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The process of skin wound healing can be divided 
into several steps, including hemostasis, infl ammation, 
proliferation, angiogenesis, extracellular matrix (ECM) 
formation, re-metaplasia, and tissue remodeling.(1-3) 
The proliferation and migration of fibroblasts and the 
synthesis of collagen and other ECM play critical roles 
in tissue remodeling.(4) In the process of wound healing, 
fibroblast proliferation, migration, and secretion are 
regulated by several cytokines and signaling pathways. 
Cheon, et al(5-8) demonstrated that up-regulation of 
β-catenin could promote the proliferation and invasive 
ability of fi broblasts; the expression level of β-catenin 
in fibroblasts increased during the proliferative 
phase of wound healing stage. It was also found that 
transforming growth factor-β1 (TGF-β1) promoted 
the proliferation ability of fi broblasts in wound healing. 
Thus, both Wnt/β-catenin signaling pathway and 

TGF-β1 play crucial roles in wound healing. 

Ganoderma lucidum (GL), a Chinese herbal 
medicine, has long been used in China to prevent and 
treat various diseases, such as hepatitis,(9) chronic 
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bronchitis,(10) bronchial asthma,(11) diabetes,(12) cancer 
and others.(13) Ganoderma lucidum polysaccharides 
(GL-PS) is one of the main bioactive components in GL. 
It has been shown to exert a variety of pharmacological 
effects, such as immune regulation,(14) reducing blood 
glucose and lipids,(15) protecting nerve cells,(16) anti-
oxidant,(17) anti-tumor,(18) anti-microbial,(19) and improving 
the damage to intestinal mucosa.(20) The study by Sun, 
et al(20) suggested that GL-PS promoted the proliferation, 
migration, and differentiation ability of intestinal epithelial 
cells during wound healing process. Tie, et al(21) showed 
that the oral administration of GL-PS could improve skin 
wound healing and wound angiogenesis by suppression 
of the cutaneous manganese superoxide dismutase 
nitration and mitochondrial oxidative stress. 

However, currently, the effects of GL-PS on 
human fi broblasts and whether the external use would 
be beneficial to skin wound healing have not been 
well documented. Also, whether GL-PS could activate 
the Wnt/β-catenin signaling pathway to promote 
wound healing has not been reported. In this study, 
we aimed to investigate the effects of GL-PS on 
human fi broblasts and skin wound healing in Kunming 
male mice and to explore the putative molecular 
mechanism.

METHODS

Reagents 
Dulbecco's modified Eagle's medium (DMEM) 

was purchased from Gibco (USA). Fetal bovine serum 
(FBS) was purchased from Hyclone (USA). Dimethyl 
sulfoxide (DMSO) and 3-4,5-dimethyl-2-thiazolyl-2,5-
diphenyl-2-H- tetrazolium bromide (MTT) were obtained 
from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, 
China), TGF-β enzyme-linked immuno sorbent 
assay (ELISA) kit from Boster Biological Engineering 
Co., Ltd. (Wuhan, China), and C-terminal propeptide 
of procollagen type Ⅰ (CICP) ELISA kit from Xinyu 
Biological Technology Co., Ltd. (Shanghai, China). 
Rabbit anti-human β-catenin polyclonal antibody and 
rabbit anti-human β-actin polyclonal antibody was 
procured from Cell Signaling Technology (USA), while 
horseradish peroxidase (HRP) labeled goat anti-mouse 
IgG was purchased from Proteintech (USA). 

Preparation of GL-PS
Purified GL-PS was purchased from Yangling 

Ciyuan Biotech Co., Ltd. (Shaanxi, China; batch No. 
CY170505). The polysaccharides were extracted 

and purified from GL according to the procedure as 
previously reported.(22) In brief, GL was pulverized 
into powder after slicing. The powder was extracted 
with distilled water at a ratio of 1:20 (w/v) in 80 ℃ 
thermostat water bath for 2 h. The supernatant was 
collected and concentrated in vacuo after the residue 
was extracted 3 times repeatedly. The protein was 
removed by the Sevage method.(23) About 20 mL 
of Sevage reagent was added to each 100 mL of 
concentrated solution. The solution was shaken 
vigorously for 30 min and centrifuged at 4,000 r/min 
for 15 min. The supernatant was taken, and absolute 
ethanol was added until the solution concentration 
reached 95%. The precipitate was collected after the 
solution was allowed to stand overnight. Then, each 
was washed twice with 95% ethanol, diethyl ether and 
acetone to obtain a crude polysaccharide. The crude 
specimens dissolved in distilled water were processed 
with dialysis, concentration, ethanol precipitation, 
and then freeze-dried to obtain purified GL-PS. The 
obtained GL-PS was stored in sealed containers at 
cool and dry place. It appeared as a deep brown 
powder. The content of the polysaccharides was 
90.3%, which was analyzed by ultraviolet method.

Isolation and Culture of Human Dermal Fibroblasts 
Normal human dermis and epidermis were 

obtained from a healthy 20-year-old male donated 
foreskin following circumcision, with informed consent. 
The foreskin was soaked in iodine for 15 min and 
subsequently rinsed with phosphate buffer saline 
(PBS). The subcutaneous tissue was removed and the 
remaining tissue was cut into small pieces (<5 mm). 
Trypsin was used to isolate fibroblasts, and all cells 
were subsequently collected, washed, and cultured 
in DMEM containing 10% FBS. When cells were 
80%–90% confluent, they were passaged at a ratio 
of 1:3. Exponential growth phase cells from passages 
4–8 cells were used in the subsequent experiments. 

Cell Grouping
GL-PS (1 mg/mL) was prepared in PBS and 

diluted to the corresponding concentration with 
complete medium or medium without serum. The cells 
were divided into a control group and GL-PS groups, 
in which GL-PS was added to the culture medium at 
different concentrations.

Fibroblast Viability Measured by MTT Assay
The cells in the logarithmic growth phase were 
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inoculated at the density of 1×104 cells/well in a 
96-well plate. Subsequently DMEM-high glucose was 
used for culture during the cell starvation for 12 h in the 
presence of various concentrations of GL-PS (0, 10, 
20, 40, 80 and 160 μg/mL) for 24 h. Then, 20 μL of 
MTT reagent was added (stock 5 mg/mL) per well and 
incubated for an additional 4 h at 37 ℃. The reaction 
was ceased by 150 μL of DMSO, and absorbance 
measured at 490 nm.

Migration Ability of Fibroblasts Measured by 
Transwell Assay 

The starved cel ls for 24 h with di f ferent 
concentrations of GL-PS (0, 10, 20 and 40 μg/mL) 
were suspended at a density of 5×105/mL in the upper 
chamber. A 100-μL cell suspension was inoculated 
into the 24-well plate, and 600 μL containing 10% 
fetal calf serum was added to the lower chamber 
avoiding air bubbles, followed by incubation at 37 ℃, 
5% CO2 for 24 and 48 h, respectively. Subsequently, 
the transwell chamber was removed, abandoning the 
culture medium, washed twice with PBS, then fixed 
with 10% methanol for 30 min at room temperature, 
followed by 0.1% crystal violet staining for 20 min. 
A cotton swab was used to gently wipe the upper 
non-migrated cells, followed by PBS washes. Five 
random visual fi elds were observed, imaged and cells 
enumerated at 200× magnifi cation.

Synthesis of Type Ⅰ Collagen and TGF-β1 in 
Fibroblasts Measured by ELISA

The starved cells were inoculated at a density 
of 1×105 cells/well in 6-well plate according to the 
above experimental results, respectively, with GL-PS 
(0, 10, 20 and 40 μg/mL) in serum-free medium for 
24 h, in triplicate. The supernatants were harvested 
by centrifugation for 10 min at 4,000 r/min, followed 
by CICP ELISA and TGF-β1 ELISA tests. The 
absorbance was determined at 490 nm.

Expression of β-Catenin in Fibroblasts Assessed 
by Western Blot

The cells were cultured in culture dishes 
until reaching 60%–70% confluence. After 12-h 
serum starvation, cells were treated with different 
concentrations of GL-PS (0, 10, 20 and 40 μg/mL) 
for 24 h. The protein was extracted from the cells, 
subjected to gel electrophoresis, and transferred on 
a membrane that was blocked and probed with anti-
β-catenin antibody overnight at 4 ℃. Subsequently, 

the membranes were incubated for 40–60 min with 
HRP-conjugated goat anti-rabbit IgG antibody. The 
expression of target protein was measured by color-
development and exposure method. Anti-β-actin 
used as an internal reference.

Animals
Thirty-two Kunming male mice (8 weeks old; 

20–24 g; specific pathogen free grade) used in the 
wound healing experiment were provided by the 
Animal Experiment Center of the Third Xiangya 
Hospital of Central South University [certification 
No. SYXK (xiang) 2014-0013]. Mice were kept in 
animal laboratories where the indoor temperature and 
humidity were kept at 23 ℃ and 56%, respectively, 
and were randomly given standard laboratory food 
and water. The present study was approved by 
the Institutional Review Board of the Third Xiangya 
Hospital of Central South University, and was 
conducted according to the Laboratory Animal 
Administration Rules of China.

Skin Healing Assay in Mice
The back hair of the Kunming mouse was 

removed by using 4% sodium sulfide before the 
intraperitoneal injection of anesthesia with 4% chloral 
hydrate (1 mL/100 g). The site was rinsed with distilled 
water, dried, and disinfected with iodine. The self-
moving paper (diameter about 1 cm) was pasted on 
the right rear back of the mice. The circle was marked 
with a marker pen. The center of the circle on the mice 
skin was picked up with sterile forceps and the skin 
of the back annihilated along the marking to obtain 
the same size depth round wound. Then, the ring was 
stitched using Kiesel gel onto the edge of the wound 
to reduce the error produced from skin shrinkage, and 
the suture was away from the edge of the wound by 
about 0.2 cm. Lastly, the surgical towels were pasted 
onto the wound. 

According to completely randomized design, 
all the wounds were divided into a control group and 
3 experimental groups (n=8 per group). The control 
group was given 0.05 mL of physiological saline 
outside the wound. The experimental groups were 
given a physiological saline solution containing 10, 
20 and 40 mg/mL of GL-PS, respectively outside 
the wound in a volume of 0.05 mL. The medicine 
was replaced daily. Wound healing time referred to 
the number of days in which a wound healed more 
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than 95%. Wound healing rate (%)=(initial wound 
area–unhealed area)/initial wound area×100%. 
The wounds were observed and photographed 
at 3, 6 and 10 days after wounding. Computer 
image analysis system was used to calculated the 
unhealed area, and each wound healing rate was 
calculated.

Statistical Analysis 
Data were represented as mean±standard 

deviation (x–±s), and analyzed using SPSS 19.0 
software. All the experiments were repeated thrice 
and the results were tested by the homogeneity of 
variance. The comparisons between groups were 
tested by one-way analysis of variance. P<0.05 
indicated the difference with statistical signifi cance.

RESULTS

GL-PS Increased Viability of Fibroblasts 
The viability of cells was significantly increased 

by 10, 20 and 40 μg/mL of GL-PS after 24-h treatment 
compared with the control group (P<0.01). The viability 
of the cells was increased by 80 μg/mL of GL-PS and 
was decreased by 160 μg/mL of GL-PS after 24-h 
treatment, but there was no statistical significance 
compared with the control group (P>0.05, Figure 1).

 

Figure 1. Comparison of Fibroblasts Viability 
among Different Groups (n=3, ±s)

Notes: P<0.01 vs. the control group. The results are 
represented as a percentage of absorbance relative to the control 
cells (100%). GL-PS: Ganoderma lucidum polysaccharides
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After 24-h and 48-h culture, compared with the 
control group, the migration rates of fi broblasts were 
significantly increased in the 10, 20, and 40 μg/mL 
of GL-PS groups compared with the control group 
(P<0.05 or P<0.01, Figure 2).

 

GL-PS Promoted Synthesis of Type Ⅰ Collagen 
and TGF-β1 in Fibroblasts

The expressions of CICP and TGF-β1 in 

Figure 2. Comparison of Migration Ability of 
Fibroblasts among Different Groups (n=3, ±s)

Notes: A: Cells stained by 0.1% crystal violet (×400); scale 
bar= 50 μm; B: results are represented as a percentage of fi broblast 
cell number relative to control cells (100%). P<0.05,  P<0.01 vs. 
control group. GL-PS: Ganoderma lucidum polysaccharides
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fibroblasts treated with 10, 20 and 40 μg/mL of 
GL-PS were significantly higher than those of the 
control group (P<0.05 or P<0.01, Figure 3).

Figure 3. Comparisons of Expressions of CICP and 
TGF-β1 in Fibroblasts among 
Different Groups (n=3, ±s)

Notes: P<0.05,  P<0.01 vs. control group. GL-PS: 
Ganoderma lucidum polysaccharides; CICP: C-terminal peptide 
of procollagen type Ⅰ; TGF-β1: transforming growth factor-β1
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difference compared with the control group (P>0.05). 
However, 20 and 40 μg/mL of GL-PS significantly 
increased the expression of β-catenin in fibroblasts 
(P<0.01, Figure 4).
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groups were signifi cantly higher than the control group 
(P<0.05 or P<0.01, Figure 5A). The average wound 
healing time in 10, 20 and 40 mg/mL of GL-PS groups 
was signifi cantly less than the control group (P<0.05 
or P<0.01, Figure 5B). Wound healing in skin injury 
model mice is shown in Figure 5C, and all wounds 
were not infected with good wound care. On Day 3, 
the wound contraction of different concentrations of 
GL-PS became faster than the control group. And 
from Day 6 to Day 10, the wound contraction of 
different concentrations of GL-PS was almost healed. 

DISCUSSION 

Wound healing is composed of 3 stages, including 
inflammation, proliferation, and remodeling. The 
infl ammatory reaction occurred within a few hours after 
injury. During the proliferation period, the wounds were 
covered by granulation tissue, followed by a collagen-
based ECM that replaced the granulation tissue. In the 
remodeling phase, the collagen protein of the ECM 
was primarily composed of type Ⅰ collagen.(24) After 
skin injury, the fi broblasts promote wound healing not 
only by proliferation and migration but also through the 
synthesis and secretion of the collagen-based type Ⅰ 
ECM.(25) Therefore, finding a drug that can potentiate 
the ability of proliferation, migration, and synthesis 
of type Ⅰ collagen in fibroblasts would significantly 
promote wound healing. In this study, we utilized 
different concentrations of GL-PS to treat human 
fibroblasts and found that 10, 20, and 40 μg/mL of 
GL-PS promoted the viability and migration ability of 
fi broblasts, as well as, the secretion of type Ⅰ collagen. 
These fi ndings suggested that GL-PS promoted wound 

Figure 4. Comparison of Protein Expression of 
β-Catenin in Fibroblasts among Different 

Groups (n=3, ±s)
Notes: intensity ratio: β-catenin to β-actin. P<0.01 vs. 

control group. GL-PS: Ganoderma lucidum polysaccharides
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Figure 5. Wound Contraction at 
Different Time Points (n=8)

Notes: A: Rate of wound healing at different time points. 
B: Wound healing time in different groups. P<0.05,  P<0.01 vs. 
control group. C: The images of wound contraction on 0, 3, 6, and 10 
days after wounding. GL-PS: Ganoderma lucidum polysaccharides
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healing at the cellular level. The results also showed 
that with the external use of GL-PS, the skin wound 
closure time had been shortened signifi cantly.
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investigated frequently. The Wnt signaling pathway 
is an evolutionarily highly conserved fundamental 
signaling system that is involved in many physiological 
and pathological processes, such as cell proliferation, 
cell migration, angiogenesis, and ECM formation.(26) It 
plays a controlling role in hair follicle growth.(27-31) It also 
plays a vital role in all stages of tissue regeneration 
and wound healing.(24) The key protein in this signaling 
pathway is β-catenin.(32) Fathke, et al(33) found that the 
activation of Wnt/β-catenin pathway during the skin 
wound healing process could improve the proliferation 
and migration ability of epidermal cells and shorten 
the time of wound healing. Collins, et al(34) suggested 
that the activation of Wnt/β-catenin pathway could 
increase the proliferation ability of fibroblasts and 
promote the remodeling of ECM in skin tissues. Pandit, 
et al(35) showed that with the combination therapy of 
vacuum and lithium treatment, the migration ability 
of the fibroblasts was improved via the activation of 
the Wnt/β-catenin signaling pathway that further 
accelerated wound healing. In the current study, we 
found that the expression of β-catenin in fi broblasts was 
promoted after treatment with a specifi c concentration of 
GL-PS, which indicated that the Wnt/β-catenin signaling 
pathway had been activated by GL-PS application.

TGF-β1 is a growth factor that can stimulate the 
formation and proliferation of granulation tissue and 
plays a critical role in wound healing process.(14) In the 
study of cell activation of fi broblasts or fi brosis by Caraci, 
et al,(36) TGF-β1 was demonstrated to activate β-catenin 
via ERK pathway; thus, wound healing could be induced 
by transient TGF-β signaling, which in turn, increased 
the level of β-catenin in the cells. Consequently, the 
accumulation of β-catenin was due to the activation 
of the TGF-β signaling pathway.(37) Furthermore, 
the ligands of Wnt (Wnt3a and Wnt5a) can activate 
TGF-β1 in fibroblasts and intestinal epithelial cells.(38) 
In addition, a large number of studies have confi rmed a 
close correlation between TGF-β and Wnt/β-catenin 
signaling pathway. In the present study, we found that 
10, 20 and 40 μg/mL of GL-PS promoted the secretion 
of TGF-β1, thereby suggesting that it might promote 
wound healing by promoting the secretion of TGF-β1.

In summary, the results of the current study showed 
that GL-PS could promote the viability and migration of 
fi broblasts, elevate the ability of fi broblasts to synthesize 
collagen, and significantly shorten the duration of skin 
wound healing in the mice model. Moreover, GL-PS could 

increase the expressions of TGF-β1 and β-catenin, 
suggesting that GL-PS promoted wound healing via 
up-regulation of TGF-β1 expression or activation of the 
Wnt/β-catenin signaling pathway, which might serve as a 
promising source of skin wound healing.
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