:20,000, SAB43714, Bioswamp) for 
2 h at 4 ℃. Protein bands were visualized through 
enhanced chemiluminescence detection (Tanon-5200, 
TANON, China) and analyzed using AlphaEase FC 
gel image analysis software (Alpha Innotech, USA).

Statistical Analysis
All values are presented as the mean ± standard 

deviation (x–±s). One-way analysis of variance 
followed by Tukey's post hoc test was performed to 
compare the differences among multiple groups using 
SPSS 19.0 software (IBM Corp., Armonk, USA). 
P<0.05 was considered statistically signifi cant.

RESULTS

Sh-circHIPK3 Inhibits Apoptosis and Promotes 
Cell Proliferation

Figure 1A shows that the expression level of 
circHIPK3 in the model group was signifi cantly higher 
than that in control group (P<0.05). Compared to 
the control and EV groups, the levels of circHIPK3 
in sh-circHIPK3-1 and sh-circHIPK3-2 groups were 
signifi cantly decreased (P<0.05, Figure 1B). Compared 
to the control group, the cell proliferation in the model 
group were significantly reduced (P<0.05), while cell 
proliferation in IV group were significantly increased 
compared to model and EV groups (P<0.05, Figure 1C). 
Flow cytometry was used to examine the effect of 
sh-circHIPK3 on cell apoptosis, and the results showed 

Table 1. Primer Sequences

Primer                    Sequence (5'–3') Size

circHIPK3 Forward: CGACAGCCATACAGGGTTA 156 bp

Backward: AAGGCACTTGACTGAGTTTGA

GAPDH Forward: CAAGTTCAACGGCACAG 138 bp

Backward: CCAGTAGACTCCACGACAT

Cell Counting Kit-8 
Cel ls were seeded in a 96-wel l  p late at 

5×103 cells/mL using RPMI 1640 medium containing 
10% FBS and treated for 24 h. To evaluate cell 
proliferation, 10 μL of cell counting kit-8 (CCK-8) 
solution (CA1210, Solarbio, China) was added to 
each well and the cells were cultured at 37 ℃ for 4 h. 
The optical density was measured using a microplate 
reader (Multiskan FC, Thermo, USA) at 450 nm.

Flow Cytometry 
The cells in each group were cultured for 

24 h and then harvested, added to 1 mL pre-cooled 
phosphate-buffered saline (PBS), and centrifuged at 
1000×g for 5 min. The apoptosis and data of H9C2 cells 
were analyzed using fl ow cytometry (Beckman Coulter, 
USA) according to the manufacturer's instructions.

Transmission Electron Microscopy
Cells were pre-fixed with 2.5% glutaraldehyde 

(10–20 times the tissue volume) at 4 ℃ for 30 min, 
fixed with 1% osmic acid for 1 h, dehydrated, 
soaked in a 1:1 mixture of acetone:epoxy at 40 ℃ 
for 6 h, fi xed with pure epoxy resin at 40 ℃ for 4 h, 
and embedded. The samples were then sliced and 
subjected to double staining and lead citrate staining 
for 15 min. After rinsing with double-distilled water, 
the ultrastructure of mitochondria was observed using 
transmission electrom microscopy (TEM, HT7700, 
Hitachi, Janpan).
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that compared to control group, cell apoptosis rate was 
significantly increased in the model group (P<0.05), 
while cell apoptosis the significantly reduced after 
treatment with sh-circHIPK3 (P<0.05, Figure 1D).

Figure 1. Sh-circHIPK3 Inhibited Apoptosis and 
Promoted Cell Proliferation in H9C2 Cells

Notes: (A) CircHIPK3 expression detected by RT-qPCR. (B) 
Transfection effi ciency detection. (C) H9C2 cell proliferation detected 
by CCK8. (D) Cell apoptosis was detected using flow cytometry. 
P<0.05 vs. control group, △P<0.05 vs. model group, x–±s, n=3

Figure 2. Effect of sh-circHIPK3 on 
Cell Autophagy in H9C2 Cells

Notes: (A) Autophagosomes examined using transmission 
electron microscopy in H9C2 cells (magnification: 12,000×, 
scale bar=1 μm). (B) Western blot was used to detect LC3Ⅱ/Ⅰ 
expression. P<0.05 vs. control group, △P<0.05 vs. model group, 
x–±s, n=3

Sh-circHIPK3 Inhibits Cell Autophagy
Compared to the control group, autophagosomes 

increased in the model group, and LC3Ⅱ/Ⅰ protein 
expression increased obviously (P<0.05). Compared 
to model and EV groups, autophagosomes in IV group 
reduced, and the protein expression of LC3Ⅱ/Ⅰ 
signifi cantly decreased (P<0.05, Figures 2A and 2B).

Effect of sh-circHIPK3 on PI3K/AKT/mTOR 
Pathway

The results of Western blot showed that 
compared to the control group, the expressions of 
p-PI3K, p-AKT, and p-mTOR in the model group 
significantly decreased (P<0.05). Compared to the 
model and EV groups, the expressions of p-PI3K, 
p-AKT, and p-mTOR in the IV group were signifi cantly 
increased (P<0.05, Figure 3). 

Dmy Exerts Its Protective Effects by Regulating 
PI3K/AKT/mTOR Pathway

Compared to the control group, the expression 

Control

IV

Model

EV

A

Figure 3. Effect of sh-circHIPK3 on PI3K/AKT/mTOR 
Pathway in H9C2 Cells by Western Blot

Notes: P<0.05 vs. control group, △P<0.05 vs. model 
group, x–±s, n=3
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considered as one of the most basic substances that 
sustain life activities. Therefore, hypoxia can cause a 
variety of physiological and pathological reactions in 
the body, and MI is one of them. circRNAs, a special 
subclass of ncRNAs, maintain ncRNA stability due to 
their circular structure, reduce exonuclease sensitivity, 
and lead to longer half-life compared to linear RNA 
molecules.(20) Study has shown that cirRNA can 
bind to specifi c proteins or small RNA to function as 
ceRNA.(21) Compared to normoxic cardiomyocytes, 
circHIPK3 was overexpressed in myocardial I/R 
model cells and could regulate oxidative damage 
of cardiac microvascular endothelial cells through 
miR-29a/IGF-1 pathway.(10) However, there are few 
studies on the role of circHIPK3 in injured myocardial 
cells. Therefore, in this study, we first observed the 
expression of circHIPK3 in injured H9C2 cells, and 
the results showed that the expression of circHIPK3 
in injured H9C2 cells signifi cantly increased compared 
to normal H9C2 cells. We further observed the effect 
of circHIPK3 on proliferation of injured H9C2 cells, 
and the results showed that compared to the control 
group, cell proliferation rate was signifi cantly reduced 
in the model group, which improved after treatment 
with sh-circHIPK3.

Autophagy is a protective mechanism of the 
human body, and can cause the reuse of organelles 
that have lost their functions. The maturation of 
autophagosomes is a sign and a key product of 
autophagy.(22,23) For intracellular degradation process, 
autophagy is critical for the survival of eukaryotic 
cells and mammals. In the process of autophagy, 
PI3K/AKT/mTOR signaling axis plays a core role. 
Under normal circumstances, PI3K and AKT in cells 
promote the accumulation and activation of mTOR to 
form mTOR complex by phosphorylation of TSC1/2 
and binding of Ras family member Rheb to GTTP 
enzyme. Once the cell is damaged, mTOR complex 
dissociates, inhibits the activity of mTOR, forms 
autophagosomes, and induces autophagy.(24) In this 
study, we observed that apoptosis and autophagy was 
signifi cantly increased after H9C2 cell injury, and the 
activity of PI3K/AKT/mTOR pathway was signifi cantly 
decreased. However, the situation was reversed after 
treatment with sh-circHIPK3, suggesting that sh-
circHIPK3 could alleviate apoptosis and autophagy 
after H9C2 cell injury. 

Dmy protects the skeletal muscle, cardiomyo-

Figure 4. Dmy Exerts Its Protective Effects by 
Regulating PI3K/AKT/mTOR in H9C2 Cells
Notes: (A) circHIPK3 expression detected using RT-PCR. 

(B) Cell proliferation was measured using CCK8. (C) p-PI3K, p-AKT, 
and p-mTOR expressions were evaluated using Western blot. 
P<0.05 vs. control group, △P<0.05 vs. model group, x–±s, n=3

in the model group were significantly decreased 
(P<0.05), and that in the Dmy and Dmy+IV groups 
signifi cantly increased (P<0.05), among which the cell 
proliferation rate in Dmy+IV group was the highest. 
Compared to the control group, the expressions of 
p-PI3K, p-AKT, and p-mTOR in the model group were 
decreased significantly (P<0.05). Compared to the 
model group, the expressions of p-PI3K, p-AKT, and 
p-mTOR in Dmy and Dmy+IV groups were increased 
signifi cantly (P<0.05, Figure 4C).
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cytes,  nerve cel ls ,  and other cel ls  f rom cel l 
damage caused by hypoxia/hypoxia by regulating 
mitochondrial function, affecting energy metabolism, 
and inhibiting apoptosis. Previous studies have shown 
that Dmy not only protects vascular endothelial cells 
from oxidative stress injury by activating PI3K/AKT 
signaling pathway but also prevents the development 
of diabetic nephropathy by regulating miR-155-5p/
PTEN and PI3K/AKT/mTOR signaling pathways.(14,15,25) 
We further observed in this study, the effect of Dmy on 
circHIPK3 expression and PI3K/AKT/mTOR pathway 
in injured H9C2 cell, and the results showed that Dmy 
could suppress circHIPK3 expression and promote 
PI3K/AKT/mTOR signaling pathway activation in 
injured H9C2 cell, suggesting that Dmy could exert its 
protective effect by suppressing circHIPK3 expression 
and activating PI3K/AKT/mTOR pathway (Figure 5). 

H9C2 autophagy and apoptosis, and by regulating the 
activity of PI3K/AKT/mTOR pathway. 
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