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Abstract
We present a set of algorithms implementing multidimensional scaling (MDS) for
large data sets. MDS is a family of dimensionality reduction techniques using a n × n
distance matrix as input, where n is the number of individuals, and producing a low
dimensional configuration: a n × r matrix with r << n. When n is large, MDS is
unaffordable with classical MDS algorithms because their extremely large memory
and time requirements.We compare six non-standard algorithms intended to overcome
these difficulties. They are based on the central idea of partitioning the data set into
small pieces, where classical MDS methods can work. Two of these algorithms are
original proposals. In order to check the performance of the algorithms as well as
to compare them, we have done a simulation study. Additionally, we have used the
algorithms to obtain an MDS configuration for EMNIST: a real large data set with
more than 800000 points. We conclude that all the algorithms are appropriate to use
for obtaining an MDS configuration, but we recommend to use one of our proposals,
since it is a fast algorithm with satisfactory statistical properties when working with
big data. An R package implementing the algorithms has been created.
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1 Introduction

Multidimensional scaling (MDS) is a family of methods that represents high dimen-
sional data in a low dimensional space with preservation of the Euclidean distance
between observations. MDS uses a n × n distance matrix as input (or, alternatively, a
similarity matrix), where n is the number of individuals, and producing a low dimen-
sional configuration: a n × r matrix, where r is the dimension of the low dimensional
space, being much smaller than n. When n is large, MDS is unaffordable with clas-
sical MDS algorithms because their extremely large memory (n(n − 1)/2 values
should be stored simultaneously to represent a distance or similarity matrix) and time
requirements. The cost of the classical MDS algorithm is O(n3), as it requires eigen-
decomposition of a n×n matrix (for more details see, for instance, Trefethen and Bau
1997).

Different alternatives have been proposed in the literature, among which the fol-
lowing stand out: FastMap (Faloutsos and Lin 1995),MetricMap (Wang et al. 1999),
landmark multidimensional scaling (landmark MDS, or LMDS; De Silva and Tenen-
baum 2004, unpublished manuscript), fast multidimensional scaling (fast MDS; Yang
et al. 2006) and pivot MDS (Brandes and Pich 2007).

Platt (2005) shows that FastMap, MetricMap and LMDS are all based on a similar
approximation of the eigenvectors of a large matrix, namely the Nyström algorithm,
an approximation method from Physics. Additionally, the author argues (based on
empirical experiments) that LMDS is more accurate than FastMap and MetricMap
with roughly the same computation time and can become evenmore accurate if allowed
to be slower. Therefore we consider LMDS in this paper, leaving aside the other two
methods.

LMDS algorithm applies first classical MDS to a subset of the data (landmark
points) and then the remaining individuals are projected onto the landmark low
dimensional configuration using a distance-based triangulation procedure. Fast MDS
overcomes the problem of MDS scalability using recursive programming in combina-
tion with a data set splitting strategy. Pivot MDS, introduced in the literature of graph
layout algorithms, is similar to LMDS but it uses the distance information between
landmark and non-landmark points to improve the initial low dimensional configura-
tion, as more relations than just those between landmark points are taken into account.

In thiswork, we introduce a newnon-standardMDS algorithm (divide-and-conquer
MDS) and an alternative form of LMDS (interpolation MDS) which, instead of using
distance-based triangulation, uses Gower’s interpolation formula (Gower 1968; see
also the Appendix of Gower and Hand 1995). Moreover, we prove that the LMDS
triangulation method proposed in 2004 coincides with the interpolation formula intro-
ducedbyGower 36years earlier.Both newalgorithmswere proposed inPachón-García
(2019, Master Thesis). In an independent work, Paradis (2021) introduced reduced
multidimensional scaling (reducedMDS or RMDS for short), a procedure very similar
to interpolation MDS (see Sect. 3.1 below).

In addition to these two methods, we also present bigmds: an R package (R Core
Team 2020) implementing LMDS, interpolation MDS, RMDS, pivot MDS, divide-
and-conquer MDS and fast MDS.
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Multidimensional scaling for big data

The rest of the paper is organized as follows. Section 2 provides a summary of
classical MDS. Section 3 describes the six MDS algorithms for big data considered in
this paper, with particular attention to the relationship between interpolationMDS and
competing methods (LMDS, pivot MDS and RMDS). We also introduce the package
bigmds implementing the six algorithms. We compare them by a simulation study
described in Sect. 4. In Sect. 5 we challenge all the algorithms with a real large data
set. Section 6 summarizes the conclusions of the paper.

2 Classical multidimensional scaling

In this section we briefly review classical multidimensional scaling (Torgerson 1952,
Gower 1966). For a more detailed explanation we refer to Section 3.2 in Krzanowski
(2000) or Chapter 12 of Borg and Groenen (2005). Given a n × n matrix � = (d2i j ),

where d2i j is the squared distance between individuals i and j, the goal of MDS is to
represent the n individuals in a Euclidean space with low dimensionality r, that is, to
obtain a n × r configuration matrix X with orthogonal zero-mean columns such that
the squared Euclidean distances between the rows of X are approximately equal to �.
When equality is achieved we say that X is an Euclidean configuration for �.

The columns ofX are called principal coordinates and they can be interpreted as the
observations of r latent variables for the n individuals. Typically, the goal of MDS is
dimensionality reduction, which involves looking for low dimensional configurations
(that is, r much lower than n).

Classical MDS is one of the standard ways to obtain configuration matrices from
distance matrices. For any set of n vectors {y1, . . . , yn} in a Euclidean space, there
is a one-to-one relationship between their Euclidean distances {di j = ‖yi − y j‖ :
1 ≤ i, j ≤ n} and their inner products {qi j = y T

i y j : 1 ≤ i, j ≤ n}: d2i j =
qii + q j j − 2qi j and qi j = −(d2i j − d2i . − d2. j + d2.. )/2, where d

2
i . = (1/n)

∑n
j=1 d

2
i j ,

d2. j = (1/n)
∑n

i=1 d
2
i j , and d2.. = (1/n2)

∑n
i=1

∑n
j=1 d

2
i j . See Borg and Groenen

(2005) for a detailed derivation of these formulas. In order to write the previous
relationships in a matrix form, some additional definitions are convenient. Let In be
the identity matrix of dimension n, and let 1n be the n-dimensional vector of ones. The
centering matrix in dimension n is defined as P = In − 1

n 1n1
T
n . The classical MDS

algorithm is as follows:

1. Build the inner product matrix Q = − 1
2P�P.

2. Obtain the eigenvaluesλi and eigenvectors vi ofQ, i = 1, . . . , n, sorted in decreas-
ing order of the eigenvalues. Observe that the following equality holds:

Q =
n∑

i=1

λiviv T
i .

(Observe that 0 is one of the eigenvalues ofQ, with eigenvector 1n , because it has
sum zero by rows, and that some eigenvalues may be negative when the distance
matrix is not derived from a Euclidean distance measure).
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3. Q can be approximated by taking the r greatest non-negative eigenvalues and their
corresponding eigenvectors:

Q ≈
r∑

i=1

λiviv T
i = (Vr�

1/2
r )(�

1/2
r V T

r ),

where Vr has columns vi , i = 1, . . . , r , and �r = diag (λ1, . . . , λr ).
4. Take X = Vr�

1/2
r as r-dimensional matrix configuration of �.

Observe that the configuration X has centered columns (because the eigenvectors of
Q in Vr are orthogonal to 1n , that is another eigenvector of Q) with variance equal to
the eigenvalues in �r divided by n:

Var (X) = 1

n
X TX = 1

n
�

1/2
r V T

r Vr�
1/2
r = 1

n
�r . (1)

The theoretical costs of the classical MDS algorithm are O(n3) in time (because it
requires the eigendecomposition of a n × n matrix) and O(n2) in memory (because
n × n matrices as � or Q must be stored). These costs make classical MDS hard to
deal with when the sample size is large.

In terms of software availability, the R package stats offers a baseline functionality
to compute an MDS configuration: cmdscale. Although we could use this implemen-
tation, we have decided to approach the computation of an MDS configuration in a
faster way: use trlan.eigen function from svd package (Korobeynikov et al. 2022) to
obtain the eigendecomposition of matrixQ and then take the r eigenvectors associated
with the largest r eigenvalues. Note that the implementation presented in svd package
uses the Lanczos eigendecomposition of a matrix (see, for instance, Wu and Simon
2000 or Yamazaki et al. 2010), which speeds up calculations considerably.

To compare both approaches (stats::cmdscale versus svd::trlan.eigen package
implementation), we have performed 10 runs using the microbenchmark package
(Mersmann 2023) to measure execution times. For a data set of size n = 10000,
stats::cmdscale needed between 886 and 888 s (around 15 min) for each run, while
svd::trlan.eigen took between 7.46 and 7.64 s in a computer with a processor Intel
i9-10900K, with 64GBDDR4 of RAMmemory (this is the computer used throughout
this work). We have used sample size n = 10000 because the computer ran out of
memory for n = 25000 and more than 20 min were required when using cmdscale
for n = 15000.

3 Algorithms for multidimensional scaling with big data

In this section, we describe six MDS algorithms able to work with large data sets. We
start introducing interpolation MDS, which gives us the opportunity to also describe
LMDS, pivot MDS and RMDS. Then we introduce divide-and-conquer MDS and
finally we talk about fast MDS. Figure 1 schematically shows how each of these
methods works.
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Fig. 1 Schematic representation of the six MDS algorithms described in Sect. 3

Given the computational cost of classical MDS algorithm, it could happen that the
size of the distance matrix were so large that the computer would not be able to obtain
a low dimensional configuration (we would incur in computational errors due to the
capacity of the computer). Let �̄ be the largest number for which classicalMDS runs in
an acceptable time (depending on both, the computer power and the user’s judgment)
for a distance matrix of dimension �̄ × �̄. The algorithms we are presenting require to
know �̄ in advance.

3.1 InterpolationMDS

The basic idea of this proposal is as follows. Given that the size of the data set is
too large, we take a random sample from it of size � ≤ �̄, to perform classical MDS
to it, and to extend the obtained results to the rest of the data set by using Gower’s
interpolation formula (Gower 1968; see also the Appendix of Gower and Hand 1995),
which allows us to add a new set of points to an existingMDS configuration. Note that
this proposal follows the usual practice in Statistics when a population is too large to
be examined exhaustively: obtaining a random sample from the population, analyzing
it in detail and, finally, extending the sampling results for the entire population.

Gower’s interpolation procedure works as follows. Given a first data subset of
size �, let D1 = (di j ) be the � × � distance matrix between its elements, and let

X1 = V1,r�
1/2
1,r be the � × r matrix containing its classical MDS configuration.

Consider a new data subset of size m (1 ≤ m ≤ n − �), and let A21 be the m × �

distance matrix between its m elements and the � ones in the first data subset. One
wants to project these new m elements into the existing MDS configuration in such a
way that the Euclidean distances between the new projected points and the original
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ones are as close as possible to the elements of A21. We briefly summarize how to do
so using Gower’s interpolation formula. Define Q1 = − 1

2P�1P T, where �1 = (d2i j )

and P = I� − 1
�
1�1 T

� . Let q1 be the diagonal ofQ1, treated as a column vector. LetA2
21

be the matrix of the square of the elements of A21. Let S1 be the variance-covariance
matrix of the r columns of X1. So, by Eq. (1), S1 = (1/�)�1,r . Gower’s interpolation
formula, equation (8) in Gower (1968), states that the interpolated coordinates for the
new m observations are given by

Ẋ2 = 1

2�
(1mq T

1 − A2
21)X1S

−1
1 . (2)

Observe that Gower’s interpolation formula is valid for any numberm ≥ 1 of elements
in the second data subset. Nevertheless, for large values of m the memory limitations
reported for classicalMDS could appear here because formula (2) involves matrices of
dimensionm×�. Thereforewepropose to usem = �whenprojectingnewobservations
into an existing MDS configuration.

The proposed interpolation MDS algorithm operates as follows. First, the data set
of size n is divided into p = �n/�� parts. The first data subset is used to compute
X1 and the other elements with Gower’s interpolation formula (2). Then, we use this
formula to obtain Ẋ j , where j ∈ {2, . . . , p}.

Finally, all the interpolated partial MDS configurations are concatenated by rows
to obtain the global n × r configuration:

X =
[
X T
1 | ẊT

2 | · · · | Ẋ T
p

] T
.

The eigenvalues λ1i , i = 1, . . . , r , obtained when applying classical MDS to the first
data subset, divided by �, are estimations of the variance of the columns of X.

Observe that if the number of rows of the original data set is such that it allows to
run classical MDS over the whole data set, then p = 1 and interpolation MDS is just
the classical MDS.

The most costly operation in this algorithm is the computation of the distance
matrix A21, that in our case is of order O(�2) because we use m = �. This operation
is repeated p times, with p ≈ n/�. So the computation cost in time of this algorithm
is O(n�).

Interpolation MDS shares similarities with three existing algorithms: LMDS, pivot
MDS and RMDS, all three with computation costO(n�) in time (we are grateful to a
referee who pointed us to these methods). In interpolation MDS, LMDS and RMDS,
a data subset is selected (called set of landmark points in LMDS) and classical MDS
is performed on it to obtain the corresponding low dimensional configuration. Then
the reaming points are projected onto this initial configuration. The three methods use
different projection strategies at this second step.

On the one hand, interpolationMDS and RMDS use Gower’s interpolation formula
(2): interpolation MDS uses a matrix version of that formula (just as stated in Eq. 2)
which is valid for interpolating simultaneously a large number of points not used in
the initial MDS, whereas RMDS uses the version of Gower’s formula valid only for

123



Multidimensional scaling for big data

one new point and it needs to visit all the points not used in the initial MDS, one at a
time.

On the other hand, LMDS uses a distance-based triangulation procedure to project
the non-landmark individuals. At a first glance, this procedure is different from
Gower’s interpolation formula. Nevertheless, when the LMDS projection formula is
carefully examined, it can be seen that it coincides in fact with Gower’s interpolation
formula (2). This is a result not previously reported in the literature, as far as we know.
Indeed, following equation (3) in De Silva and Tenenbaum (2004), LMDS projection
formula can be written as follows:

XLMDS
2 =1

2
(1md T

1 − A2
21)V1,r�

−1/2
1,r (3)

where d1 = (1/�)�11� is the vector of average squared distances between each
landmark point and the other. Similarities between formulas (2) and (3) are evident.
Moreover, observe that

q1 =Diag(Q1) = −1

2
Diag

(
P�1P T

)

= −1

2
Diag

(
�1 − d11 T

� − 1�d T
1 + 1�1 T

� d̄1
)

= −1

2

(
0� − d1 − d1 + 1�d̄1

) = d1 − d̄1
2
1�,

where d̄1 is the average of the square distance values in �1. Additionally,

1

�
X1S

−1
1 = 1

�

(
V1,r�

1/2
1,r

)(
(1/�)�1,r

)−1 = V1,r�
−1/2
1,r .

Therefore,

XLMDS
2 = 1

2�
(1mq T

1 + d̄1
2
1m1 T

� − A2
21)X1S

−1
1 = Ẋ2 + d̄1

4�
1m1 T

� X1S
−1
1 = Ẋ2,

and we conclude that LMDS projection coincides with Gower’s interpolation formula.
We have used that X1 has zero mean by columns in the last step. So we have proved
the following Proposition.

Proposition 1 Distance-based triangulation procedure used in LMDS coincides with
Gower’s interpolation formula.

We have seen that interpolationMDS, LMDS and RMDS are essentially three vari-
ations of the same procedure. Nevertheless, they differ in the way the initial data subset
is selected: interpolation MDS chooses it at random, LMDS uses a MaxMin greedy
optimization procedure, and RMDS follows a set of heuristic rules (already used in
Paradis 2018) intended to ensure the inclusion of both central and peripheral observa-
tions. Note that random selection is also an option in the available implementations of
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LMDS and RMDS. In their second step, the three algorithms use Gower’s formula for
projecting the remaining points, but there are some subtle differences between them:
RMDS projects each point at a time, interpolation MDS performs this operation in
blocs of � points, and LMDS projects all points in a single step.

Finally, pivot MDS is an approximation of classical MDS with a similar approach
to LMDS. Once the subset of � landmark points have been selected (in this context,
they are called pivot points), let C be the n × � submatrix of Q containing the inner
products between the pivot points and all the points in the data set. The singular value
decomposition of C is used to approximate that of Q, whose r first eigenvectors lead
to the pivot MDS low dimensional configuration. Recall that LMDS is based on the
eigendecomposition of the � × � submatrix of Q containing only inner products of
landmark points.

3.2 Divide-and-conquer MDS

Webase this algorithm on the principle of dividing and conquering. Roughly speaking,
a large data set is divided into parts, thenMDS is performed over every part and, finally,
the partial configurations are combined so that all the points lie on the same coordinate
system. Let us go into the details.

Let n be the number of individuals of the original data set, which is divided into
p parts of size �, where � ≤ �̄. The algorithm requires that all the partitions have c
individuals in common. Those c individuals are used in order to connect the MDS
partial configuration obtained from each part and we name them connecting points.
This number c should be large enough to guarantee good links between partial config-
urations, but as small as possible to favor efficient computations. Given that the partial
configurations will be connected by a Procrustes transformation (see, for instance,
Chapter 20 of Borg and Groenen 2005), c must be at least equal to r + 1 (to avoid
reflections), where r is the required low dimension we are looking for when applying
classical MDS to every part of the data set.

The divide-and-conquer MDS starts selecting at random the c connecting points
from the data set (selection strategies different from randomness could be used, as
done in LMDS or RMDS; see Sect. 3.1). Then,X is divided into p data subsets, where
p = �1+(n−�)/(�−c)� is the lowest integer larger than or equal to 1+(n−�)/(�−c).
These data subsets are defined containing the c connecting points plus �− c randomly
selected (without replacement) points from the remaining n − c. Classical MDS is
applied to each data subset, with configurations of dimension r. LetX j , j = 1, . . . , p,
be the � × r configuration obtained from the j-th data subset.

Since all the partitions share c points, the first configurationX1 can be aligned with
any other X j , j ≥ 2, using a Procrustes transformation. In order to do that, let Xc

1
and Xc

j be the c × r matrices corresponding to the connecting points in X1 and X j

respectively. The Procrustes procedure is applied to Xc
1 and Xc

j and the parameters
T j ∈ R

r×r and t j ∈ R
r are obtained so that
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Xc
1 ≈ Xc

jT j + 1ct Tj .

Let Xa
j be X j without the connecting c points, and let

Ẍ j = Xa
jT j + 1l−ct Tj

be the (� − c) × r matrix with the j-configuration (excluding the connecting points)
aligned with respect to X1. Finally, all the aligned partial MDS configurations are
concatenated by rows to obtain the global n × r configuration:

X =
[
X T
1 | Ẍ T

2 | · · · | Ẍ T
p

] T
.

When classical MDS is applied to each data subset, in addition to the r-dimensional
configuration X j , it provides the eigenvalues λ

j
i , i = 1, . . . , r , of the inner product

matrixQ j which, divided by the size of data subset, coincidewith the eigenvalues of the
variancematrix of the columns ofX j , shared aswell by Ẍ j becauseT j is an orthogonal
matrix. Therefore, we can define a set of estimators for the first r eigenvalues as

λ̄i = 1

p

p∑

j=1

λ
j
i

n j
, i = 1, . . . , r ,

where n j is the size of the j-th data subset (n j = � for all j, except perhaps for the last
one). Observe that λ̄i is also an estimation of the variance of the i-th column in final
MDS configuration X.

In terms of computation time, the most costly operation is to obtain anMDS config-
uration for an � × � matrix, which cost isO(�3). This operation is performed p times,
being p ≈ n/�. Therefore, the total cost isO(n�2). As in the previous algorithm, note
that if n ≤ � then p = 1 and divide-and-conquer MDS is just classical MDS.

3.3 Fast MDS

As in the previous approaches, fast MDS also randomly divides the whole sample data
set of size n into several data subsets, but now the size of the data subsets can be larger
than � (with � ≤ �̄) because of the recursive strategy: fast MDS is applied again when
the sizes of the data subsets are larger than �. Yang et al. (2006) do not give precise
indications for choosing �: they say that � must be the size of the largest matrix that
allows MDS to be executed efficiently, from which it follows that � ≤ �̄.

In the last step of the fast MDS algorithm, the partial MDS configurations obtained
for each data subset are combined into a global MDS configuration by a Procrustes
transformation (as in divide-and-conquer MDS, Sect. 3.2). To do so, a small subset
of size s is randomly selected from each data subset (Yang et al. 2006 call them the
sampling points). The role of s in fast MDS is equivalent to that of c (the amount of
connecting points) in divide-and-conquer MDS, and the same considerations for its
choice apply here. In particular, s ≥ r + 1.
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The selected sampling points from each data subset are joined to form an alignment
set, over which classical MDS is performed giving rise to an alignment configuration:
a � × r matrix Xalign. In order to be able to apply classical MDS to the alignment set,
its size must not exceed the limit size �. Therefore, the number p of data subsets is
taken as p = 	�/s
 (the integer part of �/s).

Each one of the p data subsets has size ñ = �n/p� (except perhaps the last one).
If ñ ≤ � then classical MDS is applied to each data subset. Otherwise, fast MDS is
recursively applied. In either case, a final MDS configuration is obtained for each data
subset, namely the ñ × r matrices X j , j = 1, . . . , p.

Every data subset shares s points with the alignment set. Therefore every MDS
configuration X j , j ≥ 1, can be aligned with the alignment configuration Xalign using
a Procrustes transformation. LetXs

align, j andX
s
j be the s×r matrices corresponding to

the j-th set of sampling points inXalign andX j respectively. The Procrustes procedure
is applied toXs

align, j andX
s
j and the parameters, T j ∈ R

r×r and t j ∈ R
r are obtained,

so that

Xs
align, j ≈ Xs

jT j + 1st Tj .

Let

X̃ j = X jT j + 1ñt
T
j

be the ñ × r matrix with the j-configuration aligned with respect to Xalign. Finally, all
the aligned partial MDS configurations are concatenated by rows to obtain the global
n × r configuration:

X =
[
X̃

T
1 | X̃ T

2 | · · · | X̃ T
p

] T
.

As in the previous algorithms, note that if n ≤ � then p = 1 and fast MDS is just
classical MDS. Average of eigenvalues are defined as in divide-and-conquer MDS.

Yang et al. (2006) use the Master theorem for recurrent algorithms (Bentley et al.
1980) to establish that the computation cost in time of the fast MDS algorithm is
O(n log n).

At a first sight divide-and-conquer MDS and fast MDS show some similarities
(classical MDS is applied to small portions of the data, and then the pieces are joined
by Procrustes transformation). Nevertheless, they are significantly different mainly
because fast MDS is a recursive algorithmwhile divide-and-conquer MDS is not. This
difference implies, for instance, that in divide-and-conquer MDS the data subsets at
which the classical MDS is applied have always the same size � (controlled by the
user), whereas in fast MDS these sizes can not be fixed in advance (they depend on the
successive recursive partitioning process). This difference has practical performance
implications, as it can be seen in Sect. 4.
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3.4 bigmds: the R package to doMDSwith big data

In order to make these methods available, we have published an R package in
CRAN: https://cran.r-project.org/web/packages/bigmds. The core of the package con-
sists of six methods: landmark_mds, interpolation_mds, reduced_mds, pivot_mds,
divide_and_conquer_mds and fast_mds. Each of these functions provides an MDS
configuration following the procedures described in Sect. 3. We also developed a
Procrustes function which is used by divide_and_conquer_mds and fast_mds. We
followedBorg andGroenen (2005) in order to obtain Procrustes parameters. The pack-
age has also a development version which is available in GitHub: https://github.com/
pachoning/bigmds. Finally, as a classical MDS algorithm we used trlan.eigen func-
tion (from svd package) to perform the eigendecomposition and then the desirable
number of columns is taken from the matrix that contains the eigenvectors.

4 Simulation study

In this section, we present a simulation study to evaluate the six MDS methods. In
particular, we address the following questions: (1) the ability to capture the right data
dimensionality and (2) the speed of the algorithms. We have not included the full
classical MDS in our simulation study because it can not run for sample sizes greater
than 25000 (as we report in Sect. 2).

4.1 Design of the simulation

Different experiments were conducted in order to answer the previous questions. At
each experiment, data matrices Y of dimension n × k were generated, which rows
were considered to be the individuals in the data set. Euclidean distances between
rows of Y were used throughout the study. Several scenarios were explored, taking
into account different factors:

Sample size. Different sample sizes n were taken into account, combining small data
sets and large ones. A total of eight sample sizes were used: 5000, 10000, 20000,
100000, 250000, 500000, 750000 and 1000000.
Data dimension. The considered number of columns k were 10 and 100.
Dominant dimension. The first h columns in Y had variance equal to 15, while the
other k−h had variance equal to 1. Throughout this paper we refer to h as the dominant
dimension. The idea of thiswas to see if the algorithmswere able to capture the relevant
data dimensionality. We considered two values for h: 2 and 10.

There was a total of 32 scenarios to simulate (8 sample sizes, 2 data dimensions, and
2 dominant dimensions). Each scenario was replicated 100 times. So, a total of 3200
simulations were carried out.

For every simulation, the data matrix Y was generated from a multivariate normal
distribution with zero mean independent coordinates and variances 15 for the first h
columns and variance 1 for the others. The six MDS algorithms were run based on
Euclidean distances between rows of Y . All the algorithms were executed requiring

123

https://cran.r-project.org/web/packages/bigmds
https://github.com/pachoning/bigmds


P. Delicado, C. Pachón-García

as many columns r as the dominant dimension of the simulated data set, i.e, r = h.
Therefore, the resulting low dimensional MDS configurationsX had dimension n×h.
In addition to X, the elapsed time was stored for each simulation.

Note that the original data set, Y , was already an MDS configuration by construc-
tion, since we simulated independent columnswith zeromean. Therefore, even though
n was so large that classical MDS could not be calculated, the first h columns of Y
could be taken as a benchmark classical MDS solution to which compare against the
MDS configurations X provided by the six algorithms.

In order to test the quality of the algorithms as well as the time needed to compute
the MDS configurations, some metrics were calculated:

• The quality of the results was measured by the following statistics:

– Correlation between the dominant directions of the data and the corresponding
dimensions provided by the algorithms. Note that any rotation of anMDS config-
urationXwould have led to another equally valid configuration. Therefore, before
computing the correlations between the first h columns ofY , which we denote by
Yh, and those of X, we had to be sure that both matrices were correctly aligned,
in the sense that we were using the rotation of X that best fitted the columns of
Y . A Procrustes transformation was done to achieve this alignment. It is worth
mentioning that alternative quality measurements are defined directly comparing
distances between the original data and those computed from the obtained config-
urations (see, for instance, Chapter 11 in Borg and Groenen 2005). Nevertheless,
when the sample size is moderate or large, it is not possible to compute all the
distances between individuals. So it is impossible to use distances to compare
solutions.

– Bias and Root Mean Squared Error (RMSE) of the eigenvalues λ̄i , i = 1, . . . , h,
as estimators of the variance of the first h columns of X (namely, 15).

• The computational efficiency was measured by the average time to get the MDS
configurations over the 100 replications of each scenario. Specifically, wemeasured
the elapsed time between start and finish of each algorithm.

The six algorithms require to specify a value for � parameter. Section 4.2 below,
entirely devoted to the choice of �, justifies the following values: � = 250 for LMDS,
interpolaton MDS and RMDS, � = 200 for pivot MDS, � = 400 for divide-and-
conquer MDS, and � = 600 fast MDS.

Divide-and-conquer MDS and fast MDS have an additional parameter each: the
number c of connecting points in divide-and-conquer MDS, and the number s of
sampling points in fast MDS. Both c and smust be greater than or equal to the number
r of columns required for the MDS configuration. Yang et al. (2006) used s = 2r ,
but we have chosen more conservative values: s = c = 5r . Using lower values for c
or s could have led to incorrect MDS configurations, as there would have been very
few points on which to base the Procrustes transformations. On the other hand, using
larger values for c or s would have lengthened the time of the algorithms.
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4.2 Choosing the partition size �

Before running the complete simulation study, we examined the effect of the partition
size � on the algorithms efficiency,measuring the ability to recover the lowdimensional
data structure (which we quantified in two different ways, as explained in Sect. 4.1),
and the computation time. We ran a simple experiment using 20 simulated data sets
that were analyzed with the six algorithms using 9 different values of �: from 100
to 300 in steps of 50, and from 400 to 700 in steps of 100. A data matrix Y of
dimension 1000000 × 100 was generated, with elements being independent random
normal observations with zero mean and variance equal to 15 for the first 10 columns,
and variance equal to 1 for the remaining ones. The six algorithms were executed with
r = 10, and s = c = 50.

Regarding the range of �, we tried to go further than 700 but LMDS and pivot
MDS experienced memory problems. This was due to the nature of these algorithms
(a distance matrix of size �×nmust be stored). Even though the number � of landmark
or pivot points is small, the sample size n may be large enough so that the rectangular
distance matrix can not fit in memory.

Each algorithmwas evaluated for every value of �with three performancemeasures:
the correlation of the 10 first columns of Y with the obtained configuration matrix,
the proximity of the r = 10 estimated eigenvalues to 15 (their theoretical value),
and the computation time (in seconds). More details on these measures are given
in Sects. 4.3, 4.4 and 4.5, respectively. In particular, we avoided rotation, reflection,
and translation problems by performing a Procrustes transformation to the different
MDS configurations in order to align them to the original data set before computing
correlations.

Figure 2 shows the performance measures for each algorithm. We looked for the
values of � at which a compromise between the three criteria was achieved. Observe
that the results in correlation and RMSE for LMDS, interpolation MDS and RMDS
were almost indistinguishable, while elapsed times were different (interpolationMDS
was faster than LMDS, which was faster than RMDS).

We considered that satisfactory results were met by choosing � = 250 for LMDS,
interpolation MDS and RMDS (we decided to use the same value of � for these
methods, given their common performance), � = 200 for pivot MDS, � = 400 for
divide-and-conquer MDS, and � = 600 fast MDS.

Notice that the three performance measures for the fast MDS algorithm depend
on � in a non-monotonous way, possibly due to successive recursive divisions. For
instance, it can be checked that for n = 1000000 and � = 500 the algorithm required
a total of 10000 partitions, with an average size of 100 points, while when � = 600
the number of partitions was 1730 with average size 578. The small size of partitions
was probably the reason of the poor behavior in correlation and RMSE for � = 500.
Observe that the values of � leading to small partitions may be different for other
sample sizes. Therefore our decision of using � = 600 for fast MDS was appropriate
for n = 1000000 but could have not been the best choice for other values of n. In this
sense, the chosen values of � were less robust against changes in n for fast MDS than
for the other MDS algorithms.
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Fig. 2 a Mean correlation coefficient for the 10 first columns. Note that all correlation coefficients were
above 0.9. b Root Mean Squared Error of λi , i ∈ {1, . . . , 10}, as estimators of their theoretical value 15.
c Mean time required to obtain an MDS configuration

4.3 Results on correlation with the dominant directions

This section is aimed to study the ability of the six MDS algorithms to capture the
dominant directions. Given a simulated data set, Y , there were seven MDS configura-
tions related to the data set: the data set itself, Y , and one per each of the six methods
proposed. After applying Procrustes to a given MDS configuration, X, the columns of
the resulting matrix should have been highly correlated with the dominant directions
of Y (as described in Sect. 4.1).

Table 1 contains the 2.5% quantile ( q 0.025), the mean value (mean ) and the 97.5%
quantile ( q 0.975) for the correlation coefficients for each of the six algorithms. For each
scenario described in Sect. 4.1, a total of h correlation coefficients were computed,
where hwas the dominant dimension of the scenario. Then, 192 correlation coefficients
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Table 1 Quantiles of order 2.5%
( q 0.025) and 97.5% ( q 0.975),
and mean values for the
correlation coefficients between
the original variables and the
ones recovered by the six MDS
methods

Algorithm q 0.025 Mean q 0.975

LMDS 0.99869 0.99950 1

Interpolation MDS 0.99868 0.99949 1

RMDS 0.99868 0.99949 1

Pivot MDS 0.99621 0.99824 0.99988

Divide-and-conquer MDS 0.99774 0.99845 0.99915

Fast MDS 0.98278 0.99417 0.99886

were derived from a single replication of the 32 scenarios (192 = 8 × 2 × (2 + 10)).
As performed 100 replications, Table 1 shows descriptive statistics of correlation
coefficients sets of size 19200. It can be seen that there was a high correlation between
theMDSconfigurations and the dominant directions ofY for eachof the six algorithms.
Furthermore, LMDS, interpolationMDSandRMDSwere the algorithms that provided
the MDS configurations most correlated with the dominant directions, followed by
divide-and-conquer MDS, pivot MDS and then fast MDS.

4.4 Results on eigenvalues

In this section we study how the eigenvalues provided by the algorithms estimate
the variance of the dominant directions. Since these variances were equal to 15, it
was expected the eigenvalues to be close to 15. Figures 3 and 4 display the bias and
the RMSE, respectively, taking into account the number of dominant dimensions, the
dominant dimension and the sample size.

PivotMDS had the lowest bias and RMSE, followed by LMDS, interpolationMDS,
RMDS (these three being almost indistinguishable), then fastMDS and, finally, divide-
and-conquer MDS, which systematically overestimated. Observe that fast MDS had
a strange behavior for sample size 100000.

In Fig. 3 it can be seen that the bias was positive for the first dominant dimensions
and negative for the last ones. This happened because, when performing MDS with
a particular sample, the estimated eigenvalues were sorted in decreasing order. Then,
given that the theoretical value of all the eigenvalues were the same, the first estimated
ones tended to be larger than the true value, and the last ones tended to be smaller.
This bias trend had effects on RMSE, as shown in Fig. 4 where it can be seen that the
RMSE was lower for intermediate dimensions, those having bias close to zero.

4.5 Time to obtain anMDS configuration

In this sectionwe study the cost of each algorithm in terms of speed. Figure 5 represents
the log-log plot of mean time (in seconds) needed to obtain an MDS configuration as
a function of the sample size (horizontal axis) and the MDS method (color). For all
the sample sizes, the fastest algorithm was interpolation MDS, followed by LMDS,
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Fig. 3 Bias of the estimators for the variance of the dominant directions

divide-and-conquer MDS, fast MDS, pivot MDS and finally RMDS. Note that divide-
and-conquer MDS, fast MDS and pivot MDS behaved similarly in terms of elapsed
times. Additionally, it can be observed that execution time was approximate linear in
sample size for the six algorithms.

As a particular case, Table 2 contains the 2.5% quantile ( q 0.025), the mean value
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Table 2 Quantiles of order 2.5%
( q 0.025) and 97.5% ( q 0.975),
and mean values for the elapsed
time (in seconds) for the
scenario which sample size was
1000000, there were 100
columns and 10 dominant
dimension

Algorithm q 0.025 mean q 0.975

LMDS 23.46 24.27 24.82

Interpolation MDS 18.21 18.34 18.48

RMDS 91.74 92.20 93.01

Pivot MDS 36.19 37.38 38.04

Divide-and-conquer MDS 44.57 45.06 45.74

Fast MDS 61.51 61.74 61.97

(mean ) and the 97.5% quantile ( q 0.975) for the elapsed time related to the scenario
which sample size was 1000000, there were 100 columns (k = 100) and 10 dominant
dimension (h = 10). The results related to the quantiles for the remaining scenarios
(graphics not included here) were similar to the ones in Table 2.
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5 UsingMDS algorithms with EMNIST data set

In this sectionwe have used all theMDS algorithmswith a real large data set: EMNIST
(Cohen et al. 2017) available at https://www.nist.gov/itl/products-and-services/emnist-
dataset. The EMNIST data set is composed by gray-scaled handwritten character
digits, lowercase letters and capital letters. They are derived from the Special Database
19 (Grother 1970) and converted to a 28 × 28 pixel image format. The images have
this size so that they match with the MNIST data set format (LeCun and Cortes 2010).
In total, there are 814255 images divided into 62 classes: 10 digits (from ‘0’ to ‘9’;
the 49.5% of the total), 26 lowercase letters (from ‘a’ to ‘z’; 23.5%) and 26 capital
letters (from ‘A’ to ‘Z’; 27%).

The Euclidean distance between the vector representation of the images in dimen-
sion 282 = 784 was used to perform MDS with the six algorithms. We first computed
theMDS configuration requiring a low dimension equal to 10 (r = 10). Then, we used
the first 2 dimensions to visualize the result. With regards to �, it was set in same way
as described in Sect. 4.2. Divide-and-conquer MDS and fast MDS required to specify
two extra parameters: c and s respectively. They both were set to 50. In particular,
the principal coordinates provided by the six algorithms are highly correlated with
those eventually obtained from classical MDS (correlations above 0.98). The most
correlated results are those of LMDS, interpolation MDS, RMDS (which are almost
indistinguishable), followed by divide-and-conquer MDS, pivot MDS and then fast
MDS. Table 3 displays the time needed to obtain an MDS configuration. Pivot MDS
was the fastest algorithm closely followed by LMDS and interpolation MDS. Then,
divide-and-conquer MDS and fast MDS were slower than the other three previous
methods. Finally, RMDS took around 10 min to obtain an MDS configuration.

Figure 6 shows the MDS configuration for each of the algorithms. In order to
provide a comprehensive figure, we took a random sample of 2000 images from the
following categories: ‘0’, ‘1’, ‘r’ and ‘S’. It can be seen that the six methods gave
similar results. The first dimension separated ‘0’ (rightmost part) from ‘1’ (leftmost
part) and the second one separated ’r’ (top part) from ‘S’ (bottom part).

Table 3 Time (in seconds)
required to obtained the low
dimensional configuration

Algorithm Time

LMDS 96.87

Interpolation MDS 98.55

RMDS 618.67

Pivot MDS 91.76

Divide-and-conquer MDS 168.33

Fast MDS 205.24
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6 Conclusions

In this work, we present six algorithms to obtain an MDS configuration for large
data sets: LMDS, interpolation MDS, RMDS, pivot MDS, divide-and-conquer MDS
and fast MDS. Two of them (interpolation MDS and divide-and-conquer MDS) are
new proposals. We have proved that the distance-based triangulation used in LMDS
coincideswith theGower interpolation formula used in interpolationMDSandRMDS.
In addition, we provide an R package that implements the six MDS algorithms.

We have developed an extensive simulation study to compare the performance of
the six algorithms, both in terms of computational efficiency and the ability to recover
the underlying low dimensional structure of the data. According to the simulations, all
the algorithms provide configurations similar to those eventually given by the classical
MDS algorithm. In particular, the principal coordinates provided by the six algorithms
are highly correlated with those hypothetically obtained from classical MDS (correla-
tions above 0.98). The most correlated results are those of LMDS, interpolationMDS,
RMDS (which are almost indistinguishable), followed by divide-and-conquer MDS,
pivot MDS and then fast MDS.

Additionally, the six MDS algorithms provide good estimations of the principal
coordinates variances, which are known by the simulation design, being pivot MDS
the most accurate, followed by fast MDS, LMDS, interpolation MDS, RMDS and,
finally, divide-and-conquer MDS. The performance of LMDS, interpolation MDS
and RMDS is, again, practically coincident.

Regarding the execution time, a clear difference between algorithms is observed
in our simulation experiments. Interpolation MDS is the fastest method, followed by
LMDS, and RMDS is the slowest. Pivot MDS, divide-and-conquer MDS and fast
MDS show similar execution time.

As a final challenge for the algorithms, we have used them to obtain an MDS
configuration for the real large data set EMNIST (more than 800000 points). Since
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classical MDS algorithm could not be used with this data set, we did not have a
gold standard to compare against. The time needed to obtain the low dimensional
configurations is admissible (always below 3.5 min, except for the RMDS, which
takes 10.3 minutes). In this example, pivot MDS, LMDS and interpolation MDS are
the fastest methods, with elapsed times around 1.5 minutes.

As a global conclusion, the six algorithms are suitable for obtaining lowdimensional
configurations for large data sets, but we recommend to use interpolation MDS, for
several reasons: (i) it is the fastest method in simulations, (ii) it provides satisfactory
results (almost identical to those of LMDS and RMDS), and (iii) it does not incur in
memory problems (an issue that could arise in LMDS and pivot MDS because both
require storing a distance matrix of size � × n).
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