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Abstract
The approach to analysing compositional data has been dominated by the use of
logratio transformations, to ensure exact subcompositional coherence and, in some
situations, exact isometry as well. A problem with this approach is that data zeros,
found inmost applications, have to be replaced to allow the logarithmic transformation.
An alternative new approach, called the ‘chiPower’ transformation, which allows data
zeros, is to combine the standardization inherent in the chi-square distance in corre-
spondence analysis, with the essential elements of the Box-Cox power transformation.
The chiPower transformation is justified because it defines between-sample distances
that tend to logratio distances for strictly positive data as the power parameter tends
to zero, and are then equivalent to transforming to logratios. For data with zeros, a
value of the power can be identified that brings the chiPower transformation as close
as possible to a logratio transformation, without having to substitute the zeros. Espe-
cially in the area of high-dimensional data, this alternative approach can present such
a high level of coherence and isometry as to be a valid approach to the analysis of com-
positional data. Furthermore, in a supervised learning context, if the compositional
variables serve as predictors of a response in a modelling framework, for example
generalized linear models, then the power can be used as a tuning parameter in opti-
mizing the accuracy of prediction through cross-validation. The chiPower-transformed
variables have a straightforward interpretation, since they are identified with single
compositional parts, not ratios.
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1 Introduction

Compositional data are non-negative data carrying relative, rather than absolute, infor-
mation. Often these data have a constant-sum constraint on each sample’s set of values,
for example, proportions summing to 1 or percentages summing to 100%.Such data are
found in many fields, notably biochemistry, geochemistry, ecology, linguistics, as well
as all the “omics" fields of genomics, microbiomics, transcriptomics, metabolomics,
etc.. In most cases, such data are originally observed as counts, abundances or intensi-
ties, where the totals in the samples, usually the row totals of the original data matrix,
are irrelevant. Consequently, the sample values can be divided by their respective totals
to give vectors, called compositions, with sums equal to 1. This operation of dividing
by the total is called closing, sometimes referred to as normalization.

It has long been recognized that such data need special statistical treatment, since the
values in the compositions would change if some compositional parts were excluded
and the data re-closed with respect to their new totals, giving so-called subcomposi-
tions. In reality, in almost all applications the observed compositions are themselves
subcompositions of a larger set of potentially observable parts, with proportional
values that would change if an extended set of parts were observed. For example, in
geochemistry, some studies use onlymajor oxide elements, others treat trace elements,
while others treat the full lithogeochemical spectrum of major, minor, trace and rare
elements. Thus, in this last case, the compositional proportions of the major oxides
would be different than those when the major oxides were studied alone. Similarly,
in the study of fatty acid compositions in biochemistry, the set of fatty acids identi-
fied and analysed in any study is always a subcomposition of a much larger set, not
only due to the focus of the research but also on the sophistication of the measuring
instruments (e.g., gas chromatographs). The same is true for microbiome studies, for
example, where the set of bacteria is never the full set of possibilities. One of the
few contexts where a full composition is observed is in daily time use in behavourial
studies, where all activities are recorded over a full 24-hour period—here the time
budget is compositionally complete since no more time can be added to a day.

To deal with this dependency of compositional data on the particular set of parts
that are included, the use of ratios of parts as the basis for statistical analysis was
proposed by John Aitchison (Aitchison 1982, 1986), who laid the foundation for a
field of statistics often referred to as compositional data analysis, or CoDA. Ratios
are invariant with respect to deleting parts from or adding parts to a composition, and
are thus described as being subcompositionally coherent (simply referred to here as
coherent), whereas any analysis of the original compositional data is incoherent. But
ratios are awkward to handle statistically – their distributions are generally skewed
and there is an asymmetry between the numerator and the denominator so that, for
example, the variance of A/B is not equal to the variance of B/A. The logarithmic
transformation reduces the skewness, the variance of log(A/B) equals the variance of
log(B/A), and either log(A/B) or log(B/A) can be used in linear modelling, since
they are just a change of sign. Because of the logarithmic transform, additive changes
in logratios are thus multiplicative changes in the ratios, as in logistic regression,
for example, where a logratio, the log-odds, is modelled as an additive model of
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explanatory variables, and additive effects back-transform to multiplicative effects on
the odds.

Hence, logarithms of ratios, called logratios, have become the preferred transfor-
mation for those following the tradition of Aitchison, and once this transformation
is made, regular statistical methods applicable to interval-scale data can continue as
before. This approach is exemplified by Grunsky et al. (2024), who present a com-
prehensive workflow, called GeoCoDA, for using logratio transformations in both
unsupervised and supervised learning in geochemistry, with accompanying R code.
For an in-depth review and reappraisal of Aitchison’s ideas and legacy in the 40 years
since his 1982 JRSS discussion paper (Aitchison 1982), see Greenacre et al. (2023).
Aitchison’s 1982 paper and legacy is further discussed by Coenders et al. (2023).

Coherence is themain advantage of the logratio approach, but its main disadvantage
is the problem of data zeros, as well as the interpretation of results involving logratios.
Data zeros need to be replaced before logratios can be computed, and there have
been many proposals to do so—for a review, see Lubbe et al. (2021). It may be that
alternative transformations, with simpler interpretations and natural handling of data
zeros, are close enough to this ideal property of coherence for all practical purposes. To
quantify this “closeness" to coherence, a possible measure of incoherence has already
been proposed by Greenacre (2011), using a concept from multidimensional scaling
called stress. In the present paper, an alternative measure will be used based on the
Procrustes correlation, a by-product of Procrustes analysis (see Appendix 2), since
this will unify the treatment of coherence and another concept called isometry.

Whereas coherence is a property of the compositional parts, isometry is a property
of the samples. If the logratio approach is taken as a favourable reference for CoDA,
then the sample structure using an alternative transformation can be checked against
the sample structure using the logratio transformation. Here the Procrustes correlation
will again be used to measure closeness to isometry, by which is meant closeness
to the logratio sample structure. This idea of using Procrustes analysis, inspired by
Krzanowski (1987), has already been used for logratio variable selection by Greenacre
(2019). Such diagnostic measures of similarity between part structures (coherence)
and between sample structures (isometry) allow practitioners to judge whether simpler
alternative transformations are close enough to coherence and isometry to allow valid
statistical analysis. As mentioned before, the benefit of these alternative transforma-
tions will be that they are easier to interpret and also cope naturally with zeros in the
data without the need for replacement or imputation.

The objective of this paper is to demonstrate how the intrinsic standardization
in correspondence analysis (Benzécri 1973; Greenacre 1984, 2016), combined with
a Box-Cox power transformation (Box and Cox 1964), can be successfully used
as an alternative to logratio transformations. This alternative is underpinned by the
fact that correspondence analysis’s chi-square distances computed on Box-Cox trans-
formed compositions tend to logratio distances as the power parameter tends to zero
(Greenacre 2009, 2010). This close theoretical connection holds for strictly positive
data, and clearly not for data that include zeros. However, in the presence of zeros, it
turns out that a power transformation can be identified that is optimal in approximat-
ing logratio distances (i.e., as close to isometry as possible), and the validity of the
resulting transformation can be additionally checked using the measure of coherence,
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for comparing various subcompositions to the full composition. Because the proposed
transformation combines the ideas of chi-square standardization (i.e., division of the
part values by the square roots of their respective mean values) and power transfor-
mation, the new transformation is termed the chiPower transformation, to be defined
explicitly in Sect. 2.3 below.

Moreover, if the compositional variables serve as independent variables in a super-
vised learning context, then the value of the power can be used as a tuning parameter
to optimize prediction of the response variable. In this particular situation isometry is
no longer important, but coherence is still an issue and will need to be investigated in
each case.

To illustrate this alternative approach, a “wide" compositional data set is first con-
sidered with almost 4000 compositional parts (microbial genes) (Martínez-Álvaro
et al. 2022; Greenacre et al. 2021). This is a typical data set in the burgeoning field of
“omics" research: genomics, microbiomics, metabolomics, proteomics, etc. A second
data matrix with much fewer parts but many more samples, i.e. a “narrow" but “long"
data set, is considered where there is a categorical response to be predicted from the
compositional variables. In the both applications the issue of data zeros is considered.

2 Material andmethods

2.1 Data sets “Rabbits" and“Crohn"

To demonstrate the suitability of the chiPower approach proposed here, two data sets
are considered:

1. Data set “Rabbits", used by Greenacre et al. (2021): a “wide" data set of counts of
J = 3937 microbial genes observed on a sample of I = 89 rabbits. The advantage
of this data set is that it has no zero values, so logratio transformations are valid
on all the data. By simulating a large percentage of small counts to be zeros, the
behaviour of the chiPower transformation, which can handle zero values without
any problem, can be studied in comparison with the original logratio-transformed
data.

2. Data set “Crohn", used by Calle et al. (2011) and available in the R package
coda4microbiome (Calle et al. 2023). This is a “narrow" matrix of counts of
bacterial species aggregated into J = 48 genera on I = 975 human samples. In
addition, each sample has been classified as having the digestive ailment called
Crohn’s disease (662 samples) or not (313 samples). A curiosity of this data set
is that it has been published in two different versions, with the same name: first,
the original one with many data zeros (totalling 13474, i.e., 28.8% of the data set),
in the original selbal R package—this version was analysed by Rivera-Pinto
et al. (2018) (see Supplementary Material Section S1), who explicitly state that
the “replacement of zeros by positive numbers is performed under the assumption
that the observed zeros represent rounded zeros"; and second, a modified version
published in the coda4microbiome package, with the same data set name
Crohn, where the value of 1 has been added to all the counts, no doubt to avoid
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the zero problem when computing logratios. As of the date of writing, no warning
or explanation in the coda4microbiome package is given that the data set has
been changed in this way, where 975 × 48 = 46800 counts have effectively been
added to the original data set.
Nevertheless, the advantages of considering both versions of these data are two-

fold. First, thanks to the large number of samples, amachine-learning approach can
be applied to both versions for predicting the disease, where cross-validation can
be implemented to estimate prediction accuracy; and second, the original data set,
without zero replacement, can be used to show how well the chiPower approach,
applied to the original datawith zeros, compares to the logratio approach applied to
the modified data set without zeros. Since other papers may have used the original
Crohn data handling the zeros in different ways, the issue of the effect of these
zero replacement strategies on the data variance is dealt with in Supplementary
Material Section S1. The two versions of the datawill be referred to as “the original
Crohn data, with zeros" and “the modified Crohn data, without zeros".

2.2 Logratio transformations

Because thenewchiPower transformationwill be comparedwith the logratio approach,
a short summary of the most relevant logratio transformations is given here (Aitchison
1986). SupposeX is an I× J samples-by-parts (closed) compositional datamatrix, and
[x1 x2 · · · xJ ] is a general row ofX, that is, a J -part composition, where

∑J
j=1 x j = 1.

A specific row, for example the i-th row of X, is denoted [xi1 xi2 · · · xi J ].
The basic logratio transformation is the pairwise logratio transformation, denoted

by PLR, of two parts j and j ′

PLR( j, j ′) = log(x j/x j ′) (1)

There are J (J − 1)/2 unique PLRs, but only J − 1 linearly independent ones are
needed to generate all the others by linear combinations (Greenacre 2018). Thus, for
I compositional samples, the I × J (J − 1)/2 matrix of PLRs has rank J − 1.

A special case of PLRs are the additive logratios (ALRs), where the denominator
part (also called the reference part, ref) is fixed.

ALR( j |ref) = log(x j/xref), j = 1, . . . , J , j �= ref (2)

There are J choices for the reference part, each of which gives J − 1 ALRs. Any
I × (J − 1) data matrix of ALRs has rank J − 1, and the choice of the reference part
is determined either (i) by domain knowledge, or (ii) based on a statistical criterion
such as the one that gives a transformed matrix closest to being isometric, or (iii)
the one with lowest variance of its log-transform (Greenacre et al. 2021). In the last
case, if the variance of log(xref) is low, i.e. log(xref) is nearly constant, then the ALR
log(x j/xref) = log(x j ) − log(xref) is an approximate constant shift from the log(x j )
values themselves, in which case the ALRs can be more easily interpreted as close to
the logarithm of the numerator parts.
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The centered logratio (CLR) transformation is the log-transformof eachpart divided
by the geometric mean of all the parts:

CLR( j) = log(x j/(x1x2 · · · xJ )1/J ), j = 1, . . . , J

There is only one set of J CLRs and the j-th one is the average of all the PLRs
log(x j/x j ′), for j ′ = 1, 2, . . . , J , one of which, log(x j/x j ), is zero. The I × J
data matrix of CLRs also has rank J − 1, due to a linear relationship amongst them
(they sum to 0). They are generally not used as variables representing the individual
parts, although it is tempting to do so, but rather as representing all the PLRs by their
differences: PLR( j, j ′) = CLR( j) − CLR( j ′). For example, to construct the sample
logratio geometry, by which is meant the Euclidean distance structure of the samples
with respect to all PLRs, it is not necessary to work with the I × J (J − 1)/2 matrix
of all PLRs, but just with the I × J matrix of CLRs (Aitchison and Greenacre 2002).
The logratio distances between samples using the CLRs are identical to those using
all the PLRs (Greenacre 2018, 2021).

Transforming by logratios takes the compositions inside the simplex out into real
vector space, where regular interval-scale statistical analysis, both univariate, bivariate
and multivariate, can be performed. The problem, however, is with data zeros, which
need replacement before such transformations can be made.

2.3 The chiPower transformation: chi-square standardization, with preliminary
power transformation

In correspondence analysis (CA), usually applied to a matrix of counts, the rows
are first divided out by their totals to get so-called row profiles, synonymous with
compositions—see, for example, Greenacre (2016). In CoDA terminology, CA auto-
matically closes the rows, and—if the analysis is considered column-wise – it
symmetrically closes the columns to get column profiles. In a closed compositional
data matrix, the compositions in the rows are already profiles, so closing in CA does
not change them. The row profiles in CA are weighted proportionally to the original
marginal row totals, but in the case of compositions these marginal sums are all equal,
so there is uniform weighting on the rows. Finally, distances between profiles in CA
are chi-square distances, which are Euclidean distances after standardizing each com-
positional value x j by dividing by the square root of its expected value, the column
(part) mean x̄ j : x j/

√
x̄ j—this is called the chi-square standardization (see, for exam-

ple, Greenacre and Primicerio (2010), chapter 4). In the chiPower transformation, the
x j will be raised to power λ and closed, again giving compositions (a standard CoDA
operation called “powering” byAitchison (1986)), and then divided by the square roots
of their respective column means. Notice that, since the divisors

√
x̄ j are less than 1,

the chi-square standardization takes the compositions outside the regular simplex, into
a larger irregular simplex.
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For the present purpose, the Box-Cox power transformation is defined for positive
x as:

f (x | λ) =
{

1
λ

(
xλ − 1

)
if λ > 0

log(x) if λ = 0
(3)

(negative values of λ are not considered, and only values 0 < λ ≤ 1 are of present
interest).Whereas the limiting result implicit in (3), that is, f (x | λ) → log(x) as λ →
0, is only valid for x > 0, the power transformation itself for λ > 0 is valid for
nonnegative x , i.e. x ≥ 0, which is the way it will be used in the present approach. The
scale factor 1

λ
corrects for the shrinking variance in the transformed (positive) data

as λ decreases. As shown in Appendix 1, if one wants the chiPower transformation
to converge directly to the CLR transform, then a scale factor of

√
J needs to be

introduced and the −1 of the Box-Cox transform needs to be retained.
The chiPower transformation is defined algorithmically in the following steps,

where the determination of the power λ will be dealt with after the definition.
The chiPower transformation

1. For a given λ, power transform the compositional data matrix X to obtain X[λ] =[
xλ
i j

]
, where 0 < λ ≤ 1 (so the possibility of no power transformation is included,

when λ = 1).
2. Close the rows of X[λ] to obtain another matrix of compositions, Y[λ]
3. Compute the vector of column means ȳ[λ] = [

ȳ[λ]1 ȳ[λ]2 · · · ȳ[λ]J
]
of Y[λ].

4. Divide the columns of the closed Y[λ] by the square roots of their respective
column means (i.e., the chi-square standardization) and apply the Box-Cox style
of transformation as follows:

zi j [λ] = 1

λ

(√
J

yi j [λ]
√
ȳ[λ] j

− 1
)

(4)

The inclusion of the scale factor
√
J is related to the convergence to the CLR

transformation and is shown in Appendix 1.
5. Z[λ] = [

zi j [λ]
]
is the chiPower-transformed data matrix with power λ. Euclidean

distances between the rows ofZ[λ] are called chiPower distances between the rows
of X, which for λ = 1 are the chi-square distances in a regular CA context. The
set of all Euclidean distances between rows of Z[λ], i.e. the Euclidean geometry of
chiPower-transformed data, defines the chiPower geometry of the original matrix
X, corresponding to the power λ.

As shown in Appendix 1, the chiPower transformation converges in the limit, as λ

tends to 0, to the CLRs that have been negatively shifted by the column means of Z[λ].
This can be corrected to give actual CLRs in the limit, if required, by simply adding
the column means of Z[λ]. This is done by default in the R function chiPower(),
provided as online supplementary material.

The way the power λ is chosen will depend on the statistical learning objective.
In unsupervised learning, the power can be chosen to make the chiPower geometry
of the samples be as close as possible to their logratio geometry (see Sect. 2.4).
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This means that methods such as PCA and clustering of the samples can be validly
performed on the chiPower-transformed data, as an alternative to logratio-transformed
data. This alternative is particularly useful for compositional data with zeros, since no
zero replacement is necessary, but it can also be useful for strictly positive data, since
the interpretation is simplified, in terms of parts, not logratios.

In supervised learning where the compositions serve as predictors of a response, λ
will be chosen to optimize model fit or predictivity, and if the sample is of sufficient
size, the power can be chosen by cross-validation. In this case, not all the above steps
are necessary—for example, steps 3 and 4 only change the scales of the predictors
linearly and this does not affect their roles in modelling. In supervised learning where
the compositions serve as responses, however, not only would closeness to logratio
geometry be important, but also the predictability of the compositions by the explana-
tory variables—in this case a compromise would perhaps be desirable in choosing λ

as a compromise between these competing objectives.
The idea to apply the Box-Cox style of power transformation to compositional data

is not new—see Aitchison (1986), Rayens and Srinivasan (1991), Tsagris et al. (2016).
Greenacre (2010) showed the connection between Box-Cox transformation prior to
performing CA and logratio analysis (LRA, i.e. the PCA of CLR-transformed data).
In the present work, however, we use this idea in a much wider context of analysing
compositional data, both unsupervised and supervised. A recent paper by Erb (2023)
also looks at estimating the power parameter of power-transformed compositions,
considering this as a shrinkage problem, even proposing to estimate a different power
for each sample. Estimating a different power for each compositional part is a further
possibility, since each part has a different level of skewness.

Furthermore, Section S3 of the SupplementaryMaterial shows howCA applied to a
closed power-transformed datamatrix, where the samples (rows) are equallyweighted,
reduces to a PCA of the chiPower-transformed data. The only difference between the
two analyses is the treatment of the scalar factor 1

λ
, which is eliminated in CA and so

has to be re-introduced into the final CA results.

2.4 Measuring closeness to isometry

Isometric means “the same metric", that is the same distance structure in multivariate
space. In the present context, the term applies to the comparison with the sample
geometry based on logratio distances, which are the Euclidean distances computed on
the CLRs—see Section 2.2. Notice that the specific definition of logratio distance by
Greenacre (2018, 2021) allocates weights to both the samples and the compositional
parts, where equal weights are used in the present work for both rows and columns.

Hence, on the one hand, consider the logratio distances between all the samples as
the reference, where any data zeros have to be replaced (see Section 2.6), and, on the
other hand, the distances between the same samples based on chiPower-transformed
data, where no zero-replacement is required. The closeness of the sample geometry
of chiPower-transformed data to the sample logratio geometry can be measured by
the Procrustes correlation between the respective sample configurations (Appendix 2
explains how this correlation is obtained). A convenient way to do this is to apply
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PCA to the CLR-transformed data and to the chiPower-transformed data respectively,
obtain the complete set of principal coordinates in each case, and then fit these two
coordinate matrices to each other by Procrustes analysis. If the Procrustes correlation
is close to 1, this means that the transformation is close to being isometric (always
with respect to the logratio geometry, taken as the reference.)

Isometry is important in unsupervised learning, when the structure of the composi-
tional data is being explored by methods such as dimension reduction and clustering,
in which case it will be favourable to be close to the logratio geometry, which is known
to be coherent. It can also be important in supervised learning when the compositions
serve as responses to additional explanatory variables, since it is the complete com-
positional structure that is being modelled. This case is not considered in this paper,
but see Yoo et al. (2022) for an application.

2.5 Measuring closeness to coherence

Whereas isometry is a property of the samples, coherence is a property of the composi-
tional parts, usually the columns of the data matrix. Using PLRs and their special case,
the ALRs, is a perfectly coherent strategy: for example, PLRs involving pairs of parts
A, B and C are not affected if additional parts D and E are added to the composition.

There is nevertheless a relationship between the two concepts of coherence (of
the parts) and isometry (of the samples). In Appendix 1, explicit convergence of
the chiPower transformatio to the CLR transformation is shown. It follows that,
since the logratio transformation is perfectly coherent, a transformation such as the
chiPower is converging to isometry and coherence at the same time, as the power of
the transformation tends to zero.

Notwithstanding this relationship, it is still useful to quantify the level of coherence
in a particular application by comparing results for parts in subcompositions and the
same parts in the “full" compositions of the given data. In each case the parts have been
transformed in the same way (in this case, using the same chiPower transformation)
but computed on different compositions due to the closing operation. This comparison
does not involve the logratio transformation at all—it is confined to the chiPower
transformation, or any other transformation that one wants to check for coherence. It
is also useful to see how the lack of coherence (i.e., incoherence) is affected by the size
of the subcompositions, since the subcompositional values will change more due to
closingwhen there are less parts in the subcomposition than in larger subcompositions.
The type of results to compare depends on the research problem, because coherence
has a different meaning if the statistical analysis is unsupervised or supervised.

In CoDA there is the symmetric concept of the logratio geometry of the parts:
logratios can be computed for each part pairwise across the samples (i.e., I (I − 1)/2
logratios), and their structure is related in the same way to that of the CLRs of the
parts (Aitchison and Greenacre 2002; Greenacre 2021). There is more than one way
to quantify the geometry of the parts in the chiPower approach. One way is to simply
transpose the data matrix and apply the chiPower transformation as before, in other
words chiPower the columns (parts). Another way, which is adopted here, is to use
the geometry of the column principal coordinates in the PCA of the chiPowered data.
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This defines a distance geometry on the parts which is equivalent to the covariance
structure of the transformed parts (Greenacre et al. 2022). For unsupervised learning,
this chiPower geometry of the transformed compositional parts in many different
random subcompositions will be compared to the chiPower geometry of the same
parts, transformed in the same way, in the full compositional data matrix, again using
the Procrustes correlation. So this is a similar measure as the one of isometry between
the sample geometries, but between the same parts in the subcomposition and the
composition. In other words, the coherence check is being made by measuring the
isometry between the subset of parts.

The algorithm for assessing the coherence can be summarized in the following
steps.

1. Transform the compositional data matrix X using chiPower, for the power λ of
interest, resulting in Z[λ]

2. Perform the PCA of Z[λ] using the SVD I− 1
2Z[λ] = UDφVT (see Supplementary

Material Section S3).
3. The part geometry of all the parts is defined by the coordinates G = VDφ .
4. For any subcompositionXs, perform the same chiPower transform to obtain Zs[λ].
5. Perform the PCA on Zs[λ] (steps 2. and 3.) and define the geometry of the sub-

compositional parts from the results of this PCA in the same way as before, i.e.,
coordinates Gs.

6. Compute the Procrustes correlation between Gs and the subset of rows of G
corresponding to the same subset of parts in the subcomposition.

The above is repeated for many subcompositions of different sizes.
The previous approach by Greenacre (2009) to measure incoherence used a stress

measure common in multidimensional scaling (Borg and Groenen 2010), applied to
the distances between parts. This approach used a “worst-case scenario" of two-part
subcompositions, whichmight be acceptable for small compositions but is too extreme
and unrealistic for larger ones that are generally the case in practice. Here it is preferred
to use a range of subcompositions in the range of 10–90% of the total number of parts,
so that the lack of coherence can also be assessed for subcompositions of different
sizes.

For supervised learning when compositions serve as predictors, this approach of
comparing geometries of subsets of parts is no longer important, and coherence would
rather be assessed by seeing how the model parameter estimates vary for the sub-
compositional parts compared to their compositional counterparts, all with the same
chiPower transformation.

There are clearly verymany possibilities to choose subsets of parts in order to create
subcompositions and check for incoherence. Random subsets of parts can be selected,
or it may be that subcompositions in particular applied contexts tend to include the
more frequent partsmore often than the less frequent ones. For example, inmicrobiome
research, the more frequent bacteria would always be present across different studies,
whereas they would vary in the rarer bacteria that they include. Similarly, in studies of
fatty acid compositions, it is again the rarer fatty acids that might not appear in some
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studies, depending on the sophistication of the laboratory equipment used in the data
collection.

2.6 The problem of data zeros

With the chiPower transformation and measures of closeness to isometry and coher-
ence in place, attention is now turned to compositional data with zeros. The problem
of zeros has been called the “Achilles heel" of compositional data analysis (Greenacre
2021), since data have to be strictly positive to be able to compute logratios. Because
zeros are usually present in compositional data, and often in large quantities, a num-
ber of zero replacement strategies have been developed—see Lubbe et al. (2021) for a
review. The presence of many zeros can cause problems in the analysis (te Beest et al.
2021).

Using the chiPower transformation provides an approach to avoid zero replacement,
but as the power decreases, an incompatibility with logratios will develop. This is
because the transformation of the original zeros leads to very large negative numbers
as lambda tends to 0 and the transformed zeros approachminus infinity, with a resultant
degradation of the metric properties of the transformed data. In the present approach,
for data with zeros, the power of the chiPower transformation will be identified that
leads to the transformed data having maximum isometry with the sample logratio
geometry.However, zeroswill have to be replaced to enable computations of theCLRs,
which define the logratio geometry, so there is a slight disparity in the comparison
between the chiPower-transformed data that have zeros and the logratio-transformed
data that have zeros replaced. See Supplementary Material Section S1 for further
discussion of this issue.

3 Results

3.1 Unsupervised learning: strictly positive compositions

The compositional data set “Rabbits" (89 samples, 3937 genes) has strictly positive
values, which is rather atypical, but it is useful here to illustrate the good properties
of the chiPower transformation. The next subsection treats the case with data zeros.

Logratio analysis (LRA) is first performed on the data and the configuration of
the 89 samples established in 88-dimensional multivariate space, one less than the
number of samples for this wide data set. This is PCA applied to the CLRs. Then PCA
is performed on the chiPower-transformed data, with powers λ descending from 1 in
small steps to almost 0, where “almost" is λ = 0.0001. These analyses are effectively
all CAs on closed power-transformed data, as explained in Supplementary Material
Section S3.

Figure 1A shows a plot of the Procrustes correlations between the logratio geometry
of the 89 samples and corresponding chiPower-transformed geometry, showing the
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Fig. 1 A The Procrustes correlations for different powers of the chiPower transformation, measuring prox-
imity to isometry between the exact logratio geometry and the geometry of chiPower-transformed data,
showing the convergence to exact isometry close to 0. B For the power equal to 0.0001, the chiPower
distances are practically identical to the logratio distances. In the limit as the power tends to 0, they are
identical

convergence to 1 as λ tends to 0. In each case along the curve the 88-dimensional logra-
tio geometry is compared to the 88-dimensional chiPower geometry. Values indicated
are for square root, fourth root and ten thousandth root (λ = 0.0001) transformations.

Figure 1B plots the 89 × 88/2 = 3916 logratio distances between pairs of sample
points in the full 88-dimensional space against the corresponding chiPower distances
for the λ = 0.0001 case, where the almost exact isometry is further shown.

To further illustrate the theoretical convergence of these geometries, Figure2 shows
the two-dimensional results of the CA for λ =1 (original CA), 0.5 (CA on square-
root data), 0.0001 (CA on ten thousandth-root data), and finally LRA. As shown in
Supplementary Material S3, these CAs are identical to PCAs on chiPowered data.
Figure2C and D are identical in their coordinates up to four decimals—the maximum
absolute difference over all coordinate values is 0.00006. The three groups of points
correspond to three different laboratories which performed the testing, where it can
be seen that one was quite different from the other two.

3.2 Unsupervised learning: compositions with zeros

Here both the ‘Rabbits’ and the ‘Crohn’ data sets will be used to demonstrate how
the chiPower transform can handle data zeros. To simulate a situation where zeros are
present in the ‘Rabbits’ data, a count of 20 was temporarily regarded as the detection
limit and all values less than 20 in the original matrix of microbial gene counts were set
to 0. This resulted in a datamatrixwith 25035 zeros,which is 7.1%of the 89×3937data
matrix. This matrix was then closed to compositions, and analysed in a similar way as
before. In order to compare the results using the chiPower and logratio transformations,
the zeros were imputed using the function cmultRepl in the zCompositions R
package (Palarea-Albaladejo andMartin-Fernandez 2015), which is one of the popular
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Fig. 2 Using the rabbits data set, three CAs, i.e. PCAs of chiPower-transformed compositions, with decreas-
ing powers, and LRA analysis as the limit solution. A The regular CA with power 1. B CA with power
0.5 (square root). C CA with power 0.0001. D Logratio analysis (LRA). C and D are identical in their
coordinate values to the fourth decimal. The ellipses are 95% bootstrap confidence regions for the means
of the three groups of points corresponding to three testing laboratories

ways of zero replacement. The chiPower-transformedgeometry of the data (with zeros)
was then compared to the logratio geometry of the data matrix with zeros replaced.

The chiPower distances cannot reproduce exactly the logratio distances, because
they are operating on slightly different data matrices, and thus convergence to logratio
distances cannot be attained. However, the geometries can come very close to each
other depending on the power transformation selected. Figure3A shows that, as the
power decreases, an optimal value of the Procrustes correlation is reached, equal to
0.997, at λ = 0.22, which is close to a fourth-root transformation. The concordance
of the chiPower and logratio distances can now be seen in Fig. 3B.

Since the chiPower-transformed data with λ = 0.22 are close to isometry, it is
expected that they will also be close to coherence. This is assessed by taking many
random subcompositions, as described in Section 2.5, each of which is reclosed and
its subcompositional part geometry compared with that of the corresponding subset of
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Fig. 3 A The Procrustes correlations, measuring proximity to isometry between the exact logratio geometry
on the original data and the chiPower geometry with different powers, using the data with simulated zeros.
The correlation is at an optimum value of 0.997 for a power of 0.22. B In the respective 88-dimensional
spaces, the chiPower distances, with λ = 0.22, are quite similar to the logratio distances

parts in the full composition. Once again, Procrustes correlation is used to measure the
degree of coherence. To contrast this with doing no change at all to the compositional
data, the raw untransformed compositions were first assessed for isometry, which
means that the regular Euclidean distance geometry on the raw compositions was
correlated with the logratio geometry. The Procrustes correlation was computed as
0.891, and so it is expected that the coherence of the untransformed compositions will
be worse than the quasi-isometric chiPower-transformed compositions with λ = 0.22.
This is indeed how it turns out in the subcompositional coherence exercise, which does
not involve a comparison with logratio-transformed data, shown in Fig. 4.

The same exercise was performed for the Crohn data set, and similarly successful
results were obtained, given in Supplementary Material Section S5, where the optimal
value of the power was λ = 0.25. The result turns out to be dependent on the zero
replacement. Supplementary Material Section S1 further investigates the effect of
using different zero replacements, for example adding 0.5 to the original data, or
simply substituting the zeros by 0.5.

3.3 Supervised learning: use of power transformations

Compositions can serve as predictors of a response, or can form amultivariate response
to other explanatory variables (e.g., Yoo et al. (2022)). In the latter case, isometry will
still be relevant, since this affects the total compositional variance to be explained.
Attention is restricted here to the former case, where the issue of isometry is no longer
relevant but coherence certainly is, since the effect sizes and interpretation of the
predictors should not depend on the particular (sub)composition they are part of—see
Section 3.4. Since there are many parts in a composition, the question of variable
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Fig. 4 Deviations from exact coherence (Procrustes correlation = 1) for 1000 random subcompositions of
sizes 10% up to 90% of the 3937-part Rabbits data with simulated zeros. For each size of subcomposition, a
boxplot of the Procrustes correlations is shown, for the untransformed raw compositions and for chiPowered
compositions. A The lower sequence of boxplots is for the raw compositions, where no transformation is
made at all, and deviations from coherence are much larger, especially for subcompositions with less parts.
The upper sequence is for chiPower-transformed data, with power = 0.22 (the value obtained from the
exercise on isometry), where deviations are very small, even in the smaller subcompositions. B The same
boxplots as the upper sequence in A., i.e. the chiPowered data, with expanded vertical scale

selection is first addressed in this section, comparing the predictors that are either
logratio- or chiPower-transformed.

The Crohn data set, with 975 samples and 48 bacteria, is used for this purpose
since it has a dichotomous response y = Crohn (patient with Crohn’s disease), or y =
no (no disease), to be predicted from the compositions. Logistic regression models
for predicting Crohn, using PLRs, have already been fitted in two different ways, by
Coenders andGreenacre (2022) andCalle et al. (2023).Coenders andGreenacre (2022)
proposed three forward stepwise algorithms for choosing PLRs, the first one being
unrestricted choice from all possible PLRs, of which there are 1

2 × 48 × 47 = 1128.
The available stopping criteria options were the Akaike information criterion (AIC),
the stronger Bayesian information criterion (BIC) and the even stronger penalty on
the number of variables in the model using the Bonferroni rule. This approach is
implemented in the function STEPR() in the R package easyCODA (Greenacre
2018). For the present application, the BIC stopping criterion will be used.

Using a different approach, Calle et al. (2023) includes all the PLRs and imposes
ElasticNet penalization on the predictors (Hastie et al. 2009), as implemented in the
package coda4microbiome.

The above two approaches will be contrasted with simply using the power-
transformed compositions, where the power is used as a tuning parameter to optimize
the prediction. This third option using chiPower is the only one of the three that uses
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Table 1 Results from three alternative ways of predicting Crohn’s disease, based on different transfor-
mations of the compositional data: the first two using logratios on the modified version of the data set
(with 1 added to all cells, from the coda4microbiome package), and the last using an optimized power
transformation (power = 0.28) of the compositional parts from the original data set, with zeros

Full data set Cross-validation
Method PLRs Parts AUC Acc’y Sens’y Spec’y AUC Acc’y

Forward stepwise 11 19 0.859 82.2% 0.826 0.704 0.831 79.2%

ElasticNet penalty 27 24 0.848 80.2% NA NA 0.824 NA

Power (λ = 0.28) – 14 0.859 81.6% 0.819 0.697 0.826 78.6%

Different variable selection strategies are used: ElasticNet penalization, and the Bayesian information
criterion (BIC) for the other two. (PLRs: the number of selected pairwise logratios. Parts: the number
of parts included in the model. AUC: area under curve. Acc’y: accuracy (percent of correct predictions).
Sens’y: sensitivity. Spec’y: specificity. NA: result not available in Calle et al. (2023))

the original version of the data with zeros. Notice that the chi-square standardization
as well as the multiplication by 1

λ
and subtraction of 1 in the Box-Cox transformation

(3) are not necessary here, as such scale changes do not affect the predictions, just the
values of the regression coefficients. Since Calle et al. (2023) uses the area under curve
as a measure of prediction, and optimizes the variable selection using ten-fold cross-
validation, the same approach is adopted here, to ensure comparability. The results are
summarized in Table 1.

The performance of all three is similar, but the simpler power transformation of the
compositions needs only 14 parts. The ElasticNet approach (Calle et al. 2023) chooses
27 logratios, involving 24 parts, while the forward stepwise approach (Coenders and
Greenacre 2022) selects 11 logratios, involving 19 parts. Ten-fold cross-validation,
using the same folds, evaluates the performance of each approach. Since the cross-
validation AUC of the ElasticNet approach is an average of the AUCs of the ten folds,
the mean AUC is also calculated for the other two methods. The power that is optimal
in this supervised learning problem is λ = 0.28, slightly higher than the power of 0.25
that was optimal in the unsupervised objective reported in Supplementary Material
Sections S4 and S5. The question of coherence and interpretation of the results of this
third approach is dealt with in Section 3.4.

3.4 Coherence of themodelling with power-transformed compositions

In the previous subsection, a small subset of 14 parts, power-transformed, was iden-
tified as good predictors of the Crohn disease response. In this subsection the results
and their interpretation are explained and it is investigated how the results would have
changed if a subcomposition had been observed. Such a subcompositionwould include
the selected 14 parts, but would have different compositional values due to the closing
of the subcomposition. For predictors in the form of PLRs or ALRs, their exact coher-
ence ensures that the results remain the same—that is, a result for any subcomposition
would be identical if any number of compositional parts were eliminated (or added)
to the data set and the data reclosed to sum to 1. But for other transformations such as
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Fig. 5 Scatterplot of
standardized regression
coefficients from models of same
14 predictors, fitted to data from
the full 48-part composition, and
to data from the 14-part
re-closed subcomposition. The
aspect ratio is 1 and the diagonal
line at 45 degrees represents
exact concordance

the present power-transformed one, a check is necessary on the extent of the lack of
coherence in the results.

The first check is to isolate the 14 parts in a subcomposition, reclose, and then repeat
the model. In order to compare the regression coefficients, because of changes of scale
in the predictors, it is preferable to standardize the predictors in each case (i.e., mean
0, variance 1) in order to obtain standardized regression coefficients. This will also
make the results invariant to performing a simple power transform or the chiPower
transform. Figure5 shows the coefficients to be almost in the sameorder and practically
the same in value, whether the predictors are part of the original composition or in
the subcomposition. This concordance between the two sets of coefficients shows that
the power (or chiPower) transformation is very close to coherence in the sense of
the modelling. Compared to the optimized results of Table 1, the AUC and accuracy,
when the model is fitted to the closed 14-part subcomposition, both drop slightly from
0.859 to 0.847 and from 81.6 to 79.7%, respectively. This loss of predictivity might
well be improved if the power was tuned specifically to optimizing coherence in the
modelling, as opposed to the unsupervised objective of optimizing the isometry with
respect to the sample logratio geometry.

To further investigate the coherence issue in the modelling, random subcomposi-
tions involving the same 14 parts but also additional parts, randomly selected and of
random extents (from 1 to 33 additional parts), are added to the data set. For each
of these, the subcomposition is closed and then power-transformed using λ = 0.28
(Table 1), and the logistic regression repeated using the 14 parts as predictors. Figure6
shows the results for 1000 random subcompositions.

The original standardized regression coefficients are shown as vertical black lines,
in the centre of a 95% confidence interval in light blue or pink, according to the margin
of error ±1.96 SE for each coefficient. The estimated coefficients in the subcompo-
sitions are shown as vertical blue or red lines (for negative and positive coefficients,
respectively), where it can be seen that they all span the original estimates, and are well
within the confidence intervals. For each of the 1000 subcompositions the accuracies
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Standardized Logistic Regression Coefficients
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Fig. 6 Standardized logistic regression coefficients from 1000 analyses using different subcompositions of
the Crohn data set. Each subcomposition contains the 14 parts used in the original model reported in the
third row of Table 1 with random extents (1–33 additional parts), then each data set is closed and the parts
are power-transformed using power = 0.28. The pale red and blue bars show 95% confidence intervals for
the estimated coefficients in the original model and the vertical black lines are the point estimates, at the
midpoints of the confidence intervals. For each variable there are 1000 vertical red or blue lines showing the
estimates from the models using subcompositions. Positive coefficients increase the log-odds of Crohn’s
disease, negative coefficients decrease the log-odds

andAUCs are also computed, and95%of the accuracies are between80.0%and81.4%,
while 95% of the AUCs are between 0.848 and 0.859. This further demonstrates that
the logistic regression results would be substantively the same for any subcomposition,
so that the modelling using power-transformed compositions is coherent for all prac-
tical purposes, further supporting the good performance of these power-transformed
predictors in Table 1.

Another diagnostic of coherence is to see how much the regression coefficients
change as a function of the sizes of the chosen subcompositions. Random subcompo-
sitions of 10%, 20%, etc., up to 90% of the 33 remaining microbial taxa were taken,
where the 14 parts in the original model are again always included, 100 subcompo-
sitions in each case. The dispersions of the AUC values (original value of 0.859 in
the model—see Table 1) and for the regression coefficients of Roseburia (original
standardized coefficient in the model equal to−0.702) are shown in Fig. 7, in the form
of boxplots. For small subcompositions the AUCs are under-estimating, as already
seen when just the 14-part subcomposition (with no others added) was analyzed. The
standardized coefficients of Roseburia are more negative but both the model AUCs
and these coefficients converge to the values in the original model as the subcompo-
sitional size increases. The dispersion of these coefficients should be judged against
the margins of error of the estimates in the full composition. For example, Roseburia’s
coefficient estimate is −0.702, with a SE of 0.104, giving a 95% confidence interval
of [ −0.906, −0.498 ], much wider than the dispersions shown in Fig. 7B.

As for the interpretation, this is made directly on the part values (power-
transformed), not on logratios,which is a considerable simplification. The standardized
regression coefficients, shown in Fig. 6, give a model for log-odds of Crohn’s disease
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Fig. 7 Results from logistic regressions performed on 100 subcompositions for each of nine different
percentages of the remaining parts added to the basic set of 14 power-transformed parts that were used
in the original model predicting Crohn’s disease. Boxplots show the dispersions for each subcomposition
of increasing sizes. A AUC of prediction. B Standardized regression coefficients for Roseburia. The red
dashed lines show the original values in the full composition (0.859 and − 0.702 respectively)

in terms of the 14 standardized predictors of the following form, showing only the
extreme negative and positive terms:

log(
p

1 − p
) = 1.238 − 0.754Bacteriode∗ − 0.702Roseburia∗ · · ·

+0.474Adlercreutzia∗ + 0.529Dorea∗ (5)

where ∗ indicates the standardized power-transformed variables. Alternatively, the
equivalent model can be expressed in terms of the values in the original composition
using power-transformed variables and no standardization, where the magnitude and
order of the coefficients changes according to the ranges of the different predictors:

log(
p

1 − p
) = 3.197 − 5.027 Roseburia0.28 − 4.866 Peptostreptococcaceae0.28 · · ·

+5.208 Eggerthella0.28 + 7.948 Adlercreutzia0.28 (6)

Whichever form is reported, it should be remembered that the effect sizes are
applicable to infinitesimal (i.e., very small) changes in the predictors, and should not
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be taken as linear effects as in regular regression. Like partial derivatives, these are
measures of local changes. This is due to a change in one compositional value affecting
all the others. For example, suppose all the predictors are at their mean values. The
value of the regression equation in (6), including the constant is computed to be 2.583,
back-transformed to a probability of Crohn’s disease equal to 0.930 (p = e2.583/(1+
e2.583) = 0.930). Suppose the compositional mean value of Roseburia is multiplied by
20, which is still within the range of this bacteria’s observed values. Simply making
this increment and applying the model to the new set of power-transformed values
results in the value 0.667. This back-transforms to a probability of 0.661, less than
0.930, as expected since Roseburia’s coefficient in the regression is negative.

But one cannot simply change a compositional value as one would do with regular
statistical variables, since the other compositional values are affected by the change.
Hence, the increased value of Roseburia has to be compensated by a decrease in the
compositional values of the other bacteria. Applying a proportional decrease to the
other bacteria to obtain a composition that sums to 1 and applying the model formula
leads now to a value of 0.607 and a back-transformed probability of 0.647, which
would be a more accurate estimate of the effect of the Roseburia increase.

This issue of quantifying the correct effect sizes due to the nature of the com-
positional data, taking into account that a change in one part affects the others, is
similarly present when logratios are used as predictors and the model is expressed as
a log-contrast (Coenders and Greenacre 2022).

4 Conclusion

This paper demonstrates that an alternative pipeline is possible for analysing com-
positional data, using the chiPower transformation. This transformation combines a
Box-Cox style of power transformation with the chi-square standardization that is
inherent in correspondence analysis. The choice of the power gives the approach its
flexibility. Unlike logratio transformations, this transform allows data zeros—notice
that in the Crohn application, 28.8% of the original data matrix are zeros and need
replacement in order to compute logratios. In an unsupervised learning context, where
understanding of the data structure is sought, the power can be identified to maximize
the proximity of the sample geometry of chiPower transformed compositions to the
sample logratio geometry, using the Procrustes correlation as a measure of the close-
ness to isometry. In a similar way, the Procrustes correlation between the geometries
of subsets of parts in a composition and the same parts in subcompositions gives a
quantitative assessement of (subcompositional) coherence. For supervised learning
where the compositions are predictors of a response, the power serves as a tuning
parameter to optimize prediction of the response, preferably using cross-validation. In
this case, where a subset of power-transformed predictors is selected and a model fit-
ted, the coherence can be assessed by repeating the model fitting on subcompositions
of different sizes and observing how the model estimates are affected.

Overall, in summary, the chiPower transformation, supported by diagnostics to
assess the properties of isometry and coherence, can present a simpler and more easily
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interpretable alternative to the logratio transformation, with the great advantage that
no zeros need replacing.

These results give food for thought about the role that logratios play in composi-
tional data analysis. When data are all positive, the logratio approach can be adopted,
with its favourable property of exact coherence. But when there are data zeros, the user
has a choice, either to use an algorithm to literally create data to replace the zeros for
the sake of using logratios, or use an alternative approach that needs no change to the
data and that can be shown to be almost isometric and coherent in terms of the research
objective, either unsupervised or supervised. The different zero replacement methods
can lead to different results (see Supplementary Material Section S1) and there is
apparently no clear consensus about which is preferred in a specific context. Hence,
it may be that an alternative approach, such as the chiPower transformation presented
here, is preferable in the presence of data zeros, especiallymany data zeros. Notice that
the investigation of the coherence of the chiPower transformation is achieved without
any zero replacements.

In summary, transformations such as chiPower, which are highly coherent and
needing no zero replacement, are proposed as a preferred first choice for analysing
compositional data that have zeros. As Lundborg and Pfister (2023) state:

“...we believe that it is generally preferable to modify the statistical procedure
to fit the data rather than vice versa".

Then, if logratios are of specific interest, for whatever reason, the tables could be
turned by choosing the zero replacement method that leads to logratio-transformed
data that come closest (for example, in terms of isometry ormodel accuracy) to the data
transformed by the preferred method that needs no zero replacement (e.g., chiPower).

For strictly positive data, both approaches are possible: (a) the purely logratio
approach, where the final interpretation is in terms of logratios and log-contrasts,
or (b) the chiPower approach where the interpretation is in terms of the original
compositional parts, whichmay be easier for the practitioner, especially for supervised
learning.

Appendix 1: Relationship between chiPower and CLR transformations

The fact that the chiPower transformation links directly to LRA, which is the PCA
of the CLR-transformed positive compositional data, implies a direct link from the
chiPower transform and the CLR transform. To show this, first consider this result, for
the positive composition xi = [ xi1 xi2 · · · xi J ] in the i-th row of the compositional
data matrix X. Let yi j [λ] = xλ

i j/
∑

k x
λ
ik , i.e. the closed powered compositions. The

convergence of J yi j [λ] to the CLR transformation, in Box-Cox formulation, is as
follows

lim
λ→0

1

λ

(

J
xλ
i j

∑
k x

λ
ik

− 1

)

= CLR(X)i j = log

(
xi j
g(xi )

)

(7)
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where g(xi ) is the geometric mean of the J elements of xi . To show this, divide the
numerator xλ

i j and denominator
∑

j x
λ
i j both by g(xi )λ.

lim
λ→0

1

λ

(

J
xλ
i j/g(xi )

λ

∑
k x

λ
ik/g(xi )

λ
− 1

)

(8)

In the denominator limλ→0
∑

k x
λ
ik = J and limλ→0 g(xi )λ = 1, hence the limit

reduces to

lim
λ→0

1

λ

([
xi j
g(xi )

]λ

− 1

)

= log

(
xi j
g(xi )

)

(9)

using the Box-Cox theorem. A different proof of this result is given in the Appendix
of Tsagris et al. (2016) using series expansions.

To prove the convergence properties of the chiPower transform, Tsagris el al’s style
of proof will be used here. The following results are used in the proof, both based on
Taylor series expansions of these functions of λ, around the value λ = 0:

• xλ = 1 + λ log(x) + O(λ2)

• (1 + λx)a = 1 + aλx + O(λ2)

In the proof, the terms in O(λ2) (including higher power) are written just the first time
they occur in an expansion and then omitted since they will eventually disappear in
the limit.

The basic chiPower transformation is yi j [λ]/
√
ȳ j [λ] where ȳ j [λ] = (1/I )

∑
i yi j [λ],

the column means of the yi j [λ]. The numerator and denominator are first handled
separately.

The numerator is expanded as follows:

yi j [λ] = xλ
i j

∑
k x

λ
ik

= 1 + λ log(xi j ) + O(λ2)
∑

k(1 + λ log(xik) + O(λ2)

=
(
1 + λ log(xi j )

) 1

J

(
1 + λ

J

∑

k

log(xik)
)−1

= 1

J

(
1 + λ log(xi j )

)(
1 − λ

J

∑

k

log(xik) + O(λ2)
)

= 1

J

(
1 + λ log(xi j ) − λ

J

∑

k

log(xik) + O(λ2)
)

(10)

From this result the inverse of the denominator is expanded as

1/
√
ȳ j [λ] =

(1

I

∑

i

yik [λ]λ
)−0.5
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= I
1
2 J

1
2

(∑

i

(
1 + λ log(xi j ) − λ

J

∑

k

log(xik) + O(λ2)
))−0.5

= J
1
2

(

1 + 1

I

∑

i

(
λ log(xi j ) − λ

J

∑

k

log(xik) + O(λ2)
))−0.5

= J
1
2

(

1 + (−0.5)
1

I

∑

i

(
λ log(xi j ) − λ

J

∑

k

log(xik) + O(λ2)
))

(11)

The division of numerator by denominator is thus the product of (10) and (11). Many
products of terms are O(λ2) and the only ones remaining are those that are multiplied
by the 1’s in each bracket, reducing to

1

J
1
2

(
1 + λ log(xi j ) − λ

J

∑

k

log(xik)

− 0.5
1

I

∑

i

(
λ log(xi j ) − λ

J

∑

k

log(xik) + O(λ2)
)

(12)

so that

1

λ

(

J
1
2
yi j [λ]

√
ȳ j [λ]

− 1

)

→ CLR(X)i j − 0.5 CLR(X) j as λ → 0 (13)

where CLR(X)i j = log(xi j ) − 1
J

∑
k log(xik) is the centered logratio defined in (7)

and CLR(X) j is the j-th column mean of CLR(X).
Thus, the limit is the CLRs shifted negatively by half their column means. Since

the column means of this limit in (13) are equal to (plus) half the column means, the
negative shift can be cancelled by a translation that adds half the column means of the

transformation (1/λ)
(
J

1
2 yi j [λ]/

√
ȳ j [λ] − 1

)
. This “translated" version that converges

to the CLR is the default in the R function chiPower(), but the “unadjusted" version
can also be obtained as an option. Of course, these options that shift each part by a
constant amount make no difference to computing distances, covariances, or models,
since the column means are eliminated or just affect the constant terms in models.
Notice that the similar proof by Choulakian (2023) is not for the chiPower transfor-
mation but for yi j [λ]/ȳ j [λ], that is, dividing by ȳ j [λ] rather than by

√
ȳ j [λ]. This ratio is

a scalar multiple of the Pearson contingency ratio (Greenacre 2010) and converges to
centered CLRs since the −0.5 in (13) above becomes −1 and the J 1/2 is eliminated,
giving the result:

1

λ

(
yi j [λ]
ȳ j [λ]

− 1

)

→ CLR(X)i j − CLR(X) j as λ → 0 (14)
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In fact, it is clear from the proof in Eqs. (10)–(13) that the general result for any power
φ in the division yi j [λ]/ȳ j [λ]φ can be obtained as follows:

1

λ

(
J 1−φ yi j [λ]

(
ȳ j [λ]

)φ
− 1

) → CLR(X)i j − φ CLR(X) j as λ → 0 (15)

of which (7), (13) and (14) are special cases for φ = 0, 0.5 and 1 respectively.
These results are illustrated in the following R code, applied to the modified

Crohn data without zeros, named Crohn1 here. This data set is in the R package
coda4microbiome. For the original Crohn data set with zeros, simply subtract 1
from the modified Crohn data. See Supplementary Material Section S1 for the source
of this original Crohn data set.

### The chiPower transformation
chiPower <- function(X, close=TRUE, power=1, chi=TRUE,

BoxCox=TRUE, CLR=TRUE)
{
# X: the compositional data matrix (it is closed in case)
# close: close the data after powering
# power: power of the transformation
# chi: apply chi-square standardization
# BoxCox: apply Box-Cox style of transformation
# CLR: translate columns so that convergence is to CLR transformation

foo <- as.matrix(X)
foo <- foo / rowSums(foo)
foo <- fooˆpower
if(close) foo <- foo / rowSums(foo)
if(chi) foo <- sweep(foo, 2, sqrt(colMeans(foo)), FUN="/")
if(BoxCox & !chi) foo <- (1/power)*(ncol(X)*foo - 1)
if(BoxCox & chi) foo <- (1/power)*(sqrt(ncol(X))*foo - 1)
if (BoxCox & chi & CLR) foo <- foo + rep(colMeans(foo), each=nrow(X))
X.chiPower <- foo
X.chiPower

}

### Use modified Crohn data without zeros, Crohn1
library(easyCODA)
X <- CLOSE(Crohn1)

### CLRs
X.CLR <- CLR(X, weight=FALSE)$LR
### First 6 rows and 3 columns of CLR matrix
head(X.CLR,1:3])
# g__Turicibacter g__Parabacteroides g___Ruminococcus_
# 1939.SKBTI.0175 -4.920831 2.1617171 2.801403
# 1939.SKBTI.1068 -3.176255 -0.3430419 4.380173
# 1939.SKBTI047 -2.686822 1.2384461 2.980757
# 1939.SKBTI051 -1.956917 1.9142845 3.956586
# 1939.SKBTI063 -3.719167 -0.8287950 4.228865
# 1939.SKBTI072 -2.683135 6.1129017 2.948077

### chiPower without chi-square standardization and confirming (7)
### (compare these values with the CLR values given above)
lambda <- 0.001
head(chiPower(X, power=lambda, chi=FALSE))[,1:3]
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# g__Turicibacter g__Parabacteroides g___Ruminococcus_
# 1939.SKBTI.0175 -4.914989 2.1577662 2.799038
# 1939.SKBTI.1068 -3.175177 -0.3469550 4.385789
# 1939.SKBTI047 -2.686208 1.2362093 2.982195
# 1939.SKBTI051 -1.957958 1.9131512 3.961451
# 1939.SKBTI063 -3.716163 -0.8323668 4.233885
# 1939.SKBTI072 -2.683284 6.1278452 2.948661

### chiPower with chi-square standardization but no CLR shift adjustment
head(chiPower(X, power=lambda, CLR=FALSE))[,1:3]
# g__Turicibacter g__Parabacteroides g___Ruminococcus_
# 1939.SKBTI.0175 -3.6753284 1.2511554 1.336367
# 1939.SKBTI.1068 -1.9333492 -1.2512999 2.920804
# 1939.SKBTI047 -1.4437711 0.3304323 1.519257
# 1939.SKBTI051 -0.7146141 1.0067617 2.497085
# 1939.SKBTI063 -2.4750092 -1.7362725 2.769121
# 1939.SKBTI072 -1.4408430 5.2176429 1.485772

### plot showing that it’s just a shift away from CLRs (Figure 8)
plot(X.CLR$LR, chiPower.new(X, power=lambda, CLR=FALSE),

col=rep(rainbow(ncol(X)), each=nrow(X)))

### chiPower with chi-square standardization and CLR shift adjustment
### (this is the default of the chiPower funcion)
head(chiPower(X, power=lambda))[,1:3]
# g__Turicibacter g__Parabacteroides g___Ruminococcus_
# 1939.SKBTI.0175 -4.919562 2.1566333 2.797086
# 1939.SKBTI.1068 -3.177583 -0.3458220 4.381522
# 1939.SKBTI047 -2.688004 1.2359101 2.979976
# 1939.SKBTI051 -1.958847 1.9122396 3.957804
# 1939.SKBTI063 -3.719243 -0.8307946 4.229840
# 1939.SKBTI072 -2.685076 6.1231208 2.946490

Figure8 shows the scatterplot in the above code, for power λ = 0.001. Figure9 shows
the comparisons of the CLR transformation (horizontal axis on each plot), and the
chiPower transformation, with the shift adjustment, for decreasing powers 1, 0.25, 0.1
and 0.001.

Fig. 8 Scatterplot of unadjusted
chiPower transformation and the
CLR transformation, showing
that each part is a shift away
from the CLR. This can easily
be corrected if required, as in the
next Fig. 9. Each colour
corresponds to one of the 48
compositional parts
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Fig. 9 Scatterplots of chiPower transformations for decreasing powers and the CLR transformation, with
shift adjustment. Each colour corresponds to one of the 48 compositional parts

Appendix 2: the Procrustes correlation

Procrustes analysis (Gower and Dijksterhuis 2004) is a method for matching two
multidimensional configurations by introducing translation, rotation and scaling oper-
ations to make them as similar as possible to each other. It is used here to measure how
similar two data structures are (Krzanowski 1987), for example between the matrix
F1 of principal coordinates from an LRA and the matrix F2 of principal coordinates
from a PCA of a chiPower-transformed compositional data matrix. Both F1 and F2
are assumed to have already been column-centred, which takes care of the translation
operation, since this makes their sample means identically equal to the zero vector.
The first step is then to normalize the two configurations so they both have sums of
squares equal to 1, which takes care of the scaling. It just remains to find the rotation
of one configuration to agree as closely as possible with the other, in the sense of
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least-squared differences between them, which is where the SVD is used. Procrustes
analysis and the computation of the Procrustes correlation proceed as follows.

1. Normalize both matrices: F∗
1 = F1/

√
trace(F1

TF1)

F∗
2 = F2/

√
trace(F2

TF2) (16)

2. Compute cross-products: S = F∗T
1 F∗

2 (17)

3. Perform SVD: S = UDαVT (18)

4. Rotation matrix: Q = VUT (19)

5. Sum-of-squared errors: E = trace[(F∗
1 − F∗

2Q)T(F∗
1 − F∗

2Q)] (20)

6. Procrustes correlation: r = √
1 − E (21)

The Procrustes correlation can be equivalently computed by vectorizing the two
matrices F∗

1 and F∗
2Q, and computing the Pearson correlation between them.

The functionprotest() (Peres-Neto and Jackson 2001) in theR packagevegan
(Oksanen et al. 2019) computes the correlation as follows:

protest(A, B, permutations=0)$t0
where A and B are the matrices F1 and F2 to be fitted to each other.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11634-024-00600-x.

Data and code availability The Rabbit and original Crohn data are available on https://github.com/
michaelgreenacre/CODAinPractice where some R code is available to reproduce several of the analyses.
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