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Abstract
Cluster Analysis techniques are a common approach to classifying objects within
a dataset into distinct clusters. The clustering of geometric shapes of objects holds
significant importance in various fields of study. To analyze the geometric shapes of
objects, researchers often employ Statistical Shape Analysis methods, which retain
crucial information after accounting for scaling, locating, and rotating an object. Con-
sequently, several researchers have focused on adapting clustering algorithms for shape
analysis. Recently, three-dimensional (3D) shape clustering has become crucial for
analyzing, interpreting, and effectively utilizing 3D data across diverse industries,
including medicine, robotics, civil engineering, and paleontology. In this study, we
adapt the K-means, CLARANS and Hill Climbing methods using an approach based
on the Bagging procedure to achieve enhanced clustering accuracy. We conduct sim-
ulation experiments for both isotropy and anisotropy scenarios, considering various
dispersion variations. Furthermore, we apply the proposed approach to real datasets
from relevant literature. We evaluate the obtained clusters using cluster validation
measures, specifically the Rand Index and the Fowlkes-Mallows Index. Our results
demonstrate substantial improvements in clustering quality when implementing the
Bagging approach in conjunction with the K-means, CLARANS and Hill Climbing
methods. The combination of the Bagging method and clustering algorithms provided
substantial gains in the quality of the clusters.
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1 Introduction

In many everyday situations, it is relevant to classify individuals from a dataset into
groups, either to help understand the phenomenon studied or to organize data. Cluster
Analysis is a set of techniques that aims to create clusters so that each element is
similar, but the clusters are different. Clusteringmethods differ in several ways, Everitt
et al. (2011) comment that the two main methods are hierarchical and partitional. The
methods of interest in the present work are the partitioning ones, which form groups
from an initial partition and the pre-defined number K of clusters. Initially, there is
an initial partition, and, according to the algorithm process, the elements change from
cluster to cluster until their formats reach a final version (final clustering) (Friedman
and Rubin 1967).

The K-means method, proposed over 50 years ago, is based on the sum of squares,
also known as the “Within-cluster Sum of Squares” (WSS). It aims to minimize the
sum of the squared distances between data points and the centroids of their respective
clusters (Hastie et al. 2009; Jain 2010). Another well-known method is CLARANS
(Clustering Algorithm based on Randomized Search), introduced by Ng and Han
(2002), which utilizes a representative object called the medoid, positioned closer to
the center of the cluster. The medoid reduces the search space, enhances robustness
against outliers, and allows for identifying complex cluster structures. Additionally,
theHill Climbingmethod, proposed by Friedman and Rubin (1967), aims to iteratively
find the cluster with the optimal value of a given clustering criterion, such as WSS or
the “Between-cluster Sum of Squares” (BSS).

Geometric representations and images of objects play a vital role in studies and
research across various fields and applications, including Biology, Medicine, Neuro-
science, Archaeology, and, with the advancement of technological resources, Logic,
Computer Vision, and Pattern Recognition (Adams and Otárola-Castillo 2013; Srivas-
tava et al. 2005; Baxter 2015; Srivastava and Klassen 2016; Guo et al. 2023; King and
Eckersley 2019). Statistical Analysis of Shapes is a branch of statistics used to work
with geometric representations and shapes of objects. In the geometric approach to
shape analysis, the central idea is to utilize the representationof the object itself.Certain
mathematical operations remove the effects of location, scale, and rotation, encapsu-
lating all the information in the shape. Some related practical applications involve
comparing the shapes of the brain cortex in patients with and without schizophrenia
in a neuroscientific study based on brain magnetic resonance (Brignell et al. 2010).

Studying summary measures and comparisons between shapes is necessary in sev-
eral areas of knowledge to gain a deeper and more comprehensive understanding of
objects and phenomena in various research and application fields. Developing different
statistical techniques in the context of shapes provides a systematic and quantitative
approach for applications and theoretical development. Bookstein et al. (1986) and
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Kendall (1984) proposed the fundamental concepts of statistical analysis of shapes.
In several situations, it is necessary to classify data sets of shapes that belong to non-
Euclidean spaces into clusters. In this context, several authors have adapted algorithms
for this purpose. For two-dimensional shapes (2D), there is the work by Amaral et al.
(2010), who adapted the K-means algorithm proposed by Hartigan and Wong (1979)
for an application in Oceanography. In their study, they needed to classify species of
fish based on their shapes.

One of the main advantages of working with three-dimensional data is the ability to
analyze the surface area and volume of objects of interest and their shapes. Although
there are many applications of three-dimensional data in science and technology, there
are relatively few studies related to 3D shapes in the literature.Moving from 2D shapes
to 3D is not simply the addition of a new dimension, as the 3D shape space is part
of a stratified space that contains some singularities1 These singularities can make
the analysis more complex and computationally costly, unlike the 2D shape space, a
Riemannian manifold (Bhattacharya and Bhattacharya 2012).

Few works involving adaptations of clustering methods address three-dimensional
(3D) shapes. One of the most significant works in this area, developed by Vinué et al.
(2014), presents adaptations of the K-means (Lloyd 1982) and trimmed K-means
(García-Escudero and Gordaliza 1999) versions for clustering three-dimensional
shapes. Despite the scarcity of these methods, the present work also aims to adapt
the CLARANS (Ng and Han 2002) and Hill Climbing (Friedman and Rubin 1967)
methods to the context of three-dimensional shapes.

Clustering methods can benefit from leveraging the strengths of other algorithms.
The Bagging method has been applied in conjunction with clustering algorithms to
enhance their performance by incorporating new training sets formed through boot-
strap samples into the cluster analysis framework. An example of clustering ensembles
is the bagged clusteringmethod introduced by Leisch (1999), which combines hierar-
chical and partitioning methods in cluster analysis to improve stability. Additionally,
to improve the clustering performance of partitioning algorithms based on medoids,
such as PAM (Rousseeuw and Kaufman 1990), Dudoit and Fridlyand (2003) utilized
the Bagging method for data analysis and stabilize the results. The method provides
robustness against outliers, consistency, and lower sensitivity to the dimensionality of
the data.

Regarding the use of clustering ensemble techniques in the context of shape anal-
ysis, the work by Assis et al. (2021) introduces the Bagging method, proposed by
Breiman (1996), in conjunction with the K-means algorithm, proposed by MacQueen
(1967), to enhance the quality of clustering results for 2D shapes. The method is more
resistant to random fluctuations in the data.

Motivated by all these works, this paper aims to leverage the Bagging method,
specifically BagClust1 proposed by Dudoit and Fridlyand (2003), to enhance the
quality of clustering results for three-dimensional shapes obtained using the adapted
versions of K-means, CLARANS and Hill Climbing algorithms in the context of 3D

1 Here, singularities refer to points or regions in the space of shapes where abrupt changes or non-smooth
behaviors occur in the geometric properties of objects. For example, Peaks and Valleys where the surface
curvature is very high or low, Confluence Points where multiple parts of the shape come together, and Fold
Points where folds or discontinuities occur.
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shapes. By incorporating the Baggingmethod, we seek to improve the clustering out-
comes’ robustness and resistance to fluctuations. To evaluate the clustering quality of
these methods, the Rand Index (Rand 1971) and the Fowlkes-Mallows Index (Fowlkes
and Mallows 1983) are used as performance measures. To validate the results of the
metrics obtained via simulations, we used the paired Wilcoxon test (Wilcoxon 1992).

This paper is organized as follows. Section 2 deals with the basic concepts of
statistical analysis of shapes. In Sect. 3, we present how the algorithms under study
can be adapted for statistical shape analysis in three-dimensional space. A simulation
study and applications on real datasets are presented in Sect. 4. Finally, the conclusions
are discussed in Sect. 5.

2 Background

According to Kendall (1977), the geometric information of an object that remains
when the effects of location, scale, and rotation are removed is referred to as shape.
Additionally, the book by Dryden andMardia (2016) synthesizes the main concepts of
shape analysis and provides a overview of the necessary definitions for statistical shape
analysis to establish the notation used throughout this paper. One way to characterize
the shape of an object is to detect a finite set of points around its silhouette, which are
called landmarks.

A configuration is a collection of landmarks in a given object, mathematically
represented by a matrix X of dimension k × m, where k is the number of landmarks
and m is the number of dimensions (Cartesian coordinates) for each landmark. The
space of all possible coordinates of the landmarks is called the configuration space. In
this work, we will study the shapes of objects in three dimensions, i.e., the cases where
m � 3. Next, we present some definitions for statistical shape analysis according to
Dryden and Mardia (2016).

Definition 1 The shape space is the space of all shapes. It is the set of equivalence
classes of the configuration matrices under the action of Euclidean similarity transfor-
mations (location, rotation, and scale).

The shape space admits a Riemannian manifold structure, meaning standard statis-
ticalmethods cannot be directly applied. The complexity ofworkingwith this structure
depends on the values of k and m. When m � 2, the shape space is a complex pro-
jective space (Goodall and Mardia 1999). However, for dimensions m ≥ 3, the shape
space is not a Riemannian manifold but a stratified space (Dryden and Mardia 2016).
This space contains singularities and is less familiar than a Riemannian manifold.
Nevertheless, in practical applications, it is generally assumed that we are far from
these singularities and confined to a restricted variation within the shape space.

However, the configuration matrix X does not adequately describe an object, as it
is not invariant under Euclidean similarity transformations, i.e., location, scale, and
rotation. The location and rotation effects of X are removed one at a time. Initially,
the Kendall coordinates (Kendall 1984) will be used to remove the location effect,
employing the Helmert submatrix. The location effect is removed by multiplying X
by the Helmert submatrix H (see Dryden and Mardia (2016), p. 49). The Helmert
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matrix HF is an orthogonal matrix of dimension k × k, where all the elements of the

first row are equal to 1/
√
k, and the j-th row has ( j −1) elements equal to− j( j + 1)

1
2 ,

followed by an element equal to ( j − 1) ∗ ( j( j + 1))
1
2 , and (k − j) zeros.

In order to eliminate the scaling effect, the Helmertized configuration must be
divided by its norm, as follows:

Z � XH

||XH|| � HX
||HX|| � HX

√
tr((HX)T (HX))

, (1)

whereZ is called the pre-shape of the configuration matrixX. It is important to realize
that, in the pre-shape, the rotation effects remain.

Definition 2 The pre-shape space Skm is the set of all possible pre-shapes.

It can be mathematically represented as:

Skm �
{
Z � HX

||HX||
∣∣∣∣ X ∈ R

k×m
}

whereZ is the pre-shapeof the configurationmatrixX,X ∈ R
k×m represents thematrix

of Cartesian coordinates of k landmarks in m dimensions. The space Skm contains all
possible configurations after removing the scaling effect from the original shape space.

Definition 3 The shape of a configuration matrix is all the geometric information that
remains after removing the effects of location, scale, and rotation. The shape can be
represented by:

[Z] � {Z� : � ∈ SO(m)}, (2)

where � is a rotation matrix, Z is the pre-shape, and SO(m) is the orthogonal group
of rotations.

According to Vinué et al. (2014), Skm is a hypersphere of unit radius in R
(k−1)m ,

a Riemannian submanifold that is widely studied and known. However, for m > 2,
�k

m is not a usual space. As �k
m is considered a quotient space of Skm under rotations,

it is easier and more intuitive to work in this space, given that it is a Riemannian
submanifold.

In practice, comparing and measuring objects is of constant interest to understand
their variations, similarities, and dissimilarities. Procrustes analysis is a widely used
technique for statistical shape analysis. It deals with the comparison and alignment of
shapes by removing the effects of translation, rotation, and scaling. Themethod aims to
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fit shapes onto a standard template by minimizing the distance between corresponding
points on the shapes through rigid transformations.

In this context, defining distance concepts aimed at shape analysis is essential.
Consider two configuration matrices of k landmarks in m dimensions, denoted by X1
and X2, with pre-shapes equal to Z1 and Z2, respectively. Next, a distance measure
focused on the analysis of shapes is defined.

Definition 4 The Riemannian distance ρ(X1, X2) is the nearest great circle distance
(over rotations) between Z1 and Z2 in the pre-shape hypersphere Skm .

The Riemannian distance is intrinsic, as it is defined in the space of the form �k
m .

For more comprehensive details, see Dryden and Mardia (2016). Yet,

Definition 5 The full Procrustes distance between X1 and X2 is:

dF (X1, X2) � inf
�∈SO(m), β∈R+

||Z2 − βZ1�||,

where β is a scalar.

The full Procrustes distance and the Riemannian distance have the following rela-
tionship: dF � sin(ρ). Another important concept that needs to be defined is the mean
shape. In statistical shape analysis, the definition of the mean shape plays a crucial
role in data analysis. However, in non-Euclidean spaces, no concept of mean is equiv-
alent to the commonly known arithmetic mean. To address this, we will employ a
Fréchet-type mean (Fréchet 1948), a type of mean or average that minimizes the sum
of squared distances to any shape.

ConsiderX1, . . . , Xn as a set of configurationmatrices representing the coordinates
of landmark points on shapes.

Definition 6 The full Procustes mean shape in shape space is given by

[μ̂] � arg inf
μ

n∑

i�1

dF
2(Xi, μ), (3)

where dF represents the full Procrustes distance of Definition 5.

For two-dimensional data, where m � 2, Kent (1994) presents an eigenvector
solution for the optimization problem inDefinition 6 to find amean shape. However, an
iterative process becomes necessary for dimensions where m ≥ 3 since the matching
procedure cannot be expressed as a linear expression. The iterative process is outlined
in Algorithm 1 [see pp. 138 in (Dryden and Mardia 2016) for more details].
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Algorithm 1 Algorithm for calculating the mean shape of Procrustes [μ̂].

3 Clustering three-dimensional shapes

The classification problem in shape analysis is to separate the objects in a dataset
into groups based on their shapes. In this paper, the clustering methods discussed in
the context of 3D shapes are the version of K-means adapted by Vinué et al. (2014),
and our adaptations of the CLARANS and Hill Climbing methods. In principle, we
consider X∗ � {Xi, i � 1, · · · , n} as a set of n objects, where each of them is a
configuration matrix, as defined in Sect. 2. The algorithms will form these objects into
a set G � (Gr , r � 1, · · · , K ) of K clusters.

3.1 K-means clustering algorithm for three-dimensional shapes

The K-means clustering algorithm, introduced by Lloyd (1982), was adopted and
built a new version Vinué et al. (2014) to work with three-dimensional shape data.
The Riemannian distance, presented in Definition 4, replaced the Euclidean distance
used in the original algorithm.

The K-means optimization problem, in the context of shape analysis, aims to min-
imize the following criterion:

W �
K∑

r�1

∑

i∈Gr

Dist2(Xi, μr), (4)
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here, Gr , r � 1, · · · , K , represents the formed groups that contain each of the
Xi, i � 1, · · · , n, observations in the dataset. Note that a configuration matrix is a
collection of landmarks of a given geometric object. The Dist function is a measure
of distance. In this case, it is the Riemannian distance as defined in Definition 4, and
μr represents the mean shape (centroid) obtained using Algorithm 1. The K-means
clustering algorithm for three-dimensional shapes follows the steps below.

Algorithm 2 K-means algorithm for three-dimensional shapes.

The clusters formed by Algorithm 2 depend on an initial partition (randomly
defined) representing the centroids, which can lead to convergence to a local optimum.
It is necessary to run the algorithm multiple times with different initial partitions and
then select the execution that yields the best value of the clustering criterion tomitigate
this issue. The K-means method is primarily limited by its sensitivity to outliers in
the dataset because it uses the sample mean to calculate the centroids of the clusters,
allowing outliers to influence the resulting clusters significantly. Outliers can pull the
centroids away from the central cluster, leading to suboptimal cluster assignments.
Algorithm 2 updates centroids (means of groups) only after assigning all elements to
a cluster. The algorithm performs a two-step process. First, it assigns all elements to
the closest cluster centroid based on the distance criterion, and then it recalculates the
centroids based on the newly formed clusters.

3.2 CLARANS clustering algorithm for three-dimensional shapes

Ng and Han (2002) proposed theCLARANS (Clustering Algorithm based on Random-
ized Search) algorithm as an extension of the PAM (Partitioning Around Medoids)
algorithm. In PAM, the cluster representatives are called medoids. A medoid is the
data point within a cluster with the lowest average dissimilarity (distance) to all other
points in the cluster, whichmakes PAM less sensitive to outliers compared toK-means,
as the medoids are actual data points, whereas K-means uses the mean of the cluster
to represent its center.

The CLARANS forms clusters based on a random search approach, and the groups
are generated by searches over the entire dataset, which is treated as a graph. LetGn, K
be the graph, where nodes are defined as sets of medoids, and each node results in
different clusterings. Each of these nodes has K (n−K ) neighbors, whereK represents
the number of clusters, and n is the number of individuals in the dataset. Two nodes
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are considered neighbors if they differ by only one object. Consequently, it is possible
to have different groups depending on the selected medoid set. A cost is assigned to
each node, defined as the total dissimilarity between every object and the medoid of
its group. Overall, the CLARANS searches for the optimal node in the complete graph,
applying the PAM for a sample of neighbors.

TheCLARANS algorithmhas twomain parameters:maxneighbor, which represents
the maximum number of neighbors to be examined, and numlocal, which represents
the number of search iterations for a minimal node. If the value of maxneighbor is
very close to or equal to K (n − K ), the quality of the groups formed by CLARANS
will be closer to those generated by PAM, and the search for a minimal node will take
longer (Ng and Han 2002). Algorithm 3 presents the steps for adapting CLARANS to
the context of 3D shapes, which is one of the proposals of the present work.

Algorithm 3 CLARANS algorithm for three-dimensional shapes.

In general, CLARANS searches for the optimal node in the entire graph by applying
PAM in a sample of neighbors. These algorithms examine the notions of proximity
between the partitions examined during the iterative process. By examining multi-
ple neighboring partitions and considering the quality of their clustering solutions,
CLARANS tries to overcome the limitations of traditional methods like PAM or K-
means, mainly when dealing with noisy or large datasets. The iterative exploration of
the search space through proximity-based evaluations enhances the effectiveness of
CLARANS in forming meaningful and robust clusters (Ng and Han 2002).

3.3 Hill Climbing clustering algorithm for three-dimensional shapes

The Hill Climbing algorithm was initially proposed by Friedman and Rubin (1967).
Such an algorithm motivated the development of algorithms designed to seek the
optimal value of a clustering criterion, restructuring existing partitions andmaintaining
the new partition only if it provides improvements. This algorithm can also be called
Hill Descending in cases where criteria minimization is required (Everitt et al. 2011).
The Hill Climbing method is considered a search algorithm and aims to find the
solution to a given problem by exploring a series of possible paths. The Hill Climbing
algorithm is a loop that repeats itself continuously in search of an optimal value of the
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clustering criterion. In this paper, this method was adapted to group three-dimensional
shapes.

The clustering criterion that we used for the Hill Climbing method, according to
Rousseeuw and Kaufman (1990), has the following equation, which can be used as a
criterion to measure the quality of the groups:

T D �
K∑

r�1

∑

i∈Gr

d(Xi, mr ). (5)

Here, Gr , r � 1, · · · , K , represents the groups formed containing each of the
observations Xi, i � 1, · · · , n, from the data set. The TD criterion represents total
dissimilarity, a quality measure used to evaluate how well the data points within each
cluster are represented by their respectivemr medoids. The lower the value of Eq. (5),
the better the clustering. The steps of the Hill Climbingmethod for three-dimensional
shapes are presented in Algorithm 4. Note that the update of mr takes place in steps
4 and 5.

Algorithm 4 Hill Climbing algorithm for three-dimensional shapes.

In his book, Everitt et al. (2011) described the Hill Climbing algorithm and the
clustering criteria used. Hill Climbing represents a simple and effective method for
optimization problems with small search spaces. However, it can be susceptible to
getting stuck in local optima and only sometimes finding the global optimum for com-
plex problems. Various enhancements and variations, such as Simulated Annealing
and Genetic Algorithms, can be adopted to overcome these limitations and improve
the search capabilities of the algorithm in future research. However, it is a motivation
to improve the algorithm via the Bagging procedure, as proposed in the following
sections.
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3.4 Bagging algorithm

Combining clustering algorithms with ensemble techniques is known as “clustering
ensembles”. The algorithms used in clustering ensembles have two stages and aim
to improve the performance of clustering algorithms by focusing on finding a global
optimal result. In the first stage, the results generated by individual clustering algo-
rithms are stored. In the second stage, a consensus function is applied to combine the
stored results and define a final clustering solution. In summary, ensemble techniques
are used to solve problems by combining several models or algorithms, whether for
classification or regression tasks, through adapted versions of the data and unifying
their outputs (Flach 2012). Clustering ensembles leverage this approach to enhance
the clustering process and achieve more robust and accurate results. Ensemble tech-
niques are not limited to clustering and can be applied in various machine learning
domains to improve model performance and generalization. Ensemble techniques can
mitigate overfitting and enhance overall predictive power by harnessing the collective
knowledge of multiple algorithms.

We used ensemble techniques to improve the quality of the clusters obtained by
the presented algorithm, specifically the Bagging method. The reason for applying
this method in cluster analysis is to reduce the variability of the results obtained from
partitioning algorithms. For example, it can stabilize the results of the CLARANS
method. The Bagging method, which stands for Bootstrap Aggregating (Breiman
1996), involves trainingmultiple instances of the samealgorithmondifferent subsets of
the data and then combining their outputs to create amore robust and stable final result.
By reducing the variance and mitigating the impact of random fluctuations, Bagging
can improve clustering performance and enhance the reliability of the obtained clusters
(Bühlmann 2012).

The Bagging method used in the present work, initially proposed by Dudoit and
Fridlyand (2003) to reduce the possible variability of the clusters formed by the PAM,
is called BagClust1. In short, this algorithm applies the PAM multiple times for each
bootstrap sample obtained from the data set, and the final cluster is then formed based
on the labels that obtained the most votes for each observation. Assis et al. (2021) used
the Bagging method, inspired by the work of Breiman (1996), to improve statistical
analysis data clustering in two-dimensional shapes partitioning different subsets of the
original data and using the voting approach as a consensus function to find the best
partition generated by clustering algorithms.

In this paper, we have used the Bagging method to improve the clustering of data-
oriented methods for statistical analysis of three-dimensional shapes. In this article,
theK-means,CLARANS orHill Climbingmethods are applied multiple times for each
bootstrap sample obtained from the data set of three-dimensional shapes, and the
final cluster is then formed based on the labels that receive the most votes for each
observation. The steps of the Bagging method are presented in Algorithm 5.
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Algorithm 5 Bagging algorithm adapted for the analysis of three-dimensional shapes.

Note that τ represents the permutations between the clustering labels of the set
bootstrap and τ b represents the permutation that maximizes the condition from step
6. Algorithm 5 uses b-th bootstrap samples as input data for the clustering algorithms.
The process is then repeated B times to obtain different sets of cluster labels for each
sample used as three-dimensional shape data. At the end of the repetitions, it is verified
which cluster label was most attributed to each object, and the label that received the
most votes is then chosen as the final one. Therefore, the final clustering is formed by
the winning labels for each object. In case of a tie, the label is chosen at random. For
this algorithm class, B � 20 was originally used, which can substantially improve
clustering accuracywhen applyingBagging for cluster analysis, as demonstrated in the
experiment conducted by Dudoit and Fridlyand (2003). However, in our experiments,
we chose to use B � 100.

Applying Bagging to cluster analysis aims to reduce variability in dataset parti-
tioning results and improve the robustness of clustering results. It achieves this by
averaging the effects of different bootstrap samples, which helps stabilize the clus-
tering process and reduce the impact of random fluctuations Dudoit and Fridlyand
(2003).

However, it is essential to acknowledge that the Baggingmethod may have a higher
computational cost, especially when dealing with large data sets, when training mul-
tiple instances of the same clustering algorithm on different bootstrap samples. To
address this issue in future research, one can use parallel computing or distributed
processing techniques (Lazarevic and Obradovic 2002) to speed up the execution of
the Bagging method or explore ensemble techniques that may offer similar advan-
tages with potentially lower computational costs, such as Random Subspace Method
(García-Pedrajas and Ortiz-Boyer 2008) or Random Patches Method (Louppe and
Geurts 2012).
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4 Numerical evaluation

Next, the methods K-means, CLARANS, and Hill Climbing for three-dimensional
shape clustering were compared to their Bagging versions.We conducted experiments
on simulated datasets. Additionally, two real datasets were analyzed. The Riemannian
distance given in Definition 4 was used as an appropriate dissimilarity measure for
the shape space. The analyzed algorithms were implemented in the R programming
language (R Core Team 2024). The experiments were conducted on an Aspire
A315-41 laptop, with a Ryzen 3 2200U processor, 2.50 GHz, 18GB of RAM,
64-bit system, and Windows 10 Home platform, using R version 4.4.0.

As for the values of the parameters used by the adapted algorithms, we decided
to use the values proposed/used by the authors in their original applications for each
application.We set the stop criterion forK-means to 0.0001,meaning that observations
will no longer switch groups once the criterion in Eq. (4) reaches the value 0.0001.
We also fixed the number of initializations and steps per initialization at 10. The
number of steps per initialization (iteration steps) searches for the best value of the
objective function, while number of initializations represents the number of random
initializations in each of these iteration steps. ForCLARANS, numlocalwas considered
equal to 2, and maxneighbor was set to 1.25% of K (N − K ), where N is the size of
the dataset, and K is the number of groups. The algorithm’s search process, Hill
Climbing, ends when it reaches the loop size. We chose these parameter settings to
ensure consistency and comparability with the original algorithms’ applications. In
our studies, the number of groups K is known priori for both the simulated and real
data sets. We use K as preprocessing in the context of partitional clustering. However,
when we do not know the predefined number K of groups, we can use hierarchical
clustering to find K (Everitt et al. 2001).

To compare the efficiency of the algorithms proposed in this article, we used the
Rand Index (RI) (Rand 1971) and Fowlkes-Mallows Index (FMI) (Fowlkes and Mal-
lows 1983) validation measures. These indexes measure the similarity between a
cluster provided by a clustering method and true clusters known a priori. They assume
values in the [0, 1] range, where 1 indicates perfect agreement between the clusters
generated by the algorithm and the known true clusters, while values close to 0 corre-
spond to an agreement found by chance. We opted not to explore other more complex
procedures, such as the Adjusted Rand Index (Hubert and Arabie 1985) or the Silhou-
ette Index (Rousseeuw 1987), as they produce measurements with negative output.
This limitation could pose a significant disadvantage to the procedures we adopted for
analyzing the data in our work.

Based on the RI and FMI results, we use the paired Wilcoxon test for simulation
experiments to evaluate whether the methods improve with the Bagging approach.
The null hypothesis was that there is no difference between the results of the indexes
without and with Bagging, and the alternative hypothesis was that the results of the
indexes without Bagging are inferior to the results with Bagging. In short, we want to
evaluatewhether therewas an improvement in the clusterings generated by themethods
combined with Bagging. A p-value less than or equal to the 5% significance level is
statistically significant. We chose B � 100 because the test results were consistent
across all algorithms for this value. The value of B � 100 is also commonly used in
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the literature and in experiments that use resampling bootstrap, as is the case with the
work of Assis et al. (2021) which also uses the Bagging approach in clustering context
and form analysis.

We calculate the Rand Index and the Fowlkes-Mallows Index for the best result of
each clustering algorithm, that is, for the best partition found by each clustering algo-
rithm. For each algorithm, B � 100 bootstrap replicas were generated and combined
to form the labels. These labels went through the voting process to generate the best
partition. The objective is to demonstrate the efficiency of using theBaggingmethod in
combination with clustering algorithms compared to their standalone versions without
it. Applying the Bagging, method can reduce the variability in the labeling processes’
clustering results and make the final clustering more robust and stable (Dudoit and
Fridlyand 2003).

In experiments with simulated data, the methods were evaluated through different
artificial data configurations using Monte Carlo experiments; more specifically, 50
replications were performed. Each method was run for each replication with different
random partitions until convergence, and the best result according to the objective
function was selected. We chose to work with 50Monte Carlo replicas to balance time
and precision because, for our experiments, we considered this number of replicas
sufficient to have adequate variability in the generated data.

We carried out a single execution of the methods to analyze the algorithms on real
data sets and subsequently calculated the results of interest based on this execution.We
also use a Relative Gain measure to evaluate the results of applying the methods to real
data sets and the validation indexes. We use this measure to compare the effectiveness
of clustering methods with and without Bagging, based on the values of the clusters
validation measures. The gain relative to the use of Bagging is defined by:

Relative Gain � 100 ∗ Validation IndexBagging − Validation Index

Validation Index
,

where Validation IndexBagging is the value of the RI or FMI when the algorithm uses
the Bagging method and Validation Index is the value for the RI or FMI when the
algorithm acts alone. This measure aims to verify whether there was a gain when
using the proposed algorithms combined with the Bagging method on real data sets.

Our comparison of the performance of the Bagging-based clustering algorithms
with their standalone counterparts will not only reveal any improvements in clustering
accuracy and quality but also underscore the effectiveness of the Bagging technique
in enhancing clustering performance. This analysis will further highlight the benefits
of combining Bagging with various clustering algorithms, instilling confidence in our
approach.

4.1 Simulation study results

Experiments were conducted in the landmark space based on the data simulated by
Vinué et al. (2014) to illustrate the performance of the algorithms. To represent the
average configurations, the experiments utilized two predefined geometric figures, a
cube, and a parallelepiped. The number of landmarks for each object was set to k � 8.
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Then, n1 objects corresponding to one cluster and n2 objects corresponding to
another cluster were simulated. The clusters 1 and 2 were defined by a multivariate
normal distributionwith a three-dimensionalmean vector of dimension 3k, represented
by the predefined cube for the cluster 1 and predefined parallelepiped for the cluster
2. And additionally, a covariance matrix �i, i � 1, 2 of dimension 3k × 3k.

The orientation of the cubes and parallelepipeds was defined arbitrarily. A rotation
was applied about the axis z according to a random angle generated by the function
rvm from the R package CircStats (Agostinelli and Agostinelli 2018). This function
generates pseudo-random numbers from a von Mises distribution. The Von Mises
distribution probability function density has the form

f (θ ;μ, κ) � 1

2π I0(κ)
exp{κ cos(θ − μ)},

where: I0(κ) is the modified Bessel function of order 0, μ is the mean direction and κ

measures the concentration of the angles around the mean direction (Best and Fisher
1979). In Fig. 1, the predefined cube and parallelepiped shapes are shown for the
landmark size k � 8. In Fig. 2, the parallelepiped is displayed after being rotated
according to a random angle generated by the rvm function. Different sample sizes
and dispersion scenarios were considered, including isotropy (similar dispersion in all
directions) and anisotropy (different dispersion in different directions).

In the isotropy scenario, the landmarks have approximately the same variability.
The covariance matrix � is a multiple of the identity matrix I, i.e., �i � σ 2

i I3k×3k
with different values for σi , i � 1, 2. The values for σ1 and σ2 were chosen so that the
data have low (σi � 3), average (σi � 6), and high (σi � 9) dispersion, respectively,
in each case. In the anisotropy scenario, the landmarks do not have approximately the
same variability. The covariance matrix in this case is represented by the result of the
Kronecker product between two operations involving the identity matrix, as follows:

Fig. 1 Parallelepiped and cube formed by 8 landmarks

123



I. Nascimento et al.

Fig. 2 Parallelepiped formed by
8 landmarks rotated by a random
angle

�i � σ 2
i

γ 2

(
1k1kT + (γ − 1)Ik×k

)
⊗

(
1m1mT + (γ − 1)Im×m

)
, i � 1, 2

where m represents the dimension. The values for σ1 and σ2 are the same as in the
isotropy scenario, and γ equals 4.

Each simulated dataset consists ofN objects divided into twogroups: one containing
cubes and the other containing parallelepipeds. We considered sample sizes of N �
100. The values of n1 and n2 were n1 � 50 and n2 � 50, respectively. We choose
these sample sizes to manage computational costs when applying Bagging on large
samples of 3D shapes. The landmarks were generated following a multivariate normal
distribution and transformed into configuration matrices to form the objects of each
cluster. Tables 1, 2 and 3 show the RI and FMI values obtained for the simulated
isotropy data, while Tables 4, 5 and 6 present the results of the simulated anisotropy
data. In all Tables, the symbols x̄ and sd represent the mean and standard deviations,
respectively, calculated for applying the algorithms to 50Monte Carlo replicas, where
each replica represents a set of distinct 3D shape data containing N � 100 objects.
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4.2 Results in the isotropy scenario

In Tables 1, 2, and 3, the results of applying the methods to data sets simulated under
isotropy for N � 100 are presented. Table 1 shows the results obtained for the K-
means and K-means Bagging methods. The combined use of the Bagging method
with the K-means method resulted in an improvement in the estimates of the results
measured by the indexes, according to the significance of the paired Wilcoxon test
for the significance level of 5%, only for the Fowlkes-Mallows in cases with high
dispersion. Furthermore, the results show no significance of Bagging for low and
medium dispersion cases.

Table 2 presents the results obtained for the CLARANS and CLARANS Bagging
methods. It is observed that the application of the Bagging method in the CLARANS
algorithm led to an improvement in the method clusterings according to the estimates
of both validation indexes and in all dispersion scenarios, according to the significance
of the paired Wilcoxon test at the 5% significance level. Table 3 presents the results
obtained for the Hill Climbing and Hill Climbing Bagging methods. According to
the Wilcoxon test, it is evident that there was an improvement in the quality of the
clusters with the Bagging approach, according to the estimates of both indexes, in all
dispersion scenarios considered.

Figure 3 presents the violin plots of the pairwise differences of the results between
Bagging and the original algorithm for the simulated isotropy data. The Fig 3a, c, and d
show the results for the Rand Index. As we can see in item (a), Bagging did not provide
major improvements to theK-meansmethod.However,we can see improvements in the
results of items (b)CLARANS and (c)Hill Climbing, especially under medium or high
dispersion. We can see a similar interpretation in the results for the Fowlkes-Mallows
Index presented in the Fig. 3b, e and f. Furthermore, note that there were cases inwhich
we obtained sd=0 for both validation measures, which seems to be a characteristic of
these simulated data. We can observe similar situations in the experiments of the work
Vinué et al. (2014), especially when σ is small.

As expected, in cases of isotropy, theBagging approach showed significant improve-
ments in clustering, except for some scenarios with low dispersion. In the context of
isotropic landmarks, the algorithms that benefited most from the use of Bagging were
CLARANS and Hill Climbing. Furthermore, as expected, as the dispersion between
the landmarks grew, the IR and FMI values decreased, given that the landmarks show
a large variability between them. This behavior was observed consistently across all
methods and scenarios analyzed in the experiments.

4.3 Results in the anisotropy scenario

In Tables 4, 5 and 6, we present the results obtained for the methods K-means,
CLARANS andHill Climbing, respectively, along with their Bagging versions, applied
to the simulated anisotropy data. Table 4 shows the results obtained for the K-means
and K-means Bagging methods. Based on the significance of the paired Wilcoxon
test at the 5% significance level, it is evident that the combination of Bagging did not
improve the clusters generated.
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For the case of anisotropy, Table 5 presents the results obtained for the methods
CLARANS and CLARANS Bagging and Table 6 presents the results obtained for the
Hill Climbing and Hill Climbing Bagging methods. Both tables show that applying
the Bagging method along with the algorithms improves the quality of the clusters
generated in most dispersion scenarios, based on the significance of the Wilcoxon
test at a 5% significance level. However, we observed that the results did not show
significance for cases with low dispersion.

Figure 4 presents violin plots of the pairwise differences of the results between
Bagging and the original algorithm for the simulated anisotropy data. The Fig. 4a,
c and e show the Rand Index results. As we can see in item (a), Bagging did not
provide improvements to the K-means method, as occurred in the isotropy scenario.
However, we can observe improvements in the results of items (b) CLARANS and
(c) Hill Climbing, especially under medium or high dispersion. We can see a similar
interpretation in the results of the Fowlkes-Mallows Index presented in Fig. 4b, d, and
f.

Furthermore, note that in this scenario, there are also cases where we obtain sd=0
for both validation measures. Note that, as in the case of isotropy, the methods did not
benefit from using Bagging in low-dispersion scenarios. The Baggingmethod did not
benefitK-means, while the other two algorithms benefited from theBagging approach.

The supplemental material includes hypothesis tests concerning the results from
simulations under various isotropy and anisotropy dispersion scenarios. These exper-
iments consider different values of B.

4.4 Macaques skull

In a study to evaluate the existence of differences in size and shape between the skulls of
male and femaleMacaca fascicularis, a sample of 18 individuals was obtained by Paul
O’Higgins (Hall York Medical School). This data set is composed of K � 2 groups,
one group being made up of 9 male macaques and the other group being made up of 9
females. A subset of k � 7 anatomical landmarks were selected from a total of k � 26
representing each skull (Dryden and Mardia 2016). The selected landmark names are
1-prosthion, 2-nasion, 3-bregma, 4-opisthion, 5-asterion, 6-interfrontomalare, and 7-
midpoint. An artist’s impression of a 3D representation of a skull with projections of
anatomical landmarks can be seen in Fig. 5. More details about the data are given by
Dryden and Mardia (1993).

Table 7 presents the results for clustering algorithms applied to the Macaques Skull
dataset. From these values, we can observe that using the Bagging method improves
the clustering quality for the Hill Climbing algorithm, considering both validation
indexes. The CLARANS algorithm shows an improvement in clustering according to
the FMI. However, the K-means algorithm does not exhibit performance gains, even
when the Bagging method is used for this dataset. This data set has only N � 18
objects; in this sense, it is easy for the clustering algorithms to find the best formation
of groups according to the dissimilarities between the objects, even when the Bagging
method is not used. The relative gains presented show that the joint operation of the
algorithms with the Bagging method can provide more efficiency in the quality of the
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Fig. 3 Paired violin plots of the results comparing bagging and the original algorithm for the simulated
isotropy data
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Fig. 4 Paired violin plots of the results comparing bagging and the original algorithm for the simulated
anisotropy data
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Fig. 5 3D representation of a macaque skull of the species Macaca fascicularis: a side view; b front view;
and c bottom view

Table 7 Results for the Macaque Skull dataset

Methods Rand index RI relative
gain

Fowlkes-mallows index FMI
relative
gainWithout

bagging
B=100 Without

bagging
B=100

K-means 0.4967 0.4967 0.00% 0.6214 0.6214 0.00%

CLARANS 0.5294 0.5294 0.00% 0.5527 0.6124 10.78%

Hill Climbing 0.4771 0.4967 4.11% 0.5025 0.6124 21.86%

clusters, except for the K-means method. Figure 6 displays the labels clustering the
Macaques Skull dataset into two clusters using the proposed methods. The axes of the
plot are the Principal Components (PCs). Each point on the plot represents the shape
of a single analysis object. According to Vinué et al. (2014), the closer two objects
are, the more similar they are in shape.

4.5 Brains

In an investigation to verify the difference between the shapes of adult human brains,
anatomical landmarks distributed across the surface of the cerebral cortex of healthy
adults were collected. The data set can be divided into K � 2 distinct groups: 43 right-
handed adults and 15 left-handed adults. k � 12 anatomical landmarks were identified
in each brain hemisphere, accounting for k � 24 landmarks per individual. Figure 7
presents three views of an individual’s left hemisphere indicating the approximate
locations of anatomical landmarks, totaling 12. More details about the dataset can be
found in Free et al. (2001).

Continuing with the applications of our approaches to different datasets already
present in the literature, we evaluate the effectiveness of our methods by applying
them directly to the Brains dataset and calculating the results of the Rand and Fowlkes-
Mallows indexes and the Relative Gain. Table 8 presents the results for the Brains
dataset. From these values, we can observe that using the Bagging method improves
the clustering quality for all algorithms. In all cases, the relative gain was greater than
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Fig. 6 Clusterings scatter plot for Macaques Skull dataset
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Fig. 7 Visualization of the locations of k � 12 anatomical landmarks of an individual’s left hemisphere

Table 8 Results for the Brains dataset

Methods Rand index RI relative
gain

Fowlkes-mallows index FMI
relative
gainWithout

bagging
B=100 Without

bagging
B=100

K-means 0.5208 0.5783 11.03% 0.5882 0.6824 16.00%

CLARANS 0.4967 0.5783 16.44% 0.5538 0.7282 31.13%

Hill Climbing 0.4937 0.5783 17.15% 0.5452 0.7139 30.94%

10%. In this sense, there is a benefit to using the Bagging approach. Figure 8 displays
the labels clustering the Brains dataset into two clusters using the proposed methods.
The plot axes are the principal components (PCs), and each point on the plot represents
the shape of a single object. The use of PCs to generate this type of plot is widespread
in cluster analysis.

5 Conclusions

The discussion about adapting new methods in Statistical Shape Analysis is essential
for the scientific community. This paper introduced the K-means, CLARANS, and
Hill Climbingmethods for clustering three-dimensional shapes and applied a Bagging
procedure to improve their performances. Experimental results with different datasets
demonstrated the effectiveness of the Bagging approach in this context, in some cases.
Unlike typical cluster analysis studies that only show the best result when running
the algorithm, we perform repeated applications of the algorithms with Monte Carlo
simulations. We calculated the mean and standard deviation for two cluster validation
measures: Rand Index (RI) and Fowlkes-Mallows Index (FMI). We also used the
paired Wilcoxon test to validate the effectiveness of the methods using the Bagging
approach in simulation experiments.

The findings indicate that the Bagging approach consistently improves clustering
quality, with the RI estimates exhibiting values and variability close to the FMI esti-
mates. We evaluate the algorithms with and without Bagging, considering B � 100
replicas of bootstrap.
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Fig. 8 Clusterings scatter plot for Brains dataset
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By applying Bagging to improve the clustering of algorithms on simulated datasets,
we found different scenarios for each algorithm. Based on the results obtained by the
pairedWilcoxon test, we observed that the use of Bagging did not significantly impact
the metric estimates for small values of σi in our simulated datasets.

For K-means, the use of Bagging resulted in group quality improvements only for
some cases, indicating that the benefits of Bagging for K-means can be limited and
may not provide consistent improvements across all data sets.

On the other hand, for CLARANS, using Bagging was generally advantageous as it
led to improved validationmeasure estimate values inmost cases. This improvement is
probably due to the small value used for the maxneighbor parameter, which, although
recommended by the authors, may limit the algorithm’s ability to explore the solution
space effectively. However, high values formaxneighbor would significantly increase
computational costs.

For Hill Climbing, Bagging also improved the metric estimates for the cases under
medium and high dispersion, suggesting that Hill Climbing can also benefit from the
diversity introduced by Bagging.

The results for the real data set depended on each data set’s specific characteristics.
Based on RI and FMI measurements, the real datasets’ clustering results suggest that
both algorithms have similar clustering effectiveness in some cases. The interpretation
of the results based on the Relative Gain measure suggests that the proposed methods
improved the quality of the clusters generated, especially for the Brains dataset.

Our work includes a comparative study of three different clustering methods in the
context of three-dimensional shapes, as only some studies of this type are present in the
literature. In summary, the impact of Bagging varies between algorithms and datasets.
WhileCLARANS andHill Climbing tend to benefit from Bagging,K-meansmay show
limited improvements. The BagClust1 method was initially proposed to improve the
clustering of the PAM method. For this reason, we think that the CLARANS method,
precisely because it is a variation of PAM, was the one that benefited most from this
Bagging approach as well asHill Climbing , which in the approach of the present work
focused on the clusters classifications formed by the same clustering criteria used in
the PAM algorithm.

In conclusion, the Bagging method applied to the proposed clustering algorithms
showed significant improvements in the precision and quality of the generated clusters,
particularly in cases of medium to high dispersion between landmarks. As a future
direction for this research, we suggest exploring other ensemble clustering methods,
such as Boosting, and comparing their performance with the results obtained using
Bagging when applied with clustering methods. Ultimately, we believe our paper can
serve as a valuable guide for further use of Bagging methods in shape clustering.
Applying ensemble techniques to shape analysis can pave the way for more accurate
and robust clustering results, benefiting various fields of study that rely on shape data.
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