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Abstract
A new modeling framework for bipartite social networks arising from a sequence
of partially time-ordered relational events is proposed. We directly model the joint
distribution of the binary variables indicating if each single actor is involved or not
in an event. The adopted parametrization is based on first- and second-order effects,
formulated as in marginal models for categorical data and free higher order effects.
In particular, second-order effects are log-odds ratios with meaningful interpretation
from the social perspective in terms of tendency to cooperate, in contrast to first-
order effects interpreted in terms of tendency of each single actor to participate in an
event. These effects are parametrized on the basis of the event times, so that suitable
latent trajectories of individual behaviors may be represented. Inference is based on a
composite likelihood function, maximized by an algorithmwith numerical complexity
proportional to the square of the number of units in the network. A classification
composite likelihood is used to cluster the actors, simplifying the interpretation of the
data structure. The proposed approach is illustrated on simulated data and on a dataset
of scientific articles published in four top statistical journals from 2003 to 2012.
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1 Introduction

In many relational contexts, a set of events is observed, with each event involving
an arbitrary number of actors and even a single actor. These events give rise to a
so-called affiliation network in which there are two types of node: actors and events.
Following the current literature, see Wang et al. (2009) among others, we refer to
this structure as bipartite network, also known as two-mode network, contrarily to the
one-mode network having a unique type of nodes. An example, which motivates the
present paper, is that of academic articles in top statistical journals (Ji and Jin 2017),
typically involving more than two authors but that might also be written by a single
researcher. In these applications, the interest is in studying the relations between units,
with the aim of modeling separately the tendency of each unit to be involved in an
event, and the tendency of each pair of units to cooperate. We are also interested in
studying the time evolution of social behaviors and thus the dynamics over time of
both these tendencies. The dataset of statistical publications we aim to analyze has
also a particular feature that is important for the following developments: the events
are only partially ordered, since we know the year of publication of each article, but
no order is available between articles published in the same year.

The literature on bipartite networks is mainly based on models having characteris-
tics similar to those for one-mode networks in which direct connections are observed
between certain pairs of actors, such as Exponential RandomGraphModels (ERGMs;
Frank and Strauss 1986; Wasserman and Pattison 1996); for a review see Snijders
(2011) and Amati et al. (2018). One of the first model for the analysis of bipartite
networks is proposed in Iacobucci and Wasserman (1990) for data with no temporal
dimension and is based on an ERGM structure with specific effects for both types of
node (i.e., actors and events) and strong assumptions of independence between the
response variables. This approach was extended in several directions by Skvoretz and
Faust (1999), whereas Wang et al. (2009) presented a flexible class of ERMGs for
bipartite networks and related estimation methods. More recently, a review of mod-
els for this type of networks has been illustrated by Aitkin et al. (2014), including
certain versions of the Rasch (1967) model and the latent class model (Goodman
1974). The approach proposed in the present paper is also related to models for the
analysis of longitudinal one-mode networks, such as actor-oriented models (Snijders
and van 1997; Snijders et al. 2010), dynamic ERGMs (Robins and Pattison 2001),
hidden Markov models (Yang et al. 2011; Matias and Miele 2017; Bartolucci et al.
2018), and the models for relational events described in DuBois et al. (2013), Perry
andWolfe (2013), Butts andMarcum (2017), Stadtfeld et al. (2017), Fox et al. (2016),
and Xia et al. (2016). All these mentioned works handle longitudinal data, but not of
bipartite networks. The cited actor-oriented models, relational event models and, gen-
erally speaking, all models based on a point process approach deal with time-stamped
data, whose dynamics is controlled by an intensity function. On the other hand, our
approach, similarly to dynamic ERGMs, are based on time-discrete temporal data.
Still, there are crucial differences in this regard between the proposed method and
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ERGM: in the latter the temporal dynamics is parameterized through a Markov tran-
sition matrix, whilst we do not require it, and we can also handle data only partially
ordered, as below for articles published within the same calendar year.

Furthermore, we stress that, relative to ERGM models, our methodology is not
based on network summary statistics: since we directly model the vector of allocations
of subjects to events, two equal adjacency matrices can be probabilistically treated as
different. This allows for instance to consider the joint absence from an event as a point
of closeness between two subjects, whilst in ERGMs it is not possible to disentagle
from the adjacency matrix bilateral or unilateral absence from an event. Finally, with
our marginal modelling approach we can model parsimoniously only subsets of the
whole allocation vectors.

In the current paper we therefore model bipartite temporal networks through a
marginal approach on the related event allocation vectors, instead of through the asso-
ciation matrix, as more common in the literature. More formally, for the analysis of
bipartite networks, and in particular for the dataset of publications in top statistical
journals (Ji and Jin 2017), we represent each event by a vector of response variables
Z(e) � (Z (e)

1 , . . . , Z (e)
n )′, with Z (e)

i equal to 1 if unit i is involved in event e and 0
otherwise. First, our aim is to directly formulate a statistical model for the response
vectors Z(e) having a meaningful interpretation. In particular, we rely on a marginal
model (Bergsma and Rudas 2002; Bergsma et al. 2009) based on first- and second-
order effects. The first-order effects correspond to the logit of the marginal distribution
of each Z (e)

i variable and represent the general tendency of actor i to be involved in
event e. The second-order effects are the log-odds ratios ( Agresti 2013, Ch. 2) for the
marginal distribution of each pair of variables (Z (e)

i , Z (e)
j )′, representing the tendency

of actors i and j to be jointly involved in the same event e. However, as we show in
detail in the sequel, this parameter may be directly interpreted as the tendency of i
and j to cooperate. Moreover, even if we do not directly consider higher order effects,
we do not pose any restrictions on these effects. At least to our knowledge, the use
of marginal models for the analysis of social network data is new in the statistical
literature.

Second, we pay particular attention to the parametrization of the above effects so
as to account for the time evolution, and represent individual trajectories in terms of
tendency toparticipate in an event and tendency to cooperate. This feature is common to
latent growthmodels (Bollen andCurran 2006); however, in the proposed approachwe
use individual fixedparameters, rather than randomparameters, applied to polynomials
of time of suitable order. Then, the proposed approach is particularly appropriate when
the interest is in the evaluation of the behavior of a single actor in termsof the tendencies
mentioned above. The possibility to estimate fixed parameters is possible thanks to
the amount of information that is typically huge in the applications of interest. For
instance, in the motivating example, there are more than three thousand papers that
play the role of events. For a related approach, based however on a simpler log-linear
parametrization, see Bianchi et al. (2020); see also Bartolucci et al. (2023).

Third, in order to estimate the fixed individual parameters, we rely on a composite
likelihood approach (Lindsay 1988; Varin et al. 2011), where, generally speaking,
individual components of conditional or marginal densities are multiplied, whether or
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not independent, and the resulting derivative constitutes an unbiased estimating equa-
tion. Composite likelihood methods have found applications in various areas, such as
in spatial statistics (Besag 1974, 1975; Heagerty and Lele 1998), in longitudinal and
panel studies (Henderson and Shimakura 2003), for the estimation of time-varying
correlation matrices (Pakel et al. 2021), to cite a few. In network analysis, Chen et al.
(2018) propose a sequential composite likelihood approach to efficiently estimate
social intercorrelations in large-scale social networks, whilst Bartolucci et al. (2015)
and Asuncion et al. (2010) estimate via composite likelihood, respectively, a Hidden
Markov Model for dynamic networks and an Exponential Random Graph Model. In
the current proposal, we use a likelihood function based on the marginal distribution
of every ordered pair of actors. For each of these pairs, the likelihood component
directly depends on the first- and second-order effects described above, and on indi-
vidual parameters referred to the two actors. Then, to maximize the target function,
we propose a simple iterative algorithm with O(n2) complexity, that is thus compu-
tationally tractable even if the number of actors is large. This is an important feature
given the large scale of nowadays social network data; see also the discussion in Vu
et al. (2013).

Forth, in presence of many statistical units, we show how to cluster them in groups
that are homogenous in terms of tendency to be involved in an event or tendency to
cooperatewith other units. For this aim,we rely on a classification composite likelihood
function that is related to that used for estimating the individual fixed parameters. This
allows us to represent trajectories referred to homogeneous groups, rather than to
individuals, so as to simplify the interpretation of the evolution of the data structure
and of the social perspective of the phenomenon under study.

The paper is organized as follows. In the next section we describe assumptions and
interpretation of the proposed approach. In Sect. 3 we outline the method of inference
based on the use of fixed effects and clustering techniques. The properties of the pro-
posed estimators are illustrated by a simulation study in Sect. 4, whilst the application
is illustrated in Sect. 5. In the last section we draw main conclusions and outline some
possible extensions, as the inclusion of third-order effects and of individual covari-
ates. The estimation algorithm is implemented in a series of R functions that we make
available to the reader upon request.

2 Proposedmodel

Let n denote the number of actors and r the number of observed relational events. Also
let Z (e)

i be a binary outcome equal to 1 if the relational event e involves unit i and to 0
otherwise, with i � 1, . . . , n and e � 1, . . . , r . As already mentioned, these variables
are collected in the column vector Z(e) � (Z (e)

1 , . . . , Z (e)
n )′, a generic configuration of

which is denoted by z � (z1, . . . , zn)′. Moreover, let Y (e)
i j be a binary variable equal

to 1 if units i and j are involved in event e, and to 0 otherwise. Note that

Y (e)
i j � Z (e)

i Z (e)
j , (1)
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so that the set of variables Y (e)
i j is function of the set of variables Z (e)

i ; the vice-versa

does not hold (Y (e)
i j � 0 can be determined by Z (e)

i � 0 or by Z (e)
j � 0), confirming

that the direct analysis of the Y (e)
i j leads, in general, to an information loss. About this

point see also the discussion in Aitkin et al. (2014).

2.1 Marginal effects

The main issue is how to parametrize the distribution of the random vectors Z(e).
We adopt a marginal parametrization (Bergsma and Rudas 2002; Bergsma et al. 2009)
based on hierarchical effects up to a certain order. This parametrization is less common
than the log-linear parametrization, adopted even in ERGMs (Frank and Strauss 1986;
Wasserman and Pattison 1996), in which

log
p(Z(e) � z)

p(Z(e) � 0)
� g(z)′γ ,

for all configurations z different from the null configuration 0, where g(z) is a vector-
valued function depending on z.

Indeed, a marginal parametrization may be expressed on the basis of a sequence of
log-linear parametrizations referred to the marginal distribution of selected subset of
variables, that is,

log
p(Z(e)

M � zM)

p(Z(e)
M � 0M)

� gM(zM)′γM, (2)

whereM is the set of indices of such variables and Z(e)
M is the corresponding subvector

of Z(e).
Log-linear parameters are defined as certain sums and differences of logarithms

of cell probabilities. Marginal parameters are log-linear parameters calculated from
marginal probabilities. In our approach, in particular, we rely on first- and second-
order effects, specified, for all e: starting from log p(Z (e)

i � 1) � η
(e)· + η

(e)
i and

log p(Z (e)
i � 0) � η

(e)· − η
(e)
i for i � 1, . . . , n, we can obtain

η
(e)
i � log

p(Z (e)
i � 1)

p(Z (e)
i � 0)

, i � 1, . . . , n, (3)

as a particular case of (2) withM � {i}. Also, from the parameterization

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

log p(Z (e)
i � 1, Z (e)

j � 1) � η
(e)·· + η

(e)
i · + η

(e)
· j + η

(e)
i j

log p(Z (e)
i � 0, Z (e)

j � 0) � η
(e)·· − η

(e)
i · − η

(e)
· j + η

(e)
i j

log p(Z (e)
i � 1, Z (e)

j � 0) � η
(e)·· + η

(e)
i · − η

(e)
· j − η

(e)
i j

log p(Z (e)
i � 0, Z (e)

j � 1) � η
(e)·· − η

(e)
i · + η

(e)
· j − η

(e)
i j

,
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we obtain

η
(e)
i j � log

p(Z (e)
i � 0, Z (e)

j � 0)p(Z (e)
i � 1, Z (e)

j � 1)

p(Z (e)
i � 0, Z (e)

j � 1)p(Z (e)
i � 1, Z (e)

j � 0)
, i , j � 1, . . . , n, j �� i ,

(4)

as a special case of (2) withM � {i , j}. In terms of interpretation (see also Bartolucci
et al. 2007), we can easily realize that the marginal logit η(e)i is a measure of tendency
of unit i to be involved in the e-th relational event. On the other hand, the log-odds
ratio η

(e)
i j is a measure of the tendency of units i and j to cooperate with reference to

the same e-th relational event.
To better interpret the η

(e)
i j effects, it is worth recalling that the log-odds ratio is a

well-known measure of association between binary variables (Agresti 2013, Ch. 2),
being 0 in the case of independence. In fact, an alternative expression for this effect is

η
(e)
i j � log

p(Z (e)
i � 1|Z (e)

j � 1)

p(Z (e)
i � 0|Z (e)

j � 1)
− log

p(Z (e)
i � 1|Z (e)

j � 0)

p(Z (e)
i � 0|Z (e)

j � 0)

� log
p(Z (e)

j � 1|Z (e)
i � 1)

p(Z (e)
j � 0|Z (e)

i � 1)
− log

p(Z (e)
j � 1|Z (e)

i � 0)

p(Z (e)
j � 0|Z (e)

i � 0)
, (5)

corresponding to the increase in the logit of the probability that unit i (or j) is involved
in the e-th event, given that unit j (or i) is present in the same event, with respect to the
case the latter is not present. More details in this regard are provided in the following
section.

Before illustrating how we parametrize in a parsimonious way the marginal effects
defined above, it is worth recalling that, apart from the trivial case of n � 2 actors,
the knowledge of these effects is not sufficient to obtain univocally the corresponding
distribution of the vectors Z(e). To formulate this argument more formally, let p(e)

denote the vector containing the 2n joint probabilities p(Z(e) � z) for all possible
configurations z in lexicographical order. Also let η

(e)
1 be the vector containing the

first-order effects η
(e)
i for i � 1, . . . , n and let η

(e)
2 denote the corresponding vector

of second-order effects η
(e)
i j for i � 1, . . . , n − 1 and j � i + 1, . . . , n. It is possible

to prove that

η(e) �
(

η
(e)
1

η
(e)
2

)

� C log(M p(e)) (6)

for a suitably defined matrix of contrasts C and a marginalization matrix M with
elements equal to 0 or 1. However this relation is not one-to-one, in the sense that it
is not possible to obtain a unique probability vector p(e) starting from η(e).

In order to have an invertible parametrization, the structure of higher order effects
must be specified. Just to give the idea, a third-order marginal effect between units i,
j, and k may be defined as
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η
(e)
i jk � η

(e)
i jk|1 − η

(e)
i jk|0,

where

η
(e)
i jk|z � log

p(Z (e)
i � 0, Z (e)

j � 0|Z (e)
k � z)p(Z (e)

i � 1, Z (e)
j � 1|Z (e)

k � z)

p(Z (e)
i � 0, Z (e)

j � 1|Z (e)
k � z)p(Z (e)

i � 1, Z (e)
j � 0|Z (e)

k � z)
, z � 0, 1.

This is the difference between the conditional log-odds ratio for units i and j given
that unit k is present with respect to the case it is not present. This directly compares
to the triangularization effect in an ERGM, as it measures how much the presence
of unit k affects the chance that units i and j collaborate. In a similar way we may
recursively define effects of order higher than three until order n (Bartolucci et al.
2007), so that including the specification of these effects, the parametrization in (6)
becomes invertible.

In the present approach, however, we prefer to focus only on first- and second-order
effects as formulated in (3) and (4), leaving the structure of higher-order interactions
unspecified. In fact, as we show in detail in Sect. 3, to make inference on these effects
it is not necessary to specify the structure of these higher-order effects as we base
inference on a pairwise likelihood function. This is an advantage of the marginal
parametrization with respect to the log-linear parametrization; the latter does not allow
us to directly express the marginal distribution of a subset of variables without spec-
ifying the full set of interactions. The way of obtaining each bivariate probability
vector

p(e)i j �

⎛

⎜
⎜
⎜
⎜
⎝

p(Z (e)
i � 0, Z (e)

j � 0)

p(Z (e)
i � 0, Z (e)

j � 1)

p(Z (e)
i � 1, Z (e)

j � 0)

p(Z (e)
i � 1, Z (e)

j � 1)

⎞

⎟
⎟
⎟
⎟
⎠

(7)

on the basis of the parameters η
(e)
i , η

(e)
j , and η

(e)
i j , which are collected in the vector

η
(e)
i j � (η(e)i , η

(e)
j , η

(e)
i j )

′, is clarified in the Appendix.

2.2 Interpretation of the log-odds ratios

To clarify the interpretation of the log-odds ratio η
(e)
i j , it is useful to consider that it

directly compares with the logit of the probability that there is a connection between
units i and j, in the sense that both units are involved in the same event. In fact, from
(1) we have

η̃
(e)
i j � log

p(Y (e)
i j � 1)

p(Y (e)
i j � 0)

� log
p(Z (e)

i � 1, Z (e)
j � 1)

1 − p(Z (e)
i � 1, Z (e)

j � 1)
,
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that is a commonly used effect in typical social network models; see, for instance,
Hoff et al. (2002). There is an important difference between η̃

(e)
i j and η

(e)
i j : the former

corresponds to the tendency of units i and j to be involved in the same event, but it
does not disentangle this joint tendency from the marginal tendency of each single
unit to be involved in the same event. For instance, η̃(e)i j could attain a large value only
because both units have, separately, a high tendency to be involved in the event (both
authors are very active in their publication strategy) even if there is not a particular
“attraction” between them, namely with low values of p(Z (e)

i � 0, Z (e)
j � 0). On

the other hand, η
(e)
i j is a proper measure of attraction because, as clearly shown by

(5), it corresponds to the increase in the chance that one unit is present in the event
given that also the other unit is present in the same event. This difference between
parameters η

(e)
i j and η̃

(e)
i j is key in the proposed approach and is of particular relevance

in the application of our interest, where each event may involve a variable number of
actors and, possibly, also only one actor. Indeed, in our approach the general tendency
of unit i to be involved in an event is meaningfully measured by effects η

(e)
i defined

in (3). Note that effects of this type cannot be directly included in an ERGM.
The above arguments may be further clarified considering that, for given marginal

distributions p(Z (e)
i ) and p(Z (e)

j ), or, in other terms, for fixed η
(e)
i and η

(e)
j , the log-odds

ratio η
(e)
i j is an increasing function of p(Z (e)

i � 1, Z (e)
j � 1) � p(Y (e)

i j � 1) and thus of

η̃
(e)
i j . Moreover, for a given value of this joint probability, η(e)i j is a decreasing function

of η
(e)
i and η

(e)
j . In particular, considering that

p(Z (e)
i � 0, Z (e)

j � 0) �1 − p(Z (e)
i � 1) − p(Z (e)

j � 1) + p(Z (e)
i � 1, Z (e)

j � 1),

p(Z (e)
i � 0, Z (e)

j � 1) �p(Z (e)
j � 1) − p(Z (e)

i � 1, Z (e)
j � 1),

p(Z (e)
i � 1, Z (e)

j � 0) �p(Z (e)
i � 1) − p(Z (e)

i � 1, Z (e)
j � 1),

we can easily realize that

∂η
(e)
i j

∂η̃
(e)
i j

� p(Z (e)
i � 1, Z (e)

j � 1)[1 − p(Z (e)
i � 1, Z (e)

j

� 1)]
1∑

z1�0

1∑

z2�0

1

p(Z (e)
i � z1, Z

(e)
j � z2)

> 0.

Similarly, we have

∂η
(e)
i j

∂η
(e)
i

� −p(Z (e)
i � 1)[1 − p(Z (e)

i � 1)]
1∑

z1�0

1∑

z2�0

1

p(Z (e)
i � z1, Z

(e)
j � z2)

< 0,

with a corresponding expression for ∂η
(e)
i j /∂η

(e)
j . An illustration of this behavior is

provided in Fig. 1, where for a pair of individuals we represent the value of η
(e)
i j with
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Fig. 1 Plot of the log-odds ratio η
(e)
i j with respect to η

(e)
i (solid line), η(e)i (dashed line), and η̃

(e)
i j (dotted line)

respect to η
(e)
i (with η

(e)
j � −2 and η̃

(e)
i j � −4), to η

(e)
j (with η

(e)
i � −3 and η̃

(e)
i j � −4),

and to η̃
(e)
i j (with η

(e)
i � −3 and η

(e)
j � −2).

Another advantage of η(e)i j with respect to η̃
(e)
i j is that the former induces a variational

independent parametrization (Bergsma and Rudas 2002b). This means that the joint
distribution of (Z (e)

i , Z (e)
j )′ exists for any value in R of the first-order effects η

(e)
i

and η
(e)
j and of the second-order effect η

(e)
i j . More formally, the function relating

η
(e)
i j � (η(e)i , η

(e)
j , η

(e)
i j )

′ with p(e)i j defined in (7) is one-to-one for η
(e)
i j in R

3 and p(e)i j
in the four-dimensional simplex. This has advantages in terms of model interpretation
and estimation. On the other hand, effect η̃

(e)
i j has a limited range of possible values

with bounds depending on η
(e)
i and η

(e)
j , making the joint estimation and interpretation

of η̃
(e)
i j , η

(e)
i and η

(e)
j , more problematic.

2.3 Parametrization of marginal effects

Formulating a model for relational events requires to parametrize, in a parsimonious
way, the effects η

(e)
i and η

(e)
i j of main interest. In absence of individual covariates, we

propose the following parametrization of the first-order effects:

η
(e)
i � f 1(te)

′αi , (8)

where f 1(te) is a vector-valued function specific of time te of each event e. For instance,
this function may contain the terms of a polynomial of suitable order of the day or
year of event e starting from the beginning of the study. This parametrization is similar
to that of a latent trajectory model (Dwyer 1983; Crowder and Hand 1996; Menard
2002), with the difference that, as we clarify in the sequel, each αi is considered as a
vector of fixed individual parameters. In any case, it is possible to represent individual
trajectories regarding the tendency over time to be present in an event.
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Regarding the second-order effects, a natural extension of (8) would lead to a vector
of specific parameters for each pair of units. However, to obtain a parsimoniousmodel,
we prefer to rely on an additive parametrization of type

η
(e)
i j � f 2(te)

′(β i + β j ), (9)

where f 2(te) is defined as f 1(te) and, again, vectors β i represent the evolution of the
tendency, of unit i, to collaborate across time. We use two different functions, f 1(te)
and f 2(te), to allow for a different order of the involved polynomials of time. Note,
however, that the additive structure in (9) implies that f 2(te)

′β i may be interpreted as
the “general” tendency of individual i to collaborate with other individuals in an event
at time te.

Overall, for each bivariate probability vector p(e)i j , the parametrization based on (8)
and (9) is linear in the parameters. In particular, if we let δi � (α′

i , β ′
i )

′, we have that

η
(e)
i j � (

Di j1 Di j2
)
(

δi

δ j

)

, (10)

where Di j1 and Di j2 are suitable design matrices.
To clarify the proposed parametrization, consider a sample of n � 9 individuals for

a single event, for different values of the intercepts αi (from -3 to -1) and of βi (from -1
to 1). These values are reported in Table 1 together with certain average probabilities
that help to understand the meaning of these parameters. The single 2 × 2 tables for
each pair of actors are reported in Table 2.

Table 1 Parameters αi and βi together with mean marginal probabilities and probabilities of two actors
being involved in the same event

αi βi mean(p(Z (e)
i )) mean(p(Z (e)

i , Z (e)
j � 1))

1 – 3.00 −1.00 0.05 0.00

2 – 3.00 0.00 0.05 0.01

3 – 3.00 1.00 0.05 0.01

4 – 2.00 −1.00 0.12 0.01

5 – 2.00 0.00 0.12 0.02

6 – 2.00 1.00 0.12 0.03

7 – 1.00 −1.00 0.27 0.02

8 – 1.00 0.00 0.27 0.04

9 – 1.00 1.00 0.27 0.05
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Table 2 Single 2 × 2 tables for each pair of actors considered in Table 1

j � 1 j � 2 j � 3 j � 4 j � 5

0 1 0 1 0 1 0 1 0 1

i � 1 0 – – 0.906 0.047 0.907 0.045 0.834 0.118 0.836 0.117

1 – – 0.047 0.001 0.045 0.002 0.047 0.001 0.045 0.002

i � 2 0 0.906 0.047 – – 0.910 0.042 0.836 0.117 0.839 0.114

1 0.047 0.001 – – 0.042 0.005 0.045 0.002 0.042 0.006

i � 3 0 0.907 0.045 0.910 0.042 – – 0.839 0.114 0.846 0.107

1 0.045 0.002 0.042 0.005 – – 0.042 0.006 0.035 0.012

i � 4 0 0.834 0.047 0.836 0.045 0.839 0.042 – – 0.768 0.113

1 0.118 0.001 0.117 0.002 0.114 0.006 – – 0.113 0.006

i � 5 0 0.836 0.045 0.839 0.042 0.846 0.035 0.768 0.113 – –

1 0.117 0.002 0.114 0.006 0.107 0.012 0.113 0.006 – –

i � 6 0 0.839 0.042 0.846 0.035 0.855 0.026 0.776 0.105 0.790 0.091

1 0.114 0.006 0.107 0.012 0.098 0.022 0.105 0.014 0.091 0.028

i � 7 0 0.686 0.045 0.689 0.042 0.696 0.035 0.618 0.113 0.627 0.104

1 0.267 0.002 0.263 0.006 0.256 0.013 0.262 0.006 0.254 0.015

i � 8 0 0.689 0.042 0.696 0.035 0.707 0.024 0.627 0.104 0.644 0.087

1 0.263 0.006 0.256 0.013 0.246 0.023 0.254 0.015 0.237 0.032

i � 9 0 0.696 0.035 0.707 0.024 0.717 0.014 0.644 0.087 0.667 0.064

1 0.256 0.013 0.246 0.023 0.235 0.034 0.237 0.032 0.213 0.055

j � 6 j � 7 j � 8 j � 9

0 1 0 1 0 1 0 1

i � 1 0 0.839 0.114 0.686 0.267 0.689 0.263 0.696 0.256

1 0.042 0.006 0.045 0.002 0.042 0.006 0.035 0.013

i � 2 0 0.846 0.107 0.689 0.263 0.696 0.256 0.707 0.246

1 0.035 0.012 0.042 0.006 0.035 0.013 0.024 0.023

i � 3 0 0.855 0.098 0.696 0.256 0.707 0.246 0.717 0.235

1 0.026 0.022 0.035 0.013 0.024 0.023 0.014 0.034

i � 4 0 0.776 0.105 0.618 0.262 0.627 0.254 0.644 0.237

1 0.105 0.014 0.113 0.006 0.104 0.015 0.087 0.032

i � 5 0 0.790 0.091 0.627 0.254 0.644 0.237 0.667 0.213

1 0.091 0.028 0.104 0.015 0.087 0.032 0.064 0.055

i � 6 0 – – 0.644 0.237 0.667 0.213 0.692 0.189

1 – – 0.087 0.032 0.064 0.055 0.039 0.080

i � 7 0 0.644 0.087 – – 0.501 0.230 0.534 0.197

1 0.237 0.032 – – 0.230 0.039 0.197 0.072

i � 8 0 0.667 0.064 0.501 0.230 – – 0.576 0.155

1 0.213 0.055 0.230 0.039 – – 0.155 0.114

i � 9 0 0.692 0.039 0.534 0.197 0.576 0.155 – -

1 0.189 0.080 0.197 0.072 0.155 0.114 – -
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3 Pairwise likelihood inference

Before introducing the proposed methods of inference for the model described above,
we clarify the data structure used in applications. We start from the data

w
(e)
i j �

⎛

⎜
⎜
⎜
⎜
⎝

I (z(e)i � 0, z(e)j � 0)

I (z(e)i � 0, z(e)j � 1)

I (z(e)i � 1, z(e)j � 0)

I (z(e)i � 1, z(e)j � 1)

⎞

⎟
⎟
⎟
⎟
⎠
, (11)

where I (·) is the indicator function, for i � 1, . . . , n − 1, j � i + 1, . . . , n, and
e � 1, . . . , r . In our motivating application, w

(e)
i j denotes the joint participation of

authors i and j in the scientific article e. For instance w
(e)
i j � (0, 1, 0, 0)′ means that

only author j is involved in article e, or w
(e)
i j � (0, 0, 0, 1)′ that both authors are

involved. Moreover, in the applications of interest, it is possible to group events that,
by assumption, have the same distribution. For instance, in the application based on
the academic articles published by statisticians, it is plausible to assume that for all
articles published in the same year the distribution of the binary vector is the same,
even because it is not possible to have the precise dates of the publication and thus
their precise time order. In other words, it is sensible to group events in homogenous
periods t � 1, . . . , t(r ), where t(e) denotes the time of event e. Then, the relevant
information is that contained in the frequency vectors

w̃
(t)
i j �

∑

e:t(e)�t

w
(e)
i j ,

and consequently we denote by p̃(t)i j the corresponding probability vector having the
same structure as in (7).

3.1 Fixed-effects estimation

It is possible to estimate the parameters of interest by maximizing the pairwise log-
likelihood function (Lindsay 1988; Varin et al. 2011):

p�(θ ) �
n−1∑

i�1

n∑

j�i+1

r∑

e�1

[w(e)
i j ]

′ log p(e)i j ,

where θ is the vector of all such parameters, that is the collection of individual param-
eter vectors δi , i � 1, . . . , n, used in (10). An alternative expression is

p�(θ ) �
n−1∑

i�1

n∑

j�i+1

�i j (δi , δ j ),
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�i j (δi , δ j ) �
t(r )∑

t�1

[w̃(t)
i j ]

′ log p̃(t)i j , (12)

which is faster to compute as it relies on the frequency vectors defined in (11).
In order to maximize p�(θ), it is important to obtain the score vector of each

components �i j (δi , δ j ). To this aim, it is convenient to introduce the log-linear effects

p̃(t)i j which are collected in the vector λ̃
(t)
i j � (λ(e)i , λ

(e)
j , λ

(e)
i j )

′, where

λ
(e)
i � log

p(Z (e)
i � 1|Z (e)

j � 0)

p(Z (e)
i � 0|Z (e)

j � 0)
,

λ
(e)
j � log

p(Z (e)
j � 1|Z (e)

i � 0)

p(Z (e)
j � 0|Z (e)

i � 0)
,

λ
(e)
i j � η

(e)
i j ,

and e is any of the events at time occasion t. Also let η̃
(t)
i j denote the corresponding

vector of marginal parameters. We have that

si j (δi ) :� ∂�i j (δi , δ j )

∂δi
�

t(r )∑

t�1

D′
i j1

∂η
(t)
i j

∂[λ(t)
i j ]

′ G[w̃(t)
i j − m(t)

i j p̃
(t)
i j ],

wherem(t)
i j is the sumof the elements of w̃(t)

i j , that is, the number of events in time period

t, whereas G and the derivative of η̃
(t)
i j with respect to λ̃

(t)
i j are defined in Appendix.

The estimation algorithm is based on the following steps. First of all define an initial
guess for the parameters δi , denoted by δ

(0)
i , i � 1, . . . , n. Then, for every unit i, find

the values of δi such that
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n∑

j�1, j ��i

si j (δi ) � 0,

so as to maximize

p�i (θ) �
n∑

j�1, j ��i

�i j (δi , δ j ), (13)

with respect to δi , with all other parameters kept fixed. Iterate this process until con-

vergence in p�(θ ), and denote the final parameter estimates by δ̂i � (α̂′
i , β̂

′
i )

′, i � 1,
. . . , n, which are collected in the vector θ̂ . In practice, the algorithm steps may be
implemented by using a readily available numerical solver.

3.2 Clustering

With large samples, it is typically of interest to find clusters of units presenting a
similar behavior. In our approach this amounts to assume that there are h1 groups of
individuals having a similar behavior in terms of tendency to be involved in an event
and h2 groups of individuals having a similar tendency to collaborate in the network.
For each group we have specific parameter vectors denoted by α∗

g1 and β∗
g2 , with

g1 � 1, . . . , h1 and g2 � 1, . . . , h2, all collected in the parameter vector θ∗.
For unit i, let di1 denote the cluster to which the unit is assigned with respect to

the first type of tendency and di2 the cluster assigned with respect to the second type
of tendency. The corresponding classification pairwise log-likelihood has the same
expression as p�(θ) defined in (12), with αi � α∗

di1
, β i � β∗

di2 , and then δi � ((α∗
di1

)′,
(β∗

di2 )
′)′. This function is denoted by cp�(θ∗, d1, d2), where d1 is the vector with

elements di1 and d2 is that with elements di2, respectively, with i � 1, . . . , n.
To cluster units in homogeneous groups,wemaximize cp�(θ , d1, d2) by an iterative

algorithm that is initialized from the output of a k-means clustering of the individual
estimates α̂i and β̂ i . Then, it alternates the following three steps until convergence:

1. for i � 1, . . . , n try to change the cluster di1 of unit i by finding the cluster that
maximizes the individual component of the classification pairwise log-likelihood,
which is defined as in (13) accounting for the cluster structure, with all other
parameters kept fixed;

2. for i � 1, . . . , n try to change the cluster di2 of unit i by the same procedure as
above;

3. update the parameter estimates of α∗
g1 , g1 � 1, . . . , h1, and β∗

g2 , g2 � 1, . . . , h2,
by maximizing cp�(θ∗, d1, d2) with respect to θ∗ with d1 and d2 kept fixed.

We select h1 and h2 as the smallest number of clusters such that the initial clustering
of the estimates α̂i and β̂ i , performed by the k-means algorithm, leads to a between
sum of squares equal to at least 80% of the total sum of squares. Then, at convergence
of the three steps illustrated above, we check that the number of clusters is adequate,
comparing the maximum value of cp�(θ∗, d1, d2) with that of p�(θ ), as we show in
connection with the application in the next section.
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4 Simulation

As clarified in Section 2.1, the knowledge of main and second-order marginal effects,
without knowing higher-order effects, is not enough to generate data from an assumed
model. Moreover, even with a small number of actors, generating data is computa-
tionally unfeasible, apart from the case in which all second- and higher-order effects
are null. Given these constraints, we now implement a study on simulated data that
mimic the scientific publications data analyzed in the next section, to provide relevant
indications on the properties of the proposed estimation methods.

The simulation study is basedon abenchmarkdesign (DESIGN0) andon alternative
designs, variations of the benchmark. Under DESIGN 0, we assume that r � 250
events involve an overall number of n � 500 individuals and cover T � 5 consecutive
periods. The individual parameters measuring the tendency to participate to the event,
denoted as αi , can equally likely assume h1 � 4 possible values equally spaced
from −5.0 to −2.5. To simplify the generation of the simulated data, the tendency to
reciprocate, βi , are all equal to 0. The alternative simulation designs alter DESIGN 0,
by using n � 1, 000 rather than 500 (DESIGN 1), T � 10 rather than 5 (DESIGN
2), k � 8 rather than 4 clusters (DESIGN 3), and r � 500 events rather than 250
(DESIGN 4).

Under each design, 100 samples have been generated and the model based on a
second-order time polynomial for both the tendency to connect and the tendency to
reciprocate is assumed. This is the same model estimated in the following section
to analyze the data on scientific publications. Estimation is based on both the fixed-
effects method illustrated in Sect. 3.1 and the clustering estimation method illustrated
in Sect. 3.2. The quality of these estimation methods is measured, for each sample,
by the average across individuals of the absolute value of the difference between each
parameter estimate and the corresponding true value. The average across samples of
these sample-specific averages are reported in Table 3 for the fixed-effects estimation
method and in Table 4 for the cluster estimation method, where the measures of errors
are indicated by err(α̂l ) and err(β̂l ) for l � 1, 2, 3. The clustering results in Table 4
also reports the value of the Adjusted Rand Index (ARI; Hubert and Arabie 1985)
between the true and predicted clustering.

We note that as the number of actors n increases (DESIGN 1 vs 0), the average error
of the fixed effects method does not change substantially because, as expected, the

Table 3 Average measure of error of the fixed-effects estimator of every parameter under each simulation
scenario

n T h1 r err(α̂1) err(α̂2) err(α̂3) err(β̂1) err(β̂2) err(β̂3)

500 5 4 250 0.228 0.480 0.460 0.116 0.181 0.178

1000 5 4 250 0.228 0.480 0.463 0.113 0.159 0.158

500 10 4 250 0.132 0.407 0.401 0.073 0.120 0.122

500 5 8 250 0.211 0.450 0.434 0.103 0.162 0.159

500 5 4 500 0.133 0.289 0.285 0.046 0.078 0.078
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Table 4 Average measure of error of the estimation method based on clustering for every parameter under
each simulation scenario

n T h1 r err(α̂1) err(α̂2) err(α̂3) err(β̂1) err(β̂2) err(β̂3) ARI

500 5 4 250 0.150 0.130 0.256 0.116 0.181 0.178 0.875

1000 5 4 250 0.016 0.024 0.027 0.113 0.159 0.158 0.895

500 10 4 250 0.011 0.033 0.033 0.073 0.120 0.122 0.976

500 5 8 250 0.568 0.773 0.622 0.103 0.162 0.159 0.424

500 5 4 500 0.059 0.099 0.080 0.046 0.078 0.078 0.965

greater amount of information is compensated by the larger number of parameters to
be estimated. On the contrary and coherently, the error level of the cluster estimation
method strongly improveswith an increase in the number of subjects. Also, we observe
that as the number of timeperiodsT increases (DESIGN2vs 0), bothmethods improve,
since there is a higher data availability but no additional parameters to estimate, with a
more pronounced gain in the performance of the clustering method. When the number
of clusters h1 increases (DESIGN 3 vs 0) we observe that the fixed-effects method
does not change its performance, whilst the cluster estimation method has a worse
performance: the same amount of information is now split into a higher number of
clusters, worsening the estimation performance of cluster-specific parameters. As a
result, the ARI, while having satisfactory levels close to 1 in all other designs, in
DESIGN3 is significantly lower. Finally, as the number of events r increases (DESIGN
4 vs 0), both methods have a significant improvement in terms of performance: more
occasions are available to learn marginal and joint tendencies of subjects to participate
in the events.

5 Application

In order to illustrate the approach based on individual-specific effects, see assumptions
(8) and (9), we propose an application based on the data recently made available by
Ji and Jin (2017). The data refer to the publication history of all authors with at least
one paper published in four top statistical journals (Annals of Statistics, Biometrika,
Journal of theAmerican Statistical Association, Journal of theRoyal Statistical Society
- series B) between 2003 and the first half of 2012. Overall, 3607 authors are involved
who coauthored 3248 articles. In Table 5we report some descriptive statistics, whereas
in Fig. 2 we represent the distribution of the number of articles and the number of
coauthors for each individual in the dataset.

FromTable 5we observe that the number of published papers per year does not vary
considerably, even if there is an increase from 2003 to 2009 and a decrease after 2009
(year 2012 counts only partially).Moreover, the average number of authorsmoderately
increases during the time span and it is important to note that the number of single-
author articles is relevant in each year. Indeed, these articles represent the 16.7% of
the total articles considered in the dataset and this justifies the use of the proposed
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Table 5 Descriptive statistics on the number of authors per article

# authors

Year # articles 1 2 3 4 5 6 7 8 9 10 Average

2003 296 78 132 63 19 2 2 0 0 0 0 2.125

2004 320 70 157 67 17 5 3 1 0 0 0 2.197

2005 328 64 166 77 16 4 0 1 0 0 0 2.189

2006 354 55 178 96 18 4 2 1 0 0 0 2.288

2007 350 56 158 105 24 3 2 1 0 0 1 2.363

2008 370 59 151 114 32 9 2 2 1 0 0 2.459

2009 409 53 177 128 42 4 2 0 1 1 1 2.489

2010 355 53 151 104 36 8 2 1 0 0 0 2.451

2011 325 39 135 107 34 5 4 1 0 0 0 2.529

2012 141 16 63 49 9 2 1 1 0 0 0 2.468

3248 543 1468 910 247 46 20 9 2 1 2 2.357

Fig. 2 Distribution of the number of articles per author (left panel) and of the number of coauthors (right
panel)

approach for the analysis. Regarding Fig. 2, we note the concentration of the number
of articles, with the majority of authors (2335) who published only one article in one
of the four top journals considered in the reference period and 520 who published
only two articles. On the other hand, the three most productive researchers published
33, 40, and 82 articles, with a total of 155 overall (ignoring possible overlapping).
Even the distribution of the number of coauthors shows a very high concentration,
although the situation is somehow different as the third modality (i.e., 2 coauthors)
has the highest frequency, equal to 970. The authors with zero and one coauthors are
154 and 842, respectively, whereas the three highest modalities are 81, 94 and 112.
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The application is based on two phases, that is, fixed-effects estimation and cluster-
ing, which are illustrated in Sects. 3.1 and 3.2, respectively. The fixed-effect estimation
method is executed in about 27 h and the clustering method in about the double, on
an Intel(R) Core(TM) i7-8565U CPU@ 1.80 GHz 1.99 GHz machine. Regarding the
first phase, with reference to (8) and (9), we assume second order polynomials for the
effect of time. In this way we estimate 3607 parameter vectors αi and β i of length
3. On the basis of these estimates it is possible to obtain trajectories both in terms of
tendency to publish an article in a certain period and in terms of tendency to collab-
orate with other authors. We recall that, for the former, the effect that is represented
is the logit defined in (3) and for the latter it is the log-odds ratio (4). The choice of
a second order polynomial is driven by model parsimony, to have a reasonable low
number of parameters with non-linear trajectories of tendencies to publish and col-
laborate. Still, we stress that the proposed method is thought more generally for f 1
and f 2 vector-valued functions of time, extendable, for instance and according to the
application and the computational capacity, to higher-order polynomials or splines. In
order to illustrate these results, we consider the five authors with the largest number
of published articles in the period that we identify with the letters from A to E; the
patterns of publication of these authors is reported in Table 6.

For these top five authors, we represent the estimated profiles in Fig. 3 where we
can clearly identify author E as the most productive one with a profile that follows a
reverse U-shape, having its pick around years 2006 and 2007, coherently with the data
in Table 6. On the other hand, this author shows the lowest profile in terms of tendency
to collaborate with other authors, in accordance to a ratio between number of coauthors
and number of published papers in the table which, for author E, tends to be lower
than for the other main authors. The conclusion is that the large number of coauthors
of author E can be mostly ascribed to his tendency to publish; see Sect. 2.2 for general
comments on the interpretation of these results. In a similar way we can interpret
the profiles of the other authors. For instance, authors C and D, who published the
same number of papers (namely 40), have very similar profiles in terms of tendency to
publish, but according to the proposed model, D has a higher tendency to collaborate,
with a difference that also increases in time, and in particular the curve for D always
dominates that for C; this is again coherent with the data in Table 6. Finally, authors
A and B have profiles which are in agreement with a smaller number of published
papers that, at the same time, tends to increase from 2003 to 2012.

To improve the interpretability of these profiles, instead of using the logits defined
in (3), we can also express the tendency to publish in terms of expected number of pub-
lications per year. These expected values are obtained bymultiplying the probability to
be involved in a publication by the yearly number of publications available in Table 5.
The resulting profiles are reported in Fig. 4 and confirm the previous conclusions.

When we examine the overall sample of 3607 authors, the analysis may be effec-
tively carried out by building clusters of authors. Following the approach described in
Sect. 3.2, we find evidence of h1 � 6 different profiles in terms of tendency to publish
and h2 � 5 profiles in terms of tendency to collaborate. The model with clustered pro-
files attains a maximum profile log-likelihood (normalized dividing by the number of
ordered pairs of units) equal to −34.916 that is close that of the fixed-effects method,
which is equal to −33.693. On the other hand, the maximum pairwise log-likelihood
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Fig. 3 Profiles in terms of tendency of authors to publish papers (left panel) and of collaborate (right panel),
for the top five authors A, B, C, D, and E

Fig. 4 Profiles of tendency of
authors to publish papers,
measured by the expected
number of yearly publications,
for the top five authors A, B, C,
D, and E

with only one cluster is equal to −75.401. This means that using a structure of 6 × 5
clusters implies an improvement of the pairwise log-likelihood equal to 97.1% with
respect of using only one cluster, despite the huge reduction in the number of param-
eters with respect to the fixed-effects model: rather than using n individual-specific
parameter vectors αi and β i , we use a very limited number of parameter vectors
denoted by α∗

g and β∗
g . The corresponding profiles are represented in Fig. 5.

It is interesting to note that the 6 cluster profiles in terms of tendency to publish
cover different possibilities. In particular, profiles for the first 3 clusters have a reversed
U-shape with picks located at different years. On the other hand, profiles for clusters
4 and 5 have a U-shape but are rather different. Finally, authors in cluster 6 tend to
have a rather constant over time tendency to publish, which is higher than for the other
clusters. In any case, the values of the logit even for this class corresponds to low
probability levels, with an expected number of publications which is smaller than 1
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Fig. 5 Profiles in terms of tendency of authors to publish papers (left panel) and to collaborate (right panel),
for clusters 1–5, obtained following the analysis in Section 3.2

for all years. In a similar way we can interpret the 5 clusters in terms of tendency to
collaborate. For instance, individuals in the first cluster have a general tendency to
collaborate lower than the other authors, which is rather constant in time.

It is important to stress that, in principle, any author may belong to any cluster of
the first type (in terms of tendency to publish) and of the second type (in terms of
tendency to collaborate). In order to better understand this aspect, we consider the
cross classification of authors according to both criteria. This cross classification is
reported in Table 7 that also shows the size of each cluster in terms of units assigned
to it.

On the basis of the results in Table 7 we observe that all clusters have a comparable
dimension without a neat prevalence in terms of size of a specific cluster, although
in terms of tendency to publish cluster 3 is the largest and the same happens for
the tendency to collaborate. Regarding the association between the two classification
criteria, it is interesting to comment on certain regular patters that appear evident. The
most relevant one is that individuals in cluster 6 in terms of tendency to publish are

Table 7 Cross classification of authors in terms of tendency to publish and to collaborate

Tend. to Tend. to collaborate

Publish 1 2 3 4 5 Total

1 27 0 577 0 0 604

2 85 584 0 0 0 669

3 130 0 374 301 0 805

4 42 0 0 478 3 523

5 108 28 0 0 478 614

6 392 0 0 0 0 392

Total 784 612 951 779 481 3607
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all in the first cluster in terms of tendency to collaborate. In summary, the authors
with the highest tendency to publish have, at the same time, the smallest tendency
to collaborate. As noted above, when commenting the results shown in Fig. 3 for
author E, this means that, for the most productive authors, having a large number of
coauthors is more plausibly ascribed to the tendency to publish than to a pure tendency
to collaborate. Author E can be considered as a pivotal or representative author for
this joint class.

Other patterns may be easily discovered by looking at Table 7 as, for instance, that
authors in cluster 1 in terms of tendency to publish are mostly in cluster 3 in terms
of tendency to collaborate. Comparing the two profiles we observe that they have an
opposite shape, which is coherent with the previous reasoning according to which
the tendency to have a large number of coauthors may be reasonably ascribed to the
general tendency to publish than to a specific social behavior. This is likely due to
the fact that scientific collaborations are viewed as long-term investments, and once
a productive author establishes a team of researchers that effectively collaborate with
each other, he/she tends to fully exploit these known scientific relations, with the aim
of authoring even a large number of articles without changing the team. The whole
analysis is repeated on a reduced dataset that excludes 2012, the partly available last
year of the sample. The results are substantially equivalent to those reported above,
and minor differences are commented in detail in the Supplementary Material.

6 Conclusions

We propose a newmodel for social networks arising from a sequence of events involv-
ing an arbitrary (oneormore) number of actors. Themainnovelties, relative to available
approaches, may be summarized as: (i) binary variables Z (e)

i for actor i being involved

in event e are directly modeled instead of the tie variables Y (e)
i j � Z (e)

i Z (e)
j ; (ii) the

model is based on marginal first- and second-order effects that have a meaningful
interpretation in terms of tendency of an actor to participate in an event and tendency
to cooperate; (iii) these effects are parametrized accounting for each event time and
individual fixed-effects parameters, so that the evolution of individual behaviors may
be represented by suitable trajectories; (iv) inference is based on a composite likeli-
hood function, built on the distribution of each ordered pair of units, and maximized
with numerical complexity of order O(n2), n being the network size; (v) units may
be clustered in groups having the same behavior so as to simplify the interpretation
of the data structure. The results of a simulation study confirms the adequacy of the
proposed estimation methods.

In conclusion, it is worth noting that the proposed approachmay be potentially used
in contexts different from our motivating example. In particular, we can formulate
third- (or higher) order effects to account for triangularizations. This amounts to rely
on a different composite likelihood function: a composite likelihood based on triples
or a pairwise conditional likelihood, depending on the type of third-order effects used.
However, triples would necessarily lead to a higher computational complexity.
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Furthermore, individual covariates can be easily incorporated. In fact, we rely on a
parametrization based on a linear predictor with suitable polynomials of event times.
This linear predictor can include, in a natural way, individual covariates with no
increase in complexity. However, covariates specific to each pair of units (not to single
units) and to events, contribute to increase the computational burden.

Finally, our fixed-effect model can be naturally extended to random-effects and
lends itself to a Bayesian formulation. By simply adding suitable priors on model
parameters, the same inferential algorithm for finding the composite maximum like-
lihood estimate can be adopted to find maximum a posteriori estimates, with minor
adjustments.
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Appendix: Obtaining joint probabilities frommarginal effects

A simple but crucial issue concerns how to obtain the joint distribution of two binary
variables starting from the corresponding marginal effects. In particular, consider two
binary variables A and B having joint probabilities

pAB(a, b) :� p(A � a, B � b), a, b � 0, 1,

which are collected in lexicographical order in the vector p. Also let pA(a) :� p(A �
a) and pB(b) :� p(B � b) denote the corresponding marginal probabilities. The
marginal parameters are defined as

ηA :� log
pA(1)

pA(0)
,

ηB :� log
pB(1)

pB(0)
,

ηAB :� log
pAB(0, 0)pAB(1, 1)

pAB(0, 1)pAB(1, 0)
,

and are collected, following the order given above, in the 3-dimensional vector η.
The inversion from η to p is based on a formula studied in a more general context

by Dale (1986). On the basis of some simple algebra, we find that the joint probability
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pAB(1, 1) is equal to

pAB(1, 1) � 1 + [pA(1) + pB(1)](eηAB − 1) − √
�

2(eηAB − 1)
,

with

� � [1 + (pA(1) + pB(1))(e
ηAB − 1)]2 − 4(eηAB − 1)pA(1)pB(1)e

ηAB

and where pA(1) � eηA/(1 + eηA ), with pB(1) computed similarly. Obviously, if
ηAB � 0, then the solution is simply pAB(1, 1) � pA(1)pB(1). In the end, we have

⎧
⎨

⎩

pAB(1, 0) � pA(1) − pAB(1, 1),
pAB(0, 1) � pB(1) − pAB(1, 1),
pAB(0, 0) � 1 − pA(1) − pB(1) + pAB(1, 1).

Now consider the canonical (log-linear) parameters

λA � log
pAB(1, 0)

pAB(0, 0)
,

λB � log
pAB(0, 1)

pAB(0, 0)
,

λAB � log
pAB(1, 1)pAB(0, 0)

pAB(0, 1)pAB(1, 0)
,

which are collected, following the order given above, in the 3-dimensional vector λ,
and note that

pAB(a, b) � eaλA+bλB+abλAB

K (λ)
,

where K (λ) is the normalizing constant. For estimation purposes, the derivative of λ

with respect to η is necessary. We obtain this as the inverse of the derivative of η with
respect to λ, noting that

ηA �λA + log
1 + eλB+λAB

1 + eλB
,

ηB �λB + log
1 + eλA+λAB

1 + eλA
,

ηAB �λAB .
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Then we have:

∂η

∂λ′ �

⎛

⎜
⎜
⎜
⎜
⎝

1 − eλB (1 − eλAB )

(1 + eλB )(1 + eλB+λAB )
− eλB+λAB

1 + eλB+λAB

− eλA (1 − eλAB )

(1 + eλA )(1 + eλA+λAB )
1 − eλA+λAB

1 + eλA+λAB

0 0 1

⎞

⎟
⎟
⎟
⎟
⎠
,

(14)

whereas regarding the inverse function we have

∂λ

∂η′ �
(

∂η

∂λ′
)−1

�
(

1 − ∂ηA

∂λB

∂ηB

∂λA

)−1

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 − ∂ηA

∂λB

∂ηA

∂λB

∂ηAB

∂λB
− ∂ηAB

∂λA

−∂ηB

∂λA
1

∂ηB

∂λA

∂ηAB

∂λA
− ∂ηAB

∂λB

0 0 1 − ∂ηA

∂λB

∂ηB

∂λA

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

having elements directly taken from (14).
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