
Advances in Data Analysis and Classification
https://doi.org/10.1007/s11634-024-00590-w

REGULAR ART ICLE

Clustering functional data via variational inference

Chengqian Xian1 · Camila P. E. de Souza1 · John Jewell2 ·
Ronaldo Dias3

Received: 25 January 2023 / Revised: 31 January 2024 / Accepted: 5 March 2024
© Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
Among different functional data analyses, clustering analysis aims to determine under-
lying groups of curves in the dataset when there is no information on the group
membership of each curve. In this work, we develop a novel variational Bayes (VB)
algorithm for clustering and smoothing functional data simultaneously via a B-spline
regression mixture model with random intercepts. We employ the deviance informa-
tion criterion to select the best number of clusters. The proposed VB algorithm is
evaluated and compared with other methods (k-means, functional k-means and two
other model-based methods) via a simulation study under various scenarios. We apply
our proposed methodology to two publicly available datasets. We demonstrate that the
proposed VB algorithm achieves satisfactory clustering performance in both simula-
tion and real data analyses.
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1 Introduction

Functional data analysis (FDA), term first coined by Ramsay and Dalzell (1991),
deals with the analysis of data that are defined on some continuum such as time.
Theoretically, data are in the form of functions, but in practice they are observed
as a series of discrete points representing an underlying curve. Ramsay and Silver-
man (2005) establish a foundation for FDA on topics including smoothing functional
data, functional principal components analysis and functional linear models. Ramsay
et al. (2009) provide a guide for analyzing functional data in R and Matlab using
publicly available datasets. Wang et al. (2016) present a comprehensive review of
FDA, in which clustering and classification methods for functional data are also dis-
cussed. Functional data analysis has been applied to various research areas such as
energy consumption (Lenzi et al. 2017; De Souza et al. 2017; Franco et al. 2023),
rainfall data visualization (Hael et al. 2020), income distribution (Hu et al. 2020),
spectroscopy (Dias et al. 2015; Yang et al. 2021; Frizzarin et al. 2021), and Covid-19
pandemic (Boschi et al. 2021; Souza et al. 2023; Collazos et al. 2023), to mention a
few.

Cluster analysis of functional data aims to determine underlying groups in a set of
observed curves when there is no information on the group label of each curve. As
described in Jacques and Preda (2014), there are three main types of methods used for
functional data clustering: dimension reduction-based (or filtering) methods, distance-
based methods, and model-based methods. Functional data generally belongs to the
infinite-dimensional space, making those clustering methods for finite-dimensional
data ineffective. Therefore, dimension reduction-based methods have been proposed
to solve this problem. Before clustering, a dimension reduction step (also called fil-
tering in James and Sugar, 2003) is carried out by the techniques including spline
basis function expansion (Tarpey and Kinateder 2003) and functional principal com-
ponent analysis (Jones and Rice 1992). Clustering is then performed using the basis
expansion coefficients or the principal component scores, resulting in a two-stage
clustering procedure. Distance-based methods are the most well-known and popular
approaches for clustering functional data since no parametric assumptions are nec-
essary for these algorithms. Nonparametric clustering techniques, including k-means
clustering (Hartigan andWong 1979) and hierarchical clustering (Ward 1963), are usu-
ally applied using specific distances or dissimilarities between curves (Delaigle et al.
2019;Martino et al. 2019; Zambom et al. 2019; Li andMa 2020). It is important to note
that distance-based methods are sometimes equivalent to dimension reduction-based
methods if, for example, distances are computed using the basis expansion coefficients.
Another widely-used approach is model-based clustering, where functional data are
assumed to arise from a mixture of underlying probability distributions. For example,
in Bayesian hierarchical clustering, a common methodology is to assume that the set
of coefficients in the basis expansion representing functional data follow a mixture of
Gaussian distributions (Wang et al. 2016).

Chamroukhi and Nguyen (2019) recently provided a comprehensive review for
model-based clustering of functional data. A common model-based approach is to
represent functional data as a linear combination of basis functions (e.g., B-splines)
and consider a finite regression mixture model (Grün 2019) with the matrix of basis
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function evaluations as the design matrix and a set of basis expansion coefficients
for each mixture component. The estimation and inference of the mixture parameters
as well as the regression (or basis expansion) coefficients are usually conducted via
the Expectation-Maximization (EM) algorithm (Samé et al. 2011; Jacques and Preda
2013; Giacofci et al. 2013; Chamroukhi 2016a; Grün 2019) or Markov Chain Monte
Carlo (MCMC) sampling techniques (Ray and Mallick 2006; Fruhwirth-Schnatter
et al. 2019). An alternative approach to EM and MCMC is the use of variational
inference techniques.

Bayesian variational inference has found versatile applications within the field
of FDA. Variational Bayes for fast approximate inference was applied in functional
regression analysis by Goldsmith et al. (2011). Beyond functional regression, another
pivotal facet of FDA lies in functional data registration, with a growing interest in
the joint clustering and registration of functional data (Zhang and Telesca 2014). A
novel adapted variational Bayes algorithm for smoothing and registration of func-
tional data simultaneously via Gaussian processes was proposed by Earls and Hooker
(2017). Nguyen and Gelfand (2011) considered a random allocation process, namely
the Dirichlet labelling process, to cluster functional data and inferred model parame-
ters by Gibbs sampling and variational Bayes. In a recent development, Rigon (2023)
extended the work of Blei and Jordan (2006) and proposed an enriched Dirichlet mix-
ture model for functional clustering via a variational Bayes algorithm. Rigon (2023)
considered a Bayesian functional mixture model without random effects and intro-
duced a functional Dirichlet multinomial process to allow the estimation of the number
of clusters.

In this paper, we develop a novel variational Bayes algorithm for clustering func-
tional data via a regression mixture model. In contrast to Rigon (2023), we consider
a regression mixture model with random intercepts and take on a two-fold scheme
for choosing the best number of clusters using the deviance information criterion
(Spiegelhalter et al. 2002). We model the raw data, simultaneously obtaining cluster-
ing assignments and cluster-specific smooth mean curves. We compare the posterior
estimation results from our proposed VB with the ones from MCMC. Our pro-
posed method is implemented in R, and codes are available at https://github.com/
chengqianxian/funclustVI.

The remainder of the paper is organized as follows. Section2 presents an overview
of variational inference, our two model settings and proposed algorithms. In Sect. 3,
we conduct simulation studies to assess the performance of our methods under various
scenarios. In Sect. 4,we apply our proposedmethodology to real datasets.A conclusion
of our study and a discussion on the proposed method are provided in Sect. 5.

2 Methodology

2.1 Overview of variational inference

Variational inference (VI) is a method from machine learning that approximates the
posterior density in a Bayesian model through optimization (Jordan et al. 1999; Wain-
wright et al. 2008). Blei et al. (2017) provide an interesting review of VI from a
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statistical perspective, including some guidance on when to use MCMC or VI. For
example, one may apply VI to large datasets and scenarios where the interest is to
develop probabilistic models. In contrast, one may apply MCMC to small datasets for
more precise samples but with a higher computational cost. In Bayesian inference,
our goal is to find the posterior density, denoted by p(·|y), where y corresponds to the
observed data. One can apply Bayes’ theorem to find the posterior, but this might not
be easy if there are many parameters and non-conjugate prior distributions. Therefore,
one can aim to find an approximation to the posterior. To be specific, one wants to find
q∗ coming from a family of possible densities Q to approximate p(·|y), which can be
solved in terms of an optimization problem with criterion f as follows:

q∗ = argmin
q∈Q

f (q(·), p(·|y)).

The criterion f measures the closeness between the possible densities q in the
family Q and the exact posterior density p. When we consider the Kullback–Leibler
(KL) divergence (Kullback and Leibler 1951) as criterion f , i.e.,

q∗ = argmin
q∈Q

KL(q(·)‖p(·|y)), (1)

this optimization-based technique to approximate the posterior density is called Vari-
ational Bayes (VB). Jordan et al. (1999) and Blei et al. (2017) show that minimizing
the KL divergence is equivalent to maximizing the so-called evidence lower bound
(ELBO). Let θ be a set of latent model variables, the KL divergence is defined as

KL(q(·)‖p(·|y)) :=
∫

q(θ) log
q(θ)

p(θ |y)dθ,

and it can be shown that

∫
q(θ) log

q(θ)

p(θ |y)dθ = log p(y) −
∫

q(θ) log
p(θ, y)

q(θ)
dθ

where the last term is the ELBO. Since log p(y) is a constant with respect to q(θ),
this changes the problem in (1) to

q∗ = argmax
q∈Q

ELBO(q). (2)

We, therefore, derive a VB algorithm for clustering functional data. We consider
the mean-field variational family in which the latent variables are mutually indepen-
dent, and a distinct factor governs each of them in the variational density. Finally, we
apply the coordinate ascent variational inference algorithm (Bishop 2006) to solve the
optimization problem in (2).
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2.2 Assumptions andmodel settings

Let Yi , {i = 1, . . . , N }, denote the observed data from N curves, and for each curve
i there are ni evaluation points, ti1, ..., tini , so that Yi = (Yi (ti1), . . . ,Yi (tini ))

T . Let
Zi be a hidden variable taking values in {1, . . . , K } that determines which cluster Yi

belongs to. We assume Z1, . . . , ZN are independent and identically distributed with
P(Zi = k) = πk, k = 1, ..., K , and

∑K
k=1 πk = 1. For the i th curve from cluster

k, there is a smooth function fk evaluated at ti = (ti1, ..., tini )
T so that fk(ti ) =

( fk(ti1), . . . , fk(tini ))
T . Given that Zi = k, we consider two different models for Yi

based on the correlation structure of the errors. InModel 1, described in Sect. 2.2.1, we
assume independent errors, and in Model 2, described in Sect. 2.2.2, we add a random
intercept to induce a correlation between observations within each curve.

2.2.1 Model 1

Let us assume that

Yi | (Zi = k) = fk(ti ) + σkεi (3)

with conditionally independent errors ε1, ..., εN , where εi = (εi1, ..., εini ) and
εi ∼ MV N (0, Ini ), i = 1, ..., N , where Ini is an identity matrix of size ni and MV N
represents the multivariate normal distribution. The functions f1, . . . , fK can be writ-
ten as a linear combination of M known B-spline basis functions, that is, fk(ti j ) =∑M

m=1 Bm(ti j )φkm, j = 1, ..., ni , such that fk(ti ) = Bi(ni×M)φk(M×1), i =
1, ..., N , k = 1, ..., K , Bi is an ni × M matrix for the i th curve whose each entry
( j,m) is themth basis function evaluated at ti j , Bm(ti j ), and φk is the basis coefficient
vector for cluster k. Therefore,

Yi | (Zi = k) ∼ MV N (Biφk, σ
2
k Ini ), i = 1, ..., N , k = 1, ..., K .

The proposed model is within the framework of a mixture of linear models, also
known as the finite regression mixture model (Chamroukhi and Nguyen 2019). The
finite regression mixture model offers a statistical framework for characterizing com-
plex data from various unknown classes of conditional probability distributions (Peel
and MacLahlan 2000; Melnykov and Maitra 2010; Chamroukhi 2016a; Grün 2019;
Fruhwirth-Schnatter et al. 2019; McLachlan et al. 2019; Rigon 2023). In our model,
we specifically consider Gaussian regression mixtures to deal with functional data that
originate from a finite number of groups and are represented through a linear com-
bination of B-spline basis functions plus some Gaussian random noise (Chamroukhi
2016b). Our model aligns with the classical finite Gaussian regression mixture model
of order K , which can be expressed as follows:

f (Yi |Bi ;φ1, ...,φK , σ 2
1 , ..., σ 2

K ) =
K∑

k=1

πk g(Yi ;Biφk, σ
2
k Ini )
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where g is the density function of a MV N (Biφk, σ
2
k Ini ).

In our proposed models, we employ B-spline basis functions to represent and
smooth functional data. However, it is worth noting that alternative basis systems,
such as the Fourier bases, wavelets, and polynomial bases can also be considered for
this purpose (Ramsay and Silverman 2005). As discussed in Chamroukhi and Nguyen
(2019), the B-spline basis system offers greater flexibility, allowing researchers to tai-
lor their choice of B-spline order and the number of knots to suit their specific needs.
For smoothing functional data, cubic B-splines, corresponding to an order of four, are
sufficient and can provide satisfactory performance (Chamroukhi and Nguyen 2019).
As in previous studies of functional data, we use cubic B-splines with equally spaced
knots and assume that the number of basis functions M is predefined and known (Dias
et al. 2009, 2015; Lenzi et al. 2017; Franco et al. 2023).

Let Z = (Z1, . . . , ZN )T , φ = {φ1, . . . ,φK }, π = (π1, . . . , πK )T and τ =
(τ1, . . . , τK )T , where τk = 1/σ 2

k is the precision parameter. We take on a Bayesian
approach to infer Z, φ, π and τ , and assume the following marginal prior distributions
for parameters in Model 1:

• π ∼ Dirichlet(d0) where d0 is the parameter vector for a Dirichlet distribution;
• Zi |π ∼ Categorical(π);
• φk ∼ MV N (m0

k , s
0I) with precision v0 = 1/s0 and I an M × M identity matrix;

• τk = 1/σ 2
k ∼ Gamma(a0, r0), k = 1, ..., K .

We develop a novel VB algorithm which, for given data, approximates the posterior
distribution by finding the variational distribution (VD), q(Z,π ,φ, τ ), with small-
est KL divergence to the posterior distribution p(Z,π ,φ, τ |Y). Minimizing the KL
divergence is equivalent to maximizing the ELBO given by

ELBO(q) = E
[
log p(Y,Z,π ,φ, τ )

] − E
[
log q(Z,π ,φ, τ )

]
. (4)

where log p(Y,Z,π ,φ, τ ) is the complete data log-likelihood.

2.2.2 Model 2

We extend the model in Sect. 2.2.1 by adding a curve-specific random intercept ai
which induces correlation among observations within each curve. The model now
becomes:

Yi j | (Zi = k) = ai + fk(ti j ) + σkεi j (5)

where εi j ∼ N (0, 1) and ai ∼ N (0, σ 2
a ) with ai and εi j independent for all i and j .

We can write Model 2 in a vector form as

Yi | (Zi = k) = ai1ni + fk(ti ) + σkεi , i = 1, 2, ..., N ,

in which 1ni is a column vector of length ni with all elements equal to 1, and further
assume that εi ∼ MV N (0, Ini ) and ai ∼ N (0, σ 2

a ). This model can be rewritten as a
two-step model:
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Yi | (Zi = k, ai ) ∼ MV N (Biφk + ai1ni , σ
2
k Ini )

and ai ∼ N (0, σ 2
a ), i = 1, 2, ..., N . Let a = (a1, . . . , aN )T and τa = 1/σ 2

a . We
assume the following marginal prior distributions for parameters in Model 2:

• π ∼ Dirichlet(d0);
• Zi |π ∼ Categorical(π);
• φk ∼ MV N (m0

k , s
0I) with precision v0 = 1/s0;

• τk = 1/σ 2
k ∼ Gamma(b0, r0), k = 1, ..., K ;

• τa = 1/σ 2
a ∼ Gamma(α0, β0);

• ai |τa ∼ N (0, σ 2
a ) with τa = 1/σ 2

a .

As in Model 1, we develop a VB algorithm to infer Z, φ, π , τ , a and τa . The ELBO
under Model 2 is given by

ELBO(q) = Eq∗
[
log p(Y,Z,π ,φ, τ , a, τa)

] − Eq∗
[
log q(Z,π ,φ, τ , a, τa)

]
.

2.3 Steps of the VB algorithm

This section describes the main steps of the VB algorithm under Model 2 for inferring
Z, φ, π , τ , a and τa . The proposed VB is summarized in Algorithm 1. The VB
algorithm’smain steps and theELBOcalculation forModel 1 canbe found inAppendix
A.

First, we assume that the variational distribution belongs to the mean-field varia-
tional family, where Z, φ, π τ , a and τa are mutually independent and each governed
by a distinct factor in the variational density, that is:

q(Z,π ,φ, τ , a, τa) =
N∏
i=1

q(Zi ) ×
K∏

k=1

q(φk) ×
K∏

k=1

q(τk)

×q(π) ×
N∏
i=1

q(ai ) × q(τa). (6)

We then derive a coordinate ascent algorithm to obtain the VD (Jordan et al. 1999; Blei
et al. 2017). That is, we derive an update equation for each term in the factorization (6)
by calculating the expectation of log p(Y,Z,π ,φ, τ , a, τa) (the joint distribution of
the observed data Y, hidden variables Z and parameters π ,φ, τ , a, τa , which is also
called complete-data log-likelihood) over the VD of all random variables except the
one of interest, where

log p(Y,Z,π ,φ, τ , a, τa) = log p(Y|Z,φ, τ , a) + log p(Z|π)

+ log p(φ) + log p(τ ) + log p(π)

+ log p(a|τa) + log p(τa). (7)
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So, for example, the optimal update equation for q(π), q∗(π), is given by calculating

log q∗(π) = E−π (log p(Y,Z,π ,φ, τ , a, τa)) + constant,

where −π indicates that the expectation is taken with respect to the VD of all other
latent variables but π , i.e., Z,φ, τ , a and τa . In what follows we derive the update

equation for each component in our model. For convenience, we use
+≈ to denote

equality up to a constant additive factor.

2.3.1 VB update equations

(i) Update equation for q(π)

Since only the second term, log p(Z|π), and the fifth term, log p(π), in (7) depend
on π , the update equation q∗(π) can be derived as follows.

log q∗(π)
+≈ E−π (log p(Y,Z,π ,φ, τ , a, τa))

+≈ E−π (log p(Z|π)) + E−π (log p(π))

= E−π

[
N∑
i=1

K∑
k=1

I(Zi = k) logπk

]
+ log p(π)

+≈
K∑

k=1

logπk

[
N∑
i=1

Eq∗(Zi ) (I(Zi = k))

]
+

K∑
k=1

[d0k − 1] logπk

=
K∑

k=1

logπk

[(
N∑
i=1

Eq∗(Zi ) (I(Zi = k)) + d0k

)
− 1

]
.

Therefore,q∗(π) is aDirichlet distributionwith parametersd∗ = (d∗
1 , . . . , d∗

K ),where

d∗
k = d0k +

N∑
i=1

Eq∗(Zi ) (I(Zi = k)) . (8)

(ii) Update equation for q(Zi )

log q∗(Zi )
+≈ E−Zi (log p(Y,Z,π ,φ, τ , a, τa))
+≈ E−Zi (log p(Y|Z,φ, τ , a)) + E−Zi (log p(Z|π)) (9)

Note that we can write log p(Y|Z,φ, τ , a) and log p(Z|π) into two parts, one that
depends on Zi and one that does not, that is:
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log p(Y|Z,φ, τ , a) =
K∑

k=1

I(Zi = k) log p(Yi |Zi = k,φk, τk, ai )

+
∑
l:l �=i

K∑
k=1

I(Zl = k) log p(Yl |Zl = k,φk, τk, al)

log p(Z|π) =
K∑

k=1

I(Zi = k) logπk +
∑
l:l �=i

K∑
k=1

I(Zl = k) logπk .

Now when taking the expectation in (9), the parts that do not depend on Zi in
log p(Y|Z,φ, τ , a) and log p(Z|π) will be added as a constant in the expectation.
So, we obtain

log q∗(Zi )
+≈

K∑
k=1

I(Zi = k)
{ni
2
Eq∗(τk )(log τk)

−1

2
Eq∗(τk )(τk)Eq∗(φk )·q∗(ai )

[
(Yi − Biφk − ai1ni )

T (Yi − Biφk − ai1ni )
]

+Eq∗(π)(logπk)
}

Therefore, q∗(Zi ) is a categorical distribution with parameters

p∗
ik = eαik∑K

k=1 e
αik

, (10)

where

αik = ni
2
Eq∗(τk )(log τk)

−1

2
Eq∗(τk )(τk)Eq∗(φk )q∗(ai )

[
(Yi − Biφk − ai1ni )

T (Yi − Biφk − ai1ni )
]

+Eq∗(π)(logπk).

Note that all expectations involved in the VB update equations are calculated in
Sect. 2.3.2.

(iii) Update equation for q(φk)

Only the first term, log p(Y|Z,φ, τ , a), and the third term, log p(φ), in (7)
depend on φk . In addition, similarly to the previous case for q∗(Zi ), we can write
log p(Y|Z,φ, τ , a) and log p(φ) in two parts, one that depends on φk and the other
that does not. Therefore, we obtain

log q∗(φk)
+≈ E−φk (log p(Y|Z,φ, τ , a)) + E−φk

log p(φ)

+≈ Eq∗(τk )(log τk)

N∑
i=1

ni
2
Eq∗(Zi )[I(Zi = k)]
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− 1

2
Eq∗(τk )(τk)

N∑
i=1

{
Eq∗(Zi )[I(Zi = k)]

×Eq∗(ai )[(Yi − Biφk − ai1ni )
T (Yi − Biφk − ai1ni )]

}
(11)

+M

2
log v0 − 1

2
v0(φk − m0

k)
T (φk − m0

k) (12)

All expectations are defined inSect. 2.3.2, but note that, for example,Eq∗(Zi )[I(Zi =
k)] = p∗

ik and

Eq∗(ai )[(Yi − Biφk − ai1ni )
T (Yi − Biφk − ai1ni )]

+≈ (Yi − Biφk − μ∗
ai 1ni )

T (Yi − Biφk − μ∗
ai 1ni )

where μ∗
ai is the posterior mean of q∗(ai ) which is derived later. We focus on the

quadratic forms that appear in (11) and (12). Let Y∗
i = Yi − μ∗

ai 1ni , we can write:

log q∗(φk)
+≈ −1

2
Eq∗(τk )(τk)

N∑
i=1

p∗
ik(Y

∗
i − Biφk)

T (Y∗
i − Biφk)

− 1

2
v0(φk − m0

k)
T (φk − m0

k)

= − 1

2
Eq∗(τk )(τk)

N∑
i=1

p∗
ik

[
Y∗T
i Y∗

i − 2Y∗T
i Biφk + φT

k B
T
i Biφk

]

−1

2
v0

[
φT
k φk − 2(m0

k)
Tφk + (m0

k)
Tm0

k

]

+≈ −1

2
φT
k

[
v0I + Eq∗(τk )(τk)

N∑
i=1

p∗
ikB

T
i Bi

]
φk

+
[
v0(m0

k)
T + Eq∗(τk )(τk)

N∑
i=1

p∗
ikY

∗T
i Bi

]
φk . (13)

Now let


∗
k =

[
v0I + Eq∗(τk )(τk)

N∑
i=1

p∗
ikB

T
i Bi

]−1

. (14)

We can then rewrite (13) as

−1

2
φT
k 
∗−1

k φk − 1

2
(−2)

[
v0(m0

k)
T + Eq∗(τk )(τk)

N∑
i=1

p∗
ikY

∗T
i Bi

]

∗

k

∗−1
k φk .
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Therefore, q∗(φk) is MV N (m∗
k , 


∗
k ) with 
∗

k as in (14) and mean vector

m∗
k =

[
v0(m0

k)
T + Eq∗(τk )(τk)

N∑
i=1

p∗
ikY

∗T
i Bi

]

∗

k . (15)

(iv) Update equation for q(τk)

Similarly to the calculations in iii) we can write

log q∗(τk)
+≈ log τk

N∑
i=1

ni
2
p∗
ik

−1

2
τk

N∑
i=1

p∗
ikEq∗(φk )·q∗(ai )

[
(Yi − Biφk − ai1ni )

T (Yi − Biφk − ai1ni )
]

+ (b0 − 1) log τk − r0τk

Therefore, q∗(τk) is a Gamma distribution with parameters

A∗
k = b0 +

N∑
i=1

ni
2
p∗
ik (16)

and

R∗
k = r0 + 1

2

N∑
i=1

{
p∗
ikEq∗(φk )·q∗(ai )

[
(Yi − Biφk − ai1ni )

T

×(Yi − Biφk − ai1ni )
]}

. (17)

(v) Update equation for q(ai )

log q∗(ai )
+≈ E−ai (log p(Y,Z,π ,φ, τ , a, τa))
+≈ E−ai (log p(Y|Z,φ, τ , a)) + E−ai (log p(a|τa))
+≈ E−ai

[
K∑

k=1

I(Zi = k) log p(Yi |Zi = k,φk, τk, ai )

]

+E−ai

[
K∑

k=1

I(Zi = k) log p(ai |τa)
]

+≈
K∑

k=1

p∗
ik

{ni
2
Eq∗(τk ) log τk
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−1

2
Eq∗(τk )τkEq∗(φk )

[
(Yi − Biφk − ai1ni )

T (Yi − Biφk − ai1ni )
]

−1

2
a2i Eq∗(τa)τa

}

+≈
K∑

k=1

p∗
ik

{
−1

2
Eq∗(τk )τk

[
(Yi − Bim∗

k − ai1ni )
T (Yi − Bim∗

k − ai1ni )
]

−1

2
a2i Eq∗(τa)τa

}

Let Y∗
ik = Yi − Bim∗

k , then

log q∗(ai )
+≈

K∑
k=1

p∗
ik

{
−1

2
Eq∗(τk )τk

[
(Y∗

ik − ai1ni )
T (Y∗

ik − ai1ni )
]

− 1

2
a2i Eq∗(τa)τa

}

+≈ −ni
2
a2i

K∑
k=1

p∗
ikEq∗(τk )τk + ai

K∑
k=1

p∗
ikEq∗(τk )τk1

T
niY

∗
ik − 1

2
a2i Eq∗(τa)τa

= −1

2
a2i

⎡
⎣ni

K∑
k=1

p∗
ikEq∗(τk )τk + Eq∗(τa)τa

⎤
⎦ + ai

K∑
k=1

p∗
ikEq∗(τk )τk1

T
niY

∗
ik

Let

σ 2∗
ai =

(
ni

K∑
k=1

p∗
ikEq∗(τk )τk + Eq∗(τa)τa

)−1

(18)

and

μ∗
ai = σ 2∗

ai

K∑
k=1

p∗
ikEq∗(τk )τk1

T
niY

∗
ik (19)

Then q∗(ai ) is N (μ∗
ai , σ

∗2
ai ).

(vi) Update equation for q(τa)

log q∗(τa)
+≈ E−τa (log p(a|τa) + log p(τa))

+≈ E−τa

⎛
⎝ N∑
i=1

log p(ai |τa)
⎞
⎠ + (α0 − 1) log τa − β0τa

+≈ N

2
log τa − 1

2
τa

N∑
i=1

Eq∗(ai )a
2
i + (α0 − 1) log τa − β0τa

=
(

α0 + N

2
− 1

)
log τa −

⎛
⎝β0 + 1

2

N∑
i=1

Eq∗(ai )a
2
i

⎞
⎠ τa
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Let

α∗ = α0 + N

2

and

β∗ = β0 + 1

2

N∑
i=1

Eq∗(ai )a
2
i (20)

q∗(τa) is Gamma(α∗, β∗).

2.3.2 Expectations

In this section, we calculate the expectations in the update equations derived in
Sect. 2.3.1 for each component in the VD. Let � be the digamma function defined
as

�(x) = d

dx
log�(x), (21)

which can be easily calculated via numerical approximation. The values of the expec-
tations taken with respect to the approximated distributions are given as follows.

Eq∗(Zi )[I(Zi = k)] = p∗
ik (22)

Eq∗(τk )(τk) = A∗
k

R∗
k

(23)

Eq∗(τk )(log τk) = �(A∗
k ) − log R∗

k (24)

Eq∗(π)(logπk) = �(d∗
k ) − �

⎛
⎝ K∑
k=1

d∗
k

⎞
⎠ (25)

Eq∗(τa)(τa) = α∗
β∗ (26)

Eq∗(τa)(log τa) = �(α∗) − logβ∗ (27)

Eq∗(ai )a
2
i = σ∗2

ai + μ∗2
ai (28)

In addition, using the fact that E(XTX) = trace[Var(X)] + E(X)TE(X), we obtain

Eq∗(φk )

[
(Yi − Biφk − ai1ni )

T (Yi − Biφk − ai1ni )
]

= trace
(
Bi


∗
kB

T
i

)

+ (Yi − Bim∗
k − ai1ni )

T (Yi − Bim∗
k − ai1ni ), (29)
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and

Eq∗(φk )·q∗(ai )
[
(Yi − Biφk − ai1ni )

T (Yi − Biφk − ai1ni )
]

= Eq∗(ai )
[
Eq∗(φk )

[
(Yi − Biφk − ai1ni )

T (Yi − Biφk − ai1ni )
]]

= Eq∗(ai )
[
trace

(
Bi


∗
kB

T
i

)
+ (Yi − Bim∗

k − ai1ni )
T (Yi − Bim∗

k − ai1ni )
]

= trace
(
Bi


∗
kB

T
i

)
+ niσ

∗2
ai

+ (Yi − Bim∗
k − μ∗

ai 1ni )
T (Yi − Bim∗

k − μ∗
ai 1ni ). (30)

2.4 ELBO calculation

In this section, we show how to calculate the ELBO under Model 2, which is the
convergence criterion of our proposed VB algorithm and is updated at the end of each
iteration until convergence. Equation (6) gives the ELBO:

ELBO(q) = Eq∗
[
log p(Y,Z,π ,φ, τ , a, τa)

] − Eq∗
[
log q(Z,π ,φ, τ , a, τa)

]
,

where

Eq∗
[
log p(Y,Z,π ,φ, τ , a, τa)

] = Eq∗
[
log p(Y|Z,φ, τ , a)

] + Eq∗
[
log p(Z|π)]

+Eq∗
[
log p(φ)

] + Eq∗
[
log p(τ )

]
+Eq∗

[
log p(φ)] + Eq∗

[
log p(a|τa)

]
+Eq∗

[
log p(τa)

]
,

and

Eq∗
[
log q(Z,π ,φ, τ , a, τa)

] = Eq∗
[
log q(Z)

] + Eq∗
[
log q(φ)

] + Eq∗
[
log q(π)

]
+Eq∗

[
log q(τ )

] + Eq∗
[
log q(a)

] + Eq∗
[
log q(τa)

]
.

Therefore, we can write the ELBO as the summation of 7 terms:

ELBO(q) = Eq∗
[
log p(Y|Z,φ, τ , a)

] + di f fZ + di f fφ
+ di f fτ + di f fπ + di f fa + di f fτa (31)

where,

di f fZ = Eq∗
[
log p(Z|π)

] − Eq∗
[
log q(Z)

]
.

Specifically,

di f fZ =
N∑
i=1

K∑
k=1

p∗
ikEq∗(π)(logπk) −

N∑
i=1

K∑
k=1

p∗
ik log p∗

ik . (32)
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The other terms in (31) are calculated as follows:

di f fφ = −1

2

K∑
k=1

v0k {trace
(

∗

k

) + (m∗
k − m0

k)
T (m∗

k − m0
k)} + 1

2

K∑
k=1

log |
∗
k |,

di f fτ =
K∑

k=1

{(b0 − 1)Eq∗(τk )(log τk) − r0Eq∗(τk )(τk)}

−
K∑

k=1

{A∗
k log R

∗
k − log�(A∗

k)

+ (A∗
k − 1)Eq∗(τk )(log τk) − R∗

kEq∗(τk )(τk)}, (33)

di f fπ ≡
K∑

k=1

(d0k − d∗
k )Eq∗(π)(logπk),

di f fa = −1

2
Eq∗(τa)τa

N∑
i=1

Eq∗(ai )a
2
i +

N∑
i=1

log σ ∗
ai ,

di f fτa = (α0 − 1)Eq∗(τa)(log τa) − β0
Eq∗(τa)τa

−α∗ logβ∗ − (α∗ − 1)Eq∗(τa)(log τa) + β∗
Eq∗(τa)τa

= (α0 − α∗)Eq∗(τa)(log τa) − (β0 − β∗)Eq∗(τa)τa − α∗ logβ∗

and

Eq∗
[
log p(Y|Z,φ, τ , a)

]

=
N∑
i=1

K∑
k=1

p∗
ik

{ni
2
Eq∗(τk )(log τk)

−1

2

A∗
k

R∗
k
Eq∗(φk )·q∗(ai )

[
(Yi − Biφk − ai1ni )

T (Yi − Biφk − ai1ni )
]}

.

Therefore, at iteration c, we calculate ELBO(c) using all parameters obtained at the
end of iteration c. Convergence of the algorithm is achieved if ELBO(c) −ELBO(c−1)

is smaller than a given threshold. It is important to note that we use the fact that
limp∗

ik→0 p
∗
ik log p∗

ik = 0 to avoid numerical issues when calculating (32). Numer-
ical issues also exist in calculating the term {A∗

k log R
∗
k − log�(A∗

k) + (A∗
k −

1)Eq∗(τk )(log τk) − R∗
kEq∗(τk )(τk)} in (33), so we will approximate it by the follow-

ing digamma and log-gamma approximations. Note that we use (23) and (24) for
Eq∗(τk )(τk) and Eq∗(τk )(log τk), respectively.

(1) digamma approximation based on asymptotic expansion:

�(A∗
k) ≈ log A∗

k − 1/(2A∗
k).
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(2) log-gamma Stirling’s series approximation:

log�(A∗
k) ≈ A∗

k log(A
∗
k) − A∗

k − 1

2
log(A∗

k).

Therefore, plugging in these two approximations, we obtain

A∗
k log R

∗
k − log�(A∗

k) + (A∗
k − 1)Eq∗(τk )(log τk) − R∗

kEq∗(τk )(τk)

= A∗
k log R

∗
k − log�(A∗

k) + (A∗
k − 1)(�(A∗

k) − log R∗
k ) − R∗

k
A∗
k

R∗
k

≈ 1

2
log A∗

k + 1

2A∗
k

− 1

2

+≈ 1

2
log A∗

k + 1

2A∗
k

= 1

2

(
log A∗

k + 1

A∗
k

)

3 Simulation studies

In Sect. 3.1, we present the metrics used to evaluate the performance our proposed
methodology. Sections3.2 and 3.3 present the simulation scenarios and results for
Model 1 and Model 2, respectively.

3.1 Performancemetrics

We evaluate the clustering performance of our proposed algorithm by two metrics:
mismatches (Zambom et al. 2019) and V-measure (Rosenberg and Hirschberg 2007).
Mismatch rate is the proportion of subjects misclassified by the clustering procedure.
In our case, each subject corresponds to a curve in our functional dataset. V-measure, a
score between zero and one, evaluates the subject-to-cluster assignments and indicates
the homogeneity and completeness of a clustering procedure result. Homogeneity is
satisfied if the clustering procedure assigns only those subjects that are members of
a single group to a single cluster. Completeness is symmetrical to homogeneity, and
it is satisfied if all those subjects that are members of a single group are assigned to
a single cluster. The V-measure is one when all subjects are assigned to their correct
groups by the clustering procedure. One may also consider alternative metrics to
evaluate clustering performance, such as the Rand index (Rand 1971) and the mutual
information (Cover 1999). The Rand index measures the similarity between two data
partitions by counting the number of pairs of observations that are either correctly
grouped together (i.e., true positives) or correctly separated (i.e., true negatives) in both
partitions. Mutual information, on the other hand, quantifies the information shared
between two data partitions. Along with the V-measure, these metrics are commonly
used for clustering and partition evaluation, but they each have different mathematical
formulations and emphasize different aspects of clustering performance.

For comparison purposes, we also investigate the performance, in terms of mis-
match and V-measure, of the classical clustering algorithms including k-means for
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Algorithm 1: Clustering functional data via variational inference with random
intercepts
Data: N original curves with ni evaluation points for the i th curve and the Bi matrix containing the

evaluation values of the basis functions, i = 1, ..., N ; number of clusters K ; values of
hyperparameters: d0, m0

k , k = 1, ..., K , s0, b0, r0, α0, β0; convergence threshold and
maximum number of iterations

Result: VB estimated mean curves for each cluster and the cluster index for each original curve
1 Initialization: initialize R∗

k , μ
∗
a and β∗ with arbitrary values (e.g., R∗

k = r0, μ∗
a = 0, β∗ = β0) and

p∗
ik from k-means, and set c = 0;

2 while c < maximum number of iterations and difference of ELBO > convergence threshold do
3 α∗ = α0 + N

2 ;
4 repeat
5 c = c + 1;

6 update A∗(c)
k using p∗(c−1)

1k , . . . , p∗(c−1)
Nk with equation (16);

7 update 

∗(c)
k using A∗(c)

k , R∗(c−1)
k and p∗(c−1)

1k , . . . , p∗(c−1)
Nk with equations (14) and (23);

8 update m∗(c)
k using 


∗(c)
k , A∗(c)

k , R∗(c−1)
k , μ∗(c−1)

a and p∗(c−1)
1k , . . . , p∗(c−1)

Nk with
equations (15) and (23);

9 update σ
∗2(c)
ai using A∗(c)

k , R∗(c−1)
k , α∗, β∗(c−1) and p∗(c−1)

ik , . . . , p∗(c−1)
i K with equations

(18), (23) and (26) ;

10 update μ
∗(c)
ai using σ

∗2(c)
ai , A∗(c)

k , R∗(c−1)
k and p∗(c−1)

ik , . . . , p∗(c−1)
i K with equations (19)

and (23);

11 update R∗(c)
k usingm∗(c)

k , 
∗(c)
k , σ∗2(c)

ai , μ∗(c)
ai and p∗(c−1)

1k , . . . , p∗(c−1)
Nk with equations

(17) and (30);

12 update β∗(c) using σ
∗2(c)
ai and μ

∗(c)
ai with equations (20) and (28);

13 update d∗(c) using p∗(c−1)
1k , . . . , p∗(c−1)

Nk with equations (8) and (22);

14 update p∗(c)
1k , . . . , p∗(c)

Nk using A∗(c)
k , R∗(c)

k , d∗(c), σ∗2(c)
ai , μ∗(c)

ai , m∗(c)
k and 


∗(c)
k with

equations (10), (23), (24), (25) and (30);

15 calculate the current ELBO, ELBO(c) using equation (31) ;

16 calculate difference of ELBO = ELBO(c) − ELBO(c−1);
17 until maximum iteration is achieved or the ELBO converges;
18 end

raw data (discrete observed points), and k-means for functional data (referred to as
functional k-means, Febrero-Bande and de la Fuente (2012)), and two other model-
based algorithms: funFEM (Bouveyron et al. 2015) and SaS-Funclust (Centofanti
et al. 2023). The funFEMmethod was proposed for the inference of the discriminative
functional mixture model to cluster functional data via the EM algorithm. The SaS-
Funclust method, short for sparse and smooth functional clustering, was developed to
facilitate sparse clustering for functional data via a functional Gaussian mixture model
and penalized maximum likelihood estimation.

To further evaluate the performance of the proposed VB algorithm in terms of
the estimated mean curves, we calculate the empirical mean integrated squared error
(EMISE) for each cluster in each simulation scenario. For simplicity, we generate
curves with equal number of observed values, that is n, in our simulation study. The
EMISE is obtained as follows:
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EMISEk = T

n

n∑
j=1

EMSEk(t j ), (34)

where T is the curve evaluation interval length, n is total number of observed evalu-
ation points, and the empirical mean squared error (EMSE) at point t j for cluster k,
EMSEk(t j ), is given by

EMSEk(t j ) = 1

S

S∑
s=1

[
fk(t j ) − f̂ sk (t j )

]2
,

in which s corresponds to the sth simulated dataset among S datasets in total, fk(t j )
is the value of the true mean function in cluster k evaluated at point t j and f̂ sk (t j ) is
its corresponding estimated value for the sth simulated dataset. The estimated value
f̂ sk (t j ) is calculated using theB-spline basis expansionwith coefficients corresponding
the to posterior mean (15) obtained at the convergence of the VB algorithm.

3.2 Simulation study onModel 1

In Sects. 3.2.1 and 3.2.2, we first conduct simulation studies for Model 1 which com-
prises six different scenarios, five of which have three clusters (K = 3) while the
last scenario has four clusters (K = 4). For each simulation scenario, we generate 50
datasets and apply the proposed VB algorithm to each dataset, considering the number
of basis functions to be six except for Scenario 5, which uses 12 basis functions. The
ELBO convergence threshold is 0.01, with a maximum of 100 iterations. We use the
clustering results of k-means to initialize p∗

ik in our VB algorithm.
We further conduct simulation studies on Model 1 to investigate the performance

of the VB algorithm, including a prior sensitivity analysis in Sect. 3.2.3, choice of the
number of clusters in Sect. 3.2.4 and misspecification of the type of basis functions
in Sect. 3.2.5. We compare the posterior estimation results from VB to the ones from
MCMC in Sect. 3.2.6.

3.2.1 Simulation scenarios

Scenarios 1 and 2 are adopted from Zambom et al. (2019). Each dataset is generated
from 3 possible clusters (k = 1, 2, 3) with N = 50 curves per cluster. For each curve,
we assume there are n = 100 observed values across a grid of equally spaced points
in the interval [0, π/3].
Scenario 1, K = 3:

Yik(t j ) = ai + bk + ck sin(1.3t j ) + t3j + δi j ; i = 1, ..., 50; j = 1, ..., 100; k = 1, 2, 3,

where Yik(t j ) denotes the value at point t j of the i th curve from cluster k, ai ∼
U (−1/4, 1/4), δi j ∼ N (0, 0.42), b1 = 0.3, b2 = 1, b3 = 0.2, c1 = 1/1.3, c2 =
1/1.2, and c3 = 1/4.
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Table 1 Coefficient vectors of six B-spline basis functions for each cluster in Scenarios 3 and 4

φk Scenario 3 Scenario 4
φk1 φk2 φk3 φk4 φk5 φk6 φk1 φk2 φk3 φk4 φk5 φk6

k = 1 1.5 1 1.8 2 1 1.5 1.5 1 1.6 1.8 1 1.5

k = 2 2.8 1.4 1.8 0.5 1.5 2.5 1.8 0.6 0.4 2.6 2.8 1.6

k = 3 0.4 0.6 2.4 2.6 0.1 0.4 1.2 1.8 2.2 0.8 0.6 1.8

Scenario 2, K = 3:

Yik(t j ) = ai + bk exp(ckt j ) − t3j + δi j ; i = 1, ..., 50; j = 1, ..., 100; k = 1, 2, 3,

where Yik(t j ) denotes the value at point t j of the i th curve from cluster k, ai ∼
U (−1/4, 1/4), δi j ∼ N (0, 0.32), b1 = 1/1.8, b2 = 1/1.7, b3 = 1/1.5, c1 = 1.1,
c2 = 1.4, and c3 = 1.5.

In Scenarios 3 and 4, each dataset is also generated considering three clusters
(k = 1, 2, 3) with 50 curves each. Themean curve of the functional data in each cluster
is generated from a pre-specified linear combination of B-spline basis functions. The
number of basis functions is the same across clusters but the coefficients of the linear
combination are different, one set per cluster (see Table 1). We apply the function
create.bspline.basis in the R package fda to generate six B-spline basis functions of
order 4, Bl(·), l = 1, ..., 6, evaluated on equally spaced points, t j , j = 1, ..., 100, in
the interval [0, 1].
Scenarios 3 and 4, K = 3:

Yik(t j ) =
6∑

l=1

Bl(t j )φkl + δi j ; i = 1, ..., 50; j = 1, ..., 100; k = 1, 2, 3,

where Yik(t j ) denotes the value at point t j of the i th curve from cluster k and
δi j ∼ N (0, 0.42). Table 1 presents the vector of coefficients for each cluster k,
φk = (φk1, . . . , φk6)

T , used in Scenarios 3 and 4. Figure1 illustrates the true mean
curves for the three clusters and their corresponding basis functions for Scenarios 3
and 4.

Scenario 5 (K = 3) is based on one of the simulation scenarios used in Dias
et al. (2009) in which the curves mimic the energy consumption of different types of
consumers in Brazil. There are 50 curves per cluster and for each curve we generate
96 points based on equally spaced time points, t j , j = 1, ..., 96 in the interval [0, 24]
(corresponding to one observation every 15min over a 24-hour period).

Scenario 5, K = 3:

Yi1(t j ) = 0.1(0.4 + exp(−(t j − 6)2/3) + 0.2 exp(−(t j − 12)2/25)

+ 0.5 exp(−(t j − 19)2/4)) + δi j

Yi2(t j ) = 0.1(0.2 + exp(−(t j − 5)2/4)
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Fig. 1 Cluster true mean curves (solid curves) and their corresponding six B-splines basis functions (dashed
curves) for simulation scenarios 3 (left) and 4 (right)

+ 0.25 exp(−(t j − 18)2/5)) + δi j

Yi3(t j ) = 0.1(0.2 + exp(−(t j − 3)2/4)

+ 0.25 exp(−(t j − 16)2/5)) + δi j

where Yik(t j ) denotes the value at time t j of the i th curve from cluster k, i = 1, ..., 50,
j = 1, ..., 96, k = 1, 2, 3, and δi j ∼ N (0, 0.0122).
Scenario 6 also corresponds to one of the simulation scenarios considered by Zam-

bom et al. (2019), where there are K = 4 clusters with 50 curves each. Each curve has
100 observed values based on equally spaced points, t j , j = 1, ..., 100, in the interval
[0, π/3].
Scenario 6, K = 4:

Yik(t j ) = ai + bk − sin(ckπ t j ) + t3j + δi j ; i = 1, ..., 50; j = 1, ..., 100; k = 1, 2, 3, 4,

where Yik(t j ) denotes the value at point t j of the i th curve from cluster k, ai ∼
U (−1/3, 1/3), δi j ∼ N (0, 0.42), b1 = 0.2, b2 = 0.5, b3 = 0.7, b4 = 1.3, c1 = 1.1,
c2 = 1.4, c3 = 1.6 and c4 = 1.8.

3.2.2 Simulation results for Model 1

Figure2 shows the raw curves (color-coded by cluster) from one of the 50 generated
datasets for each simulation scenario. In addition, the true mean curves ( fk(t), k =
1, . . . , K ) and the estimated smoothed mean curves ( f̂k(t) = Bm∗

k , k = 1, . . . , K )
are shown in black and red, respectively. We can observe that the true and estimated
mean curves almost coincide within each cluster in all scenarios.

Table 2 displays the mean and standard deviation of mismatch rates (M) and V-
measure values (V) across 50 simulated datasets for each scenario. For the sake of
completeness, we have included the results from Scenario 7 in Sect. 3.2.4 and Scenario
8 in Sect. 3.2.5 in Table 2 as they pertain to the study of Model 1. The proposed VB
algorithm performs the best in all scenarios except for Scenario 5 where we simulate
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the curves that mimic daily energy consumption. Across Scenarios 1 to 6, VB demon-
strates impressive results with a mean mismatch rate of 5.13% and a mean V-measure
of 88.06%. Notably, the mean mismatch rate achieved by VB is 55.71%, 83.6%,
85.86%, and 73.41% lower than that of classical k-means, functional k-means, fun-
FEM, and SaS-Funclust, respectively. Meanwhile, VB’s mean V-measure surpasses
the compared methods by 5.36%, 38.75%, 85.9%, and 8.46%, respectively. In Sce-
narios 3 and 4, where data is simulated through a linear combination of six predefined
basis functions, VB exhibits perfect classification, with M = 0 and V = 1, which
aligns with expectations since the raw data in these scenarios share the same structure
as the proposed model. Comparatively, classical k-means generally outperforms func-
tional k-means, funFEM, and SaS-Funclust in Scenarios 1, 2, 3, and 6, as similarly
found in Zambom et al. (2019). The SaS-Funclust method excels in Scenario 5, with
a slightly (0.0067) lower mismatch rate and a marginally (0.0053) higher V-measure
than VB. Functional k-means also demonstrates competitive performance in Scenario
5, comparable to VB and SaS-Funclust.

In terms of computational efficiency, the run times for the proposed VB algo-
rithm of Model 1 across the 50 simulated datasets from Scenarios 1 to 6 are as
follows: 1.97min, 5.41min, 1.41min, 1.61min, 3.60min, and 5.32min. For com-
parison, SaS-Funclust required significantly longer computation times: 60.16min,
68.94min, 65.04min, 68.19min, 72.26min, and 129.47min for the respective scenar-
ios. On average, the proposed VB algorithm demonstrates exceptional speed, being
approximately 20 times faster than SaS-Funclust. The algorithm was implemented in
R version 3.6.3 on a computer using the Mac OS X operating system with a 1.6 GHz
processor and 8 GBytes of random access memory, same for the simulation study for
Model 2 in Sect. 3.3.

Table 3 presents the EMISE for each cluster in each Scenario.We can observe small
EMISE values, which are consistent with the results shown in Fig. 2, where there is a
small difference between the red curves (i.e., the estimated mean functions) and the
black curves (i.e., the true mean functions). A plot of EMSE values versus observed
points for each cluster in Scenario 1 is presented in Fig. 3 while plots of EMSE values
for Scenarios 2, 3, 4, 5 and 6 are provided in Fig. 11 in Appendix B.

3.2.3 Prior sensitivity analysis

In Bayesian analysis, it is important to assess the effects of different prior settings in
the posterior estimation. In this section, we carry out a sensitivity analysis on how
different prior settings may affect the results of our proposed VB algorithm. Our
sensitivity analysis focuses on the prior distribution of the coefficients φk of the B-
spline basis expansion of each cluster-specific mean curve. We assume φk follows a
multivariate normal prior distribution with a mean vectorm0

k and s
0I as the covariance

matrix.We simulated data according to Scenario 3 in Sect. 3.2.1 and four different prior
settings as follows:

• Setting 1: use the true coefficients as the prior mean vector and consider a small
variance (s0 = 0.01).

• Setting 2: use the true coefficients as the prior mean vector but consider a larger
variance than in Setting 1 (s0 = 1).
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Fig. 2 Simulation results for Model 1. Example of simulated data under each proposed scenario. Raw
curves (different colors correspond to different clusters), cluster-specific true mean curves (in black) and
corresponding estimated mean curves (in red) (color figure online)

• Setting 3: use a priormean vector that is different than the true vector of coefficients
with a small variance (s0 = 0.01).

• Setting 4: set the prior mean vector of coefficients to a vector of zeros with a small
variance (s0 = 0.01).

Setting 1 has the strongest prior information among these four prior settings, while
setting 4 is the most non-informative prior case. In setting 3, the prior mean vector
of coefficients is generated from sampling from a multivariate normal distribution
with a mean vector corresponding to the true coefficients and covariance matrix σ 2I,
with σ 2 = 0.5. For each prior setting, we simulate 50 datasets as in Scenario 3,
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Table 3 Simulation results for Model 1. The empirical mean integrated squared error (EMISE) for the
estimated mean curve in each cluster in each scenario

Scenario Cluster EMISE Scenario Cluster EMISE

1 1 0.00096 2 1 0.00164

2 0.00077 2 0.00246

3 0.00080 3 0.00169

3 1 0.00031 4 1 0.00023

2 0.00045 2 0.00034

3 0.00042 3 0.00033

5 1 0.00001 6 1 0.00076

2 0.00114 2 0.00419

3 0.00022 3 0.00472

4 0.00130

Fig. 3 Simulation results for Model 1. Empirical mean squared error (EMSE) versus each evaluation point
x for each cluster in Scenario 1

obtaining the average mismatch rate and V-measure, which are displayed in Table 4.
First, we can observe that all the curves are correctly clustered under Setting 1, which
has the strongest prior information. Then, as we relax the prior assumptions in two
possible directions (i.e., more considerable variance or less informative mean vector),
the mismatch rate increases, and the V-measure decreases. However, the clustering
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Table 4 Simulation results for
Model 1. Mean mismatch rate
and V-measure value from prior
sensitivity analysis in Scenario 3

Setting 1 2 3 4

M1 0.0000 0.0067 0.0067 0.0467

V2 1.0000 0.9947 0.9947 0.9627

1 M: mean mismatch rate from 50 runs
2 V: mean V-measure from 50 runs

performance does not decrease much, only 4.67% higher in mismatches and 3.73%
lower in V-measure.

3.2.4 Choosing the number of clusters

Choosing an appropriate number of clusters, denoted as K , holds paramount impor-
tance within clustering procedures. This decision aligns with determining the number
of mixture components in a regression mixture model. One of the most widely applied
methodologies to deal with uncertainty in the cluster numbers is the two-fold scheme
that one first fits the mixture model with different predefined numbers of mixtures
and then use some information criteria to select the best one (Chen et al. 2012; Nieto-
Barajas and Contreras-Cristán 2014; Wang and Lin 2022). Alternatively, one can
explore concurrent approaches for optimal cluster number selection, including tech-
niques such as overfitted Bayesian mixtures, tailored to address scenarios with large
unknown K (Rousseau and Mengersen 2011), selection through penalized maximum
likelihood (Chamroukhi 2016b), and the application of infinite mixture models such
as Dirichlet process mixture models (Escobar and West 1995; Ray and Mallick 2006;
Petrone et al. 2009; Rodríguez et al. 2009; Angelini et al. 2012; Heinzl and Tutz 2013;
Rigon 2023).

In our study, we employ the afterward model selection (i.e., two-fold) scheme to
determine the most suitable number of clusters. Assuming some prior knowledge
of K , we establish a clustering model for a range of integers based on this prior
information, employing the VB algorithm for each K . For model comparison, we
utilize the deviance information criterion (DIC) (Spiegelhalter et al. 2002), which can
be applied to select the optimal number of clusters within a comparable Bayesian
clustering framework (Gao et al. 2011; Anderson et al. 2014; Komárek 2009). DIC
is built to balance the model fitness and complexity under a Bayesian framework,
and a lower DIC indicates a better model. Nonetheless, the DIC is not an integral
component of the core methodology and can be substituted with alternative model
selection criteria such as the WAIC (Watanabe and Opper 2010) and LPML (Geisser
and Eddy 1979) when someone’s concern is predictive goodness-of-fit. In our Model
1 setting, the DIC can be obtained as follows:

DIC = −4Eq∗
[
log p(Y|Z,π ,φ, τ )

] + 2D,

where Eq∗
[
log p(Y|Z,π ,φ, τ )

]
can be computed after the convergence of our pro-

posedVB algorithm based on the ELBO. The term D corresponds to the log-likelihood
log p(Y|Z,π ,φ, τ ) evaluated at the expected value of each parameter posterior. For
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Fig. 4 Simulation results for Model 1, Scenario 7, K = 6. Left: boxplots of DIC values under different
K ∈ {1, 2, ..., 10}. The best number of clusters is six which has the smallest DIC. Right: the clustering
results for K = 6 for one of the simulated data sets. Raw curves (different colors correspond to different
clusters), cluster-specific true mean curves (in black) and corresponding VB estimated mean curves (in red)
(color figure online)

example, when we calculate the term log τk in log p(Y|Z,π ,φ, τ ), we replace it by
log (Eq∗(τk )(τk)).

We consider a more complex scenario, namely Scenario 7, where K = 6 in this
simulation study which was also analyzed in Zambom et al. (2019). The data are
generated as follows:

Scenario 7, K = 6:

Yik(t j ) = ai + cos(bkπ t j ) − t2j + δi j ; i = 1, ..., 50; j = 1, ..., 100; k = 1, 2, ..., 6,

where Yik(t j ) denotes the value at point t j of the i th curve from cluster k, ai ∼
U (−1/4, 1/4), δi j ∼ N (0, 0.32), b1 = 1, b2 = 1.2, b3 = 1.4, b4 = 1.6, b5 = 1.8
and b6 = 2.

We assume a prior information of the number of clusters that K is around 6. Accord-
ingly, we evaluate a range of potential K values, specifically {2, 3, ..., 10}. For each
K , we apply the VB algorithm to cluster the observed functional data and calculate
the resulting DIC. Within this scope, for each K ∈ {2, 3, ..., 10}, we repeat the sim-
ulation analysis for 50 times utilizing different random seeds to generate data. The
left plot in Fig. 4 displays a boxplot representation of the DIC values for each K . It
is evident that our DIC-based approach adeptly identifies the correct K (in this case,
K = 6), yielding the lowest DIC. The accompanying right plot in Fig. 4 showcases the
clustering results for one of the simulated data sets under Scenario 7, demonstrating
a highly satisfactory estimation of the true mean curves.

The quantitative evaluation of VB clustering performance in Scenario 7, along
with a comparison to the other methods, is presented in Table 2. The VB algorithm
performs the best among the others with a mean mismatch rate of 0.3001 and a mean
V-measure of 0.7528. The mean mismatch rate of VB is 0.03%, 61.33%, 63.33%, and
58.13% lower than that of the classical k-means, functional k-means, funFEM and
SaS-Funclust methods, while the mean V-measure is 0.41%, 36.25%, 1393.65%, and
21.83% higher, respectively. It is important to note that Scenario 7, characterized by a
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more complex structurewithmultiple groups of curves and overlapping patterns, poses
a greater challenge for all methods, leading to overall reduced performance compared
to other scenarios. FunFEM, in particular, encounters significant difficulties, with a
V-measure approaching 0 due to the misclassification of more than 80% of curves.

3.2.5 Misspecification of the type of basis functions

This section illustrates the performance of theVBalgorithm in case ofmisspecification
of the type of basis functions via a simulation study, namely Scenario 8. We generate
seven Fourier basis functions with equally spaced points on the interval [0, 1], which
are shown in Fig. 5b, and simulate the data for three clusters (k = 1, 2, 3) with 50
curves (i = 1, 2, ..., 50) and 100 values (t j , j = 1, 2, ..., 100) on each curve in each
cluster using a linear combination of these Fourier basis functions as follows:

Scenario 8, K = 3:

Yik(t j ) =
7∑

l=1

Gl(t j )φkl + δi j ; i = 1, . . . , 50; j = 1, . . . , 100; k = 1, 2, 3,

where Yik(t j ) denotes the value at point t j for the i th curve from cluster k, Gl(t j )
is the lth Fourier basis function evaluated at point t j , φkl is the corresponding basis
function coefficient, and δi j ∼ N (0, 4). In this simulation study, the vectors of basis
function coefficients for each cluster are:

φ1 = (φ11, φ12, . . . , φ17)
T = (0.75, 0.50, 0.90, 1.25, 0.90, 0.50, 0.40)T ,

φ2 = (φ21, φ22, . . . , φ27)
T = (0.40, 0.70, 0.90, 0.25, 0.75, 1.25, 1.50)T , and

φ3 = (φ31, φ32, . . . , φ37)
T = (0.10, 0.30, 1.20, 1.30, 0.05,−0.20,−0.30)T .

Figure5c presents the raw curves with each cluster distinguished by a unique color.
Notably, when compared to the B-spline bases, the Fourier bases exhibit a more intri-
cate curve structure, suggesting the potential need for an increased number of B-spline
basis functions to adequately represent these functional curves, as observed in Souza
et al. (2023). Consequently, we have generated 15 B-spline bases from the interval
[0, 1], as illustrated in Fig. 5a, to cluster the curves derived from a linear combination
of the Fourier bases. The resulting VB estimated mean curves (solid lines) are juxta-
posed with the true mean curves (dashed lines) in Fig. 5d from one of the simulated
data sets.

While a minor discrepancy is observable between the true and estimated mean
curves at the left boundary for the red and green groups, it is evident that the VB
algorithm achieves highly accurate estimations of the true mean curves across all
clusters. As shown in Table 2, the computed mean mismatch rate (sd) and mean V-
measure (sd) from clustering 50 different simulated datasets are 0.067 (0.135) and
0.947 (0.108), respectively. In comparison to classical k-means, functional k-means,
and funFEM, the mean mismatch rate from VB is 30.52%, 71.26%, and 87.65%
lower, while the mean V-measure is 2%, 49.72%, and 711.92% higher. Unfortunately,
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Fig. 5 Simulation results forModel 1, Scenario 8, K = 3. a B-spline basis functions for model fit. b Fourier
basis functions for data generation. c Raw curves from three clusters (distinct colors for each cluster). d
Cluster-specific true mean curves (dashed) and corresponding VB estimated mean curves (solid) (color
figure online)

SaS-Funclust struggles to cluster the curves, resulting in a V-measure of zero. This
simulation illustrates the robustness of the VB algorithm in clustering functional data,
even when confronted with the misspecification of basis function types.

3.2.6 Comparison with MCMC posterior estimation

In our simulation study on Model 1, VB is shown to yield accurate mean curve esti-
mates and satisfactory outcomes in clustering functional data. Although mean-field
VB, as an alternative to MCMC, boasts a lower computational cost, it may potentially
underestimate the posterior variance (Wang and Titterington 2005). To investigate this
concern in the context of clustering functional data through a B-spline regression mix-
ture model, we employ the MCMC-based Gibbs sampling algorithm for simulated
data under Scenario 1. The resulting posterior distribution from Gibbs is based on
9000 MCMC samples following a 1000-sample burn-in and with a thinning of 1 from
one chain. The convergence of the MCMC algorithm was well assessed and checked
by the trace plot. Figure 6 illustrates the marginal posterior density of each basis coef-
ficient φkm , k = 1, 2, 3, m = 1, . . . , 6, and the precision parameter τk , k = 1, 2, 3,
for each cluster, organized by columns. In each plot, the dashed red line represents
the corresponding posterior density from VB, while the solid blue line is derived
fromMCMC.We observe a robust consistency in the estimated posterior distributions
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Fig. 6 Simulation results for Model 1, Scenario 1, K = 3. Posterior distributions of the B-spline basis
coefficients and the precision parameter for each cluster (one column for each cluster). In each plot, the
dashed red line is from the VB algorithm and the solid blue line from MCMC
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Fig. 7 Simulation results for Model 1, Scenarios 1 and 3. The 95% credible bands for the true mean curves
from VB (the left column) and MCMC (the right column). The solid colored lines represent the estimated
mean curves, with the true mean curves depicted by black solid lines. The 95% credible bands are illustrated
by the corresponding dashed lines (color figure online)

between MCMC and VB. A similar consistency between VB and MCMC in posterior
estimation under a regression setting was found by Faes et al. (2011), Luts and Wand
(2015), Xian et al. (2024).

To elucidate the uncertainty from the estimated mean curves, we utilize Scenarios
1 and 3 as illustrative examples. We construct 95% credible bands, both fromMCMC
and VB, for the true mean curves based on the posterior distribution of the B-spline
coefficients. Figure 7 presents the results, with the first row corresponding to Scenario
1 and the second row to Scenario 3. In each plot, the solid colored lines depict the
estimated mean curves from VB or MCMC, while the black solid lines represent the
true mean curves. The 95% credible bands are shown as dashed lines, with different
colors for different clusters. In Scenario 1, VB provides comparable point and interval
estimation results with MCMC. In contrast, in Scenario 3, VB provides more accurate
estimated mean curves, particularly at the left tails. Importantly, we observed no sub-
stantial differences in the resulting credible bands between VB and MCMC. In terms
of computational cost for one simulation, VB took 5.5 s to produce the results, while
the Gibbs sampler took 2.9min for Scenario 1. In Scenario 3, VB took 5.8 s, while
MCMC took 2.6min. Overall, VB was more than 20 times faster than MCMC.
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3.3 Simulation study onModel 2

3.3.1 Simulation scenarios

We also investigate the performance of our proposed VB algorithm under Model 2
using simulated data. We consider the simulation schemes of Scenario 1 and Scenario
3 in Sect. 3.2.1, but add a random intercept to each curve, to construct four different
scenarios namely Scenario 9, Scenario 10, Scenario 11, and Scenario 12.

Scenario 9, K = 3:
Scenario 9 is constructed based on Scenario 1. The data are simulated as follows.

Yik(t j ) = aik + bk + ck sin(1.3t j ) + t3j + δi j ; i = 1, ..., 50; j = 1, ..., 100; k = 1, 2, 3,

where Yik(t j ) denotes the value at point t j of the i th curve from cluster k, aik ∼
N (0, 0.42), δi j ∼ N (0, 0.22), b1 = −0.25, b2 = 1.25, b3 = 2.50, c1 = 1/1.3,
c2 = 1/1.2, and c3 = 1/4.

Scenario 10, K = 3:
Scenario 10 is developed based on Scenario 3. In this scenario, we consider a very

small variance for the random intercept which almost resembles the case without a
random intercept. Data are generated as follows.

Yik(t j ) = aik +
6∑

l=1

Bl(t j )φkl + δi j ; i = 1, ..., 50; j = 1, ..., 100; k = 1, 2, 3,

where Yik(t j ) denotes the value at point t j of the i th curve from cluster k, aik ∼
N (0, 0.052), δi j ∼ N (0, 0.42). The B-spline coefficients, φkl , remain the same and
are presented in Table 1, which are also used in Scenarios 9 and 10.

Scenario 11, K = 3:
Scenario 11 is similar to Scenario 10, but with larger variance for the random

intercept but smaller variance for the random error. Data are generated as follows.

Yik(t j ) = aik +
6∑

l=1

Bl(t j )φkl + δi j ; i = 1, ..., 50; j = 1, ..., 100; k = 1, 2, 3,

where Yik(t j ) denotes the value at point t j of the i th curve from cluster k, aik ∼
N (0, 0.32), δi j ∼ N (0, 0.152).

Scenario 12, K = 3:
Scenario 12 is similar to Scenario 10, but with larger variance for the random

intercept. In this scenario, we use larger variance for the random error compared with
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that in Scenario 11, indicating a more complex case. Data are generated as follows.

Yik(t j ) = aik +
6∑

l=1

Bl(t j )φkl + δi j ; i = 1, ..., 50; j = 1, ..., 100; k = 1, 2, 3,

where Yik(t j ) denotes the value at point t j of the i th curve from cluster k, aik ∼
N (0, 0.62), δi j ∼ N (0, 0.42).

3.3.2 Simulation results for Model 2

Figure8 shows the curves from one of the 50 simulated datasets for Scenarios 9 and 11.
Due to the similarity among Scenarios 10, 11 and 12, the curves for Scenarios 10 and
12 are presented in Fig. 12 of Appendix B. In Fig. 8, we can observe a slight difference
between each cluster’s true mean curve and the estimated mean curve. Furthermore,
more variation occurs after adding the random intercept. Especially in Scenario 12,
with large variances, there is a more substantial overlap among curves from different
clusters, resulting in a more complex scenario for clustering than the corresponding
Scenario 3 in Sect. 3.2.

Table 5 presents the numerical results, including the mean mismatch rate and the
mean V-measure with their corresponding standard deviations from the 50 different
simulated datasets under each scenario considered. In Scenario 9, where the true mean
curves exhibit relative parallelism, we do not observe a significant difference in the
mean mismatch rate (approximately 10%) and the mean V-measure (approximately
0.7) among our VB model, the classical k-means, and SaS-Funclust. In contrast, in
Scenario 9, the functional k-means and funFEM methods exhibit a larger mean mis-
match rate and an 18.78% lower mean V-measure than VB. In Scenario 10, where
the true mean curves intersect, our proposed model achieves a significantly lower
mean mismatch rate of 0.0299, in contrast to the other methods: 0.1404 for clas-
sical k-means, 0.2799 for functional k-means, 0.1845 for funFEM, and 0.3333 for
SaS-Funclust. Moreover, the mean V-measure obtained from VB is 0.9767, which is
9.28%, 69.33%, 34.09%, and 33.12% higher than the results from the aforementioned
methods, respectively.

When the random intercept variance becomes larger in Scenario 11, even with
a smaller random error variance, clustering curves via our proposed model becomes
more challenging. Themeanmismatch rate increases to 0.1453 from 0.0299, while the
mean V-measure drops to 0.7923 from 0.9767 in Scenario 10. Nonetheless, our model
continues to outperform the other considered methods, with differences in mismatch
rates of 0.0118 for classical k-means, 0.1974 for functional k-means, 0.0576 for fun-
FEM, and 0.0519 for SaS-Funclust. In Scenario 12, where there is a further increase
in variance in the random intercept, we observe that the clustering performance of
all methods deteriorates, leading to higher mismatch rates and lower V-measure val-
ues. Nevertheless, the VB algorithm still stands out by achieving the lowest mean
mismatch rate and the highest mean V-measure compared to the other methods. The
larger standard deviation of mismatch rates and V-measure of VB compared to other
methods happen because, among the 50 different runs, there are 11 runs where our
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Fig. 8 Simulation results for Model 2. Example of simulated data under Scenario 9 (left) and Scenario 11
(right). Raw curves (different colors correspond to different clusters), cluster-specific true mean curves (in
black) and corresponding estimated mean curves (in red) (color figure online)

method can 100% correctly assign each curve to the cluster it belongs to, resulting in
a mismatch rate of zero and a V-measure of one. At the same time, using the classical
k-means as an example, there is no run where the classical k-means provides such per-
fect clustering results. Besides, among the 50 different runs, there are 41 runs where
our method provides lower mismatch rates and higher V-measures than the classical
k-means.

Table 6 shows the EMISE for each cluster in Scenarios 9, 10, 11 and 12 based on
Model 2. Small EMISE values once again indicate that the true mean curves and the
corresponding curves have a small difference. We also find that compared with Table
3 based on Model 1, the EMISE values based on Model 2 are larger. This is in our
expectation since adding a random intercept to each curve will bring more variation
to the curves, and as a result, more variation in the estimated mean curves, in Scenario
12 especially when we have a larger variance for generating random intercepts. Plots
of EMSE values in Scenarios 7, 8, 9, and 10 based on Model 2 are provided in Fig. 13
in Appendix B.

For the computational cost, the run times of the proposed VB algorithm of Model
2 for 50 simulated datasets from Scenarios 9, 10, 11 and 12 are 40.96 min, 1.52 min,
10.46 min, and 11.52 min, respectively. For comparison, SaS-Funclust takes longer
computation times: 45.06 min, 65.17 min, 64.35 min and 64.2 min for the respective
scenarios.

4 Application to real data

In this section, we apply our proposedmethod in Sect. 2 to the growth and theCanadian
weather datasets, which are both publicly available in the R package fda.

The Growth data (Tuddenham and Snyder 1954) includes heights (in cm) of the 93
children over 31 unevenly spaced time points from the age of one to eighteen. Raw
curves without any smoothing are shown in Fig. 9, where the green curves correspond
to boys and blue curves to girls. In this case, we apply our proposed method to the
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Table 6 Simulations results for Model 2. The empirical mean integrated squared error (EMISE) for the
estimated mean curve in each cluster in each scenario

Scenario Cluster EMISE Scenario Cluster EMISE

9 1 0.07666 10 1 0.00498

2 0.03109 2 0.00203

3 0.06953 3 0.00316

11 1 0.05171 12 1 0.25312

2 0.01938 2 0.13287

3 0.02638 3 0.12465

growth curves considering two clusters and compare the inferred cluster assignments
(boys or girls) to the true ones.

The Canadian weather data (raw data are presented in Fig. 14 in Appendix B)
contains the daily temperature at 35 different weather stations (cities) in Canada,
averaged out from the year of 1960 to 1994. However, unlike the growth data, we do
not know the true number of clusters in the weather data. Therefore, in order to find
the best number of clusters, we apply the DIC for model comparison.

The number ofB-spline basis functions is fixed and knownwithin theVBalgorithm.
As discussed in Rossi et al. (2004), a low number of basis functions can be applied
to get rid of the measurement noise. Another feature of the B-spline basis system is
that increasing the number of B-spline bases does not always improve certain aspects
of the fit to the data (Ramsay and Silverman 2005). Based on Liu and Yang (2009),
ten B-spline basis functions are relatively reasonable for clustering the Growth data
with two clusters. The Canadian weather data presents a higher variation (larger noise)
than the Growth data. Therefore, curves with a moderate smoothing, rather than with
more roughness, may more accurately reflect the underlying functional structures,
and the underlying clusters. So, we use six B-spline basis functions to represent the
weather data within the VB algorithm. It is important to note that we do not have
a strong prior knowledge of these real datasets but still need to provide appropriate
prior hyperparameters for the VB algorithm. As a solution, we randomly select one
underlying curve in each dataset and fit a B-spline regression to obtain a vector of
coefficients which is then modified across different clusters resulting in the prior mean
vectors m0

k for k = 1, ..., K . We set s0 = 0.1, corresponding to a precision of 10, as
the prior variance of these coefficients which provides a useful information as assumed
in real world. For the Dirichlet prior distribution of π , we use d0 = (1/K , ..., 1/K ),
indicating that for each curve, the probability of assignment to each cluster is a priori
equal across clusters. For the Gamma prior distribution of the precision, τk = 1/σ 2

k ,
we prefer a large prior mean (e.g., 10) and a small prior variance (e.g., 0.1) which
serve as informative prior knowledge, and therefore, we set a0 = 2000 and r0 = 100
for the growth data, and a0 = 1000 and r0 = 800 for the weather data. The ELBO
convergence threshold is 0.001.

Since we know there are two clusters (boys and girls) in the growth dataset, K = 2
is preset for the clustering procedure. We apply the proposed VB algorithms under
Models 1 and 2 to cluster the growth curves with 50 runs corresponding to 50 different
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Fig. 9 Raw curves (dashed curves) from the Growth dataset where green curves refer to the boys’ heights
while the blue ones are for the girls’, with empirical mean curves (in solid black) and our VB estimated
mean curves (in solid red). The left graph is resulted from Model 1 while the right is from Model 2 (color
figure online)

initializations. The classical k-means method is also applied to the raw curves for
performance comparison purposes. Figure9 presents the estimated mean curves for
each cluster corresponding to the the best VB run (the one with maximum ELBO
after convergence) along with the empirical mean curves from both models (left graph
for Model 1 while right for Model 2). The empirical mean curves are calculated by
considering the true clusters and calculating their corresponding point-wise mean at
each time point. Some difference between the estimated and the empirical curves can
be observed for the girls due to a potential outlier. Regarding clustering performance,
the mean mismatch rates for the VB algorithms under Model 1 and Model 2, and
k-means are 33.33%, 20.47% and 34.41%, respectively. V-measure is more sensitive
to misclassification than mismatch rate and, therefore, we obtain lowmean V-measure
values of 7.75% for VB under Model 1, 33.75% for VB under Model 2, and 6.37% for
k-means. We can see the clustering performance significantly improved after adding
a random intercept to each curve. Compared with Model 1, the mean mismatch rate
from Model 2 is lower by 12.86%, and the mean V-measure is higher by 26%.

For the Canadian weather dataset analysis, we considered temperature data from all
stations except those located in Vancouver and Victoria because they present relatively
flat temperature curves compared to other locations. We applied the proposed VB
algorithm under Model 1 to the weather data. The left plot in Fig. 10 shows the DIC
values for different possible numbers of clusters (K = 2, 3, 4, 5). We can observe that
the best number of clusters for separating the Canadian weather data is three, which
corresponds to the smallest DIC. Finally, we present the clustering results with K = 3
on a map of Canada in the right plot in Fig. 10. As can be seen, when K = 3, we have
three resulting groups in three different colors. In general, most of the weather stations
in purple are located in northern Canada. In contrast, stations in southern Canada are
separated into two groups color-coded in blue and red on themap of Canada. Although
some stations may be incorrectly clustered, we can still see a potential pattern that
makes sense geographically.
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Fig. 10 Left: DIC values for different clusters (K = 2, 3, 4, 5) in Canadian weather data. The best number
of clusters is three which has the smallest DIC. Right: Clustering results under Model 1 (cities with same
color are predicted in the same cluster) for Canadian weather data with preset three clusters (K = 3) (color
figure online)

5 Conclusion and discussion

This paper develops a new model-based algorithm to cluster functional data via
Bayesian variational inference.We first provide an overview of variational inference, a
method used to approximate the posterior distribution under the Bayesian framework
through optimization. We then derive a mean-field Variational Bayes (VB) algorithm.
Next, the coordinate ascent variational inference is applied to update each term in the
variational distribution factorization until convergence of the evidence lower bound.
Finally, each observed curve is assigned to the cluster with the largest posterior prob-
ability.

We build our proposed VB algorithm under two different models. In Model 1, we
assume the errors are independent, which may be a strong assumption. Motivated by
the Growth data for the children’s heights, which show a parallel structure indicating
a shift among curves, we extended our approach to Model 2, which includes more
complex variance-covariance structures by adding a random intercept for each curve.

The performance of our proposed VB algorithm in clustering functional data is
supported by simulations and real data analyses. In simulation studies, VB accurately
estimates mean curves, closely aligning with true curves, resulting in minimal empir-
ical mean integrated squared errors and demonstrating a good fit. In most scenarios,
VB consistently outperforms other considered methods (classical k-means, functional
k-means, funFEM, and SaS-Funclust) with the highest V-measure and the lowest mis-
match rate. We provide insight into the selection of the number of clusters (mixture
components) through a two-fold scheme based on DIC. Robustness is assessed via a
sensitivity analysis across different prior settings and a study involving a misspecified
type of basis functions. In our simulations, the proposed VB algorithm demonstrated
computational efficiency, averaging 4s to cluster each simulated dataset. In particular,
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for simulated data under Scenarios 1 and 3, VB is over 20 times faster than MCMC
(Gibbs sampler). Moreover, VB demonstrates strong consistency with MCMC in esti-
mating the marginal posterior distribution of B-spline basis coefficients and precision
parameters. In addition to simulation studies, applying theVB algorithm to theGrowth
data reveals that Model 2 with a random intercept surpasses Model 1 in both mean
curve estimation and clustering performance when the curves from the same cluster
show a parallel structure.

The main advantage of our proposed VB algorithm is that we model the raw data
and obtain clustering assignments and cluster-specific smooth mean curves simulta-
neously. In other words, compared to some previous methods where researchers first
smooth the data and then cluster the data using only the information after smoothing
(e.g., the coefficients of B-spline basis functions); our model, as a regression mixture
model, directly uses the raw data as input, performing smoothing and clustering simul-
taneously. In addition, as we take a Bayesian inference approach, we can measure the
uncertainty of our proposed clustering using the obtained cluster assignment posterior
probabilities.

While our study has introduced the VB algorithm to cluster functional data using
a B-spline regression mixture model, it is important to recognize its limitations.
Although our Model 2, which includes a random intercept, provides a more flexible
dependence structure, one could explore more intricate Gaussian processes for model-
ing the randomerrors. Additionally, it is worth noting thatVB is not the solemethod for
clustering functional data with regressionmixtures; alternatives like Gibbs sampler (as
used for comparison here) or other MCMC-based algorithms can also be considered.
In this work, we focus on the case where, for each curve, the number of basis func-
tions is smaller than the number of evaluation points (M < n). So, future work may
include investigation and further extensionof the proposedVBunder high-dimensional
settings (M >> n), paying special attention to the issue of underestimation of the
variability of the posterior estimates (Mukherjee and Sen 2022; Devijver 2017). For
large datasets (large number of curves, N ), the coordinate ascent variational inference
algorithm, which considers all data points, may result in a high computational cost.
Therefore, one may consider scalable algorithms such as the stochastic variational
inference (Hoffman et al. 2013) for approximating the posterior distributions.

Furthermore, our approach relies on the assumption that the number of B-spline
basis functions (M) is known prior to applying the VB algorithm. This assumption
aligns with practical scenarios where researchers may subjectively determineM based
on their expertise and/or visual inspection of the curves (Franco et al. 2023; Günther
et al. 2021; Lenzi et al. 2017). However, to enhance the model’s adaptability and
automate the selection process, future investigations could explore the integration
of a mechanism for selecting the number of B-spline bases directly within the VB
algorithm itself. Relevant approaches and references for the selection of the number
of basis functions include Souza et al. (2023); Devijver et al. (2020); Gálvez et al.
(2015); Yuan et al. (2013); Dias and Garcia (2007), and DeVore et al. (2003).
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Appendix A VB algorithm for Model 1

A.1 Main steps

This section describes the main steps of the VB algorithm for inferring Z, φ, π and τ

in Model 1 in Sect. 2.2.1, which is summarized in Algorithm 2.

1. VD factorization

q(Z,π ,φ, τ ) =
N∏
i=1

q(Zi ) ×
K∏

k=1

q(φk) ×
K∏

k=1

q(τk) × q(π) (A1)

2. Complete data log-likelihood

log p(Y,Z,π ,φ, τ ) = log p(Y|Z,φ, τ ) + log p(Z|π)

+ log p(φ) + log p(τ ) + log p(π). (A2)

3. Update equations

(i)Update equation for q(π)

Since only the second term, log p(Z|π), and the last term, log p(π), in (A2) depend
on π , the update equation q∗(π) can be derived as follows.

log q∗(π)

+≈ E−π (log p(Y,Z,π ,φ, τ ))

+≈ E−π (log p(Z|π)) + E−π (log p(π))

= E−π

[
N∑
i=1

K∑
k=1

I(Zi = k) logπk

]
+ log p(π)

+≈
K∑

k=1

logπk

[
N∑
i=1

Eq∗(Zi ) (I(Zi = k))

]
+

K∑
k=1

[d0k − 1] logπk

=
K∑

k=1

logπk

[(
N∑
i=1

Eq∗(Zi ) (I(Zi = k)) + d0k

)
− 1

]
.

Therefore,q∗(π) is aDirichlet distributionwith parametersd∗ = (d∗
1 , . . . , d∗

K ),where

d∗
k = d0k +

N∑
i=1

Eq∗(Zi ) (I(Zi = k)) . (3)

(ii) Update equation for q(Zi )

log q∗(Zi )
+≈ E−Zi (log p(Y,Z,π ,φ, τ )) (4)
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When taking the expectation above we just need to consider the first term,
log p(Y|Z,φ, τ ), and the second term, log p(Z|π), in (A2). Note that we can write
log p(Y|Z,φ, τ ) and log p(Z|π) into two parts, one that depends on Zi and one that
does not.

log p(Y|Z,φ, τ ) =
K∑

k=1

I(Zi = k) log p(Yi |Zi = k,φk, τk)

+
∑
l:l �=i

K∑
k=1

I(Zl = k) log p(Yl |Zl = k,φk, τk)

log p(Z|π) =
K∑

k=1

I(Zi = k) logπk +
∑
l:l �=i

K∑
k=1

I(Zl = k) logπk

Now when taking the expectation in (4) the parts that do not depend on Zi in
log p(Y|Z,φ, τ ) and log p(Z|π) in (A2) will be added as a constant in the expec-
tation. So, we obtain

log q∗(Zi )
+≈

K∑
k=1

I (Zi = k)
{ni
2
Eq∗(τk )(log τk)

−1

2
Eq∗(τk )(τk)Eq∗(φk )

[
(Yi − Biφk)

T (Yi − Biφk)
]

+Eq∗(π)(logπk)
}

Therefore, q∗(Zi ) is a categorical distribution with parameters

p∗
ik = eαik∑K

k=1 e
αik

, (5)

where

αik = ni
2
Eq∗(τk )(log τk) − 1

2
Eq∗(τk )(τk)Eq∗(φk )

[
(Yi − Biφk)

T (Yi − Biφk)
]

+Eq∗(π)(logπk).

(iii)Update equation for q(φk)

Note that only the first term, log p(Y|Z,φ, τ ), and the third term, log p(φ), in (A2)
depend onφk . Similarly to the previous case for q∗(Zi ), we canwrite log p(Y|Z,φ, τ )

and log p(φ) in twoparts, one that depends onφk and the other that does not. Therefore,
we obtain
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log q∗(φk)
+≈ E−φk (log p(Y,Z,π ,φ, τ ))

+≈ Eq∗(τk )(log τk)

N∑
i=1

ni
2
Eq∗(Zi )[I(Zi = k)]

− 1

2
Eq∗(τk )(τk)

N∑
i=1{

Eq∗(Zi )[I(Zi = k)](Yi − Biφk)
T (Yi − Biφk)

}
(6)

−M

2
log v0 − 1

2
v0(φk − m0

k)
T (φk − m0

k) (7)

All expectations will be later defined, but note that, for example, Eq∗(Zi )[I(Zi =
k)] = p∗

ik . First, we will focus on the quadratic forms that appear in (6) and (7).

−1

2
Eq∗(τk )(τk)

N∑
i=1

p∗
ik(Yi − Biφk)

T (Yi − Biφk)

− 1

2
v0(φk − m0

k)
T (φk − m0

k) =

− 1

2
Eq∗(τk )(τk)

N∑
i=1

p∗
ik

[
YT
i Yi − 2YT

i Biφk + φT
k B

T
i Biφk

]

−1

2
v0

[
φT
k φk − 2(m0

k)
Tφk + (m0

k)
Tm0

k

] +≈

−1

2
φT
k

[
v0I + Eq∗(τk )(τk)

N∑
i=1

p∗
ikB

T
i Bi

]
φk

− 1

2
(−2)

[
v0(m0

k)
T + Eq∗(τk )(τk)

N∑
i=1

p∗
ikY

T
i Bi

]
φk (8)

Now let


∗
k =

[
v0I + Eq∗(τk )(τk)

N∑
i=1

p∗
ikB

T
i Bi

]−1

. (9)

We can then rewrite (8) as

−1

2
φT
k 
∗−1

k φk − 1

2
(−2)

[
v0(m0

k)
T + Eq∗(τk )(τk)

N∑
i=1

p∗
ikY

T
i Bi

]

∗

k

∗−1
k φk .
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Therefore, q∗(φk) is MV N (m∗
k , 


∗
k ) with 
∗

k as in (9) and mean vector

m∗
k =

[
v0(m0

k)
T + Eq∗(τk )(τk)

N∑
i=1

p∗
ikY

T
i Bi

]

∗

k . (10)

(iv) Update equation for q(τk)

Similarly to the calculations in i) and ii) we can write

log q∗(τk)
+≈ log τk

N∑
i=1

ni
2
p∗
ik − 1

2
τk

N∑
i=1

p∗
ikEq∗(φk )

[
(Yi − Biφk)

T (Yi − Biφk)
]

+ (a0 − 1) log τk − r0τk

Therefore, q∗(τk) is a Gamma distribution with parameters

A∗
k = a0 +

N∑
i=1

ni
2
p∗
ik (11)

and

R∗
k =

(
r0 + 1

2

N∑
i=1

p∗
ikEq∗(φk )

[
(Yi − Biφk)

T (Yi − Biφk)
])

. (12)

4. Expectations
Next, we calculate the expectations in the update equations for each component in

the VD. Let � be the digamma function defined as

�(x) = d

dx
log�(x), (13)

which can be easily calculated via numerical approximation. The values of the expec-
tations taken with respect to the approximated distributions are given as follows.

Eq∗(Zi )[I(Zi = k)] = p∗
ik (14)

Eq∗(τk )(τk) = A∗
k

R∗
k

(15)

Eq∗(τk )(log τk) = �(A∗
k) − log R∗

k (16)

Eq∗(π)(logπk) = �(d∗
k ) − �

(
K∑

k=1

d∗
k

)
(17)

In addition, using the fact that E(XTX) = trace[Var(X)] + E(X)TE(X), we obtain

Eq∗(φ)

[
(Yi − Biφk)

T (Yi − Biφk)
]
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= trace
(
Bi


∗
kB

T
i

)
+ (Yi − Bim∗

k )
T (Yi − Bim∗

k ). (18)

A.2 ELBO calculation

In this section, we show how to calculate the ELBO,which is the convergence criterion
of our proposed VB algorithm and will be updated at the end of each iteration until it
converges. Equation (4) gives the ELBO:

ELBO(q) = Eq∗
[
log p(Y,Z,π ,φ, τ )

] − Eq∗
[
log q(Z,π ,φ, τ )

]
,

where

Eq∗
[
log p(Y,Z,π ,φ, τ )

] = Eq∗
[
log p(Y|Z,π ,φ, τ )

] + Eq∗
[
log p (Z|π)

]
+Eq∗

[
log p(φ)

] + Eq∗
[
log p(τ )

] + Eq∗
[
log p(φ)

]
,

and

Eq∗
[
log q(Z,π ,φ, τ )

] = Eq∗
[
log q(Z)

] + Eq∗
[
log q(φ)

]
+Eq∗

[
log q(π)

] + Eq∗
[
log q(τ )

]

Therefore, we can write the ELBO as the summation of 5 terms:

ELBO(q) = Eq∗
[
log p(Y|Z,π ,φ, τ )

] + di f fZ + di f fφ
+ di f fτ + di f fπ (19)

where,

di f fZ = Eq∗
[
log p(Z|π)

] − Eq∗
[
log q(Z)

]
.

Specifically,

di f fZ ≡
N∑
i=1

K∑
k=1

p∗
ikEq∗(π)(logπk) −

N∑
i=1

K∑
k=1

p∗
ik log p∗

ik . (20)

The other terms in (19) are calculated as follows:

di f fφ ≡ −1

2

K∑
k=1

v0k {trace
(

∗

k

) + (m∗
k − m0

k)
T (m∗

k − m0
k)} + 1

2

K∑
k=1

log |
∗
k |,

di f fτ ≡
K∑

k=1

{(a0 − 1)Eq∗(τk )(log τk) − r0Eq∗(τk )(τk)}

−
K∑

k=1

{A∗
k(log R

∗
k − 1) − log�(A∗

k) + (A∗
k − 1)Eq∗(τk )(log τk)},
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di f fπ ≡
K∑

k=1

(d0k − d∗
k )Eq∗(π)(logπk), (21)

and

Eq∗
[
log p(Y|Z,π ,φ, τ )

] =
N∑
i=1

K∑
k=1

p∗
ik

{
ni
2
Eq∗(τk )(log τk) − 1

2

A∗
k

R∗
k

Eq∗(φ)

[
(Yi − Biφk)

T (Yi − Biφk)
]}

. (22)

Therefore, at iteration c, we calculate ELBO(c) using all parameters obtained at the
end of iteration c. Convergence of the algorithm is achieved if ELBO(c) −ELBO(c−1)

is smaller than a given threshold. It is important to note that we use the fact that
limp∗

ik→0 p
∗
ik log p∗

ik = 0 to avoid numerical issues when calculating (20).

Algorithm 2: Clustering functional data via variational inference
Data: N original curves with ni evaluation points for the i th curve and the Bi

matrix containing the evaluation values of the basis functions, i = 1, ..., N
1 ; number of clusters K ; values of hyperparameters: d0, m0

k , k = 1, ..., K , s0, a0,
r0; convergence threshold and maximum number of iterations
Result: VB estimated mean curves for each cluster and the cluster index
for each original curve

2 Initialization: initialize R∗
k with arbitrary values (e.g., R∗

k = r0) and p∗
ik from

k-means, and set c = 0;
3 while c < maximum number of iterations and difference of ELBO >

convergence threshold do
4 repeat
5 c = c + 1;

6 update A∗(c)
k using p∗(c−1)

1k , . . . , p∗(c−1)
Nk with equation (11);

7 update 

∗(c)
k using A∗(c)

k , R∗(c−1)
k and p∗(c−1)

1k , . . . , p∗(c−1)
Nk with equations

(9) and (15);

8 update m∗(c)
k using 


∗(c)
k , A∗(c)

k , R∗(c−1)
k and p∗(c−1)

1k , . . . , p∗(c−1)
Nk with

equations (10) and (15);

9 update R∗(c)
k using m∗(c)

k , 
∗(c)
k and p∗(c−1)

1k , . . . , p∗(c−1)
Nk with equations

(12) and (18);

10 update d∗(c) using p∗(c−1)
1k , . . . , p∗(c−1)

Nk with equations (3) and (14);

11 update p∗(c)
1k , . . . , p∗(c)

Nk using R∗(c)
k , d∗(c),m∗(c)

k and 

∗(c)
k with equations

(5), (15), (16), (17) and (18);
12 calculate the current ELBO, ELBO(c) using formulas in section A.2;
13 calculate the difference of ELBO = ELBO(c) − ELBO(c−1);
14 until maximum iteration is achieved or the ELBO converges;
15 end
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Appendix B Plots

See Figs. 11, 12, 13, 14.

Fig. 11 EMSE versus the observed evaluation point for each cluster in Scenarios 2, 3, 4, 5 and 6. In Scenario
5, the straight line in cluster one does not mean there is no EMSE. This is because compared to cluster two
and three, the EMSE in cluster one is very small (the median is 1.41 × 10−11)
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Fig. 12 Example of simulated data under Scenario 10 (left) and Scenario 12 (right) for Model 2. Raw
curves (different colors correspond to different clusters), cluster-specific true mean curves (in black) and
corresponding estimated mean curves (in red) (color figure online)

Fig. 13 EMSE versus the observed evaluation point for each cluster in Scenarios 9, 10, 11 and 12
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Fig. 14 Raw curves of the Canadian weather data. Different curves have different colors
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