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Abstract
This work presents a novel undersampling scheme to tackle the imbalance problem
in multi-label datasets. We use the principles of the natural nearest neighborhood
and follow a paradigm of label-specific undersampling. Natural-nearest neighbor-
hood is a parameter-free principle. Our scheme’s novelty lies in exploring the
parameter-optimization-free natural nearest neighborhood principles. The class imbal-
ance problem is particularly challenging in amulti-label context, as the imbalance ratio
and the majority–minority distributions vary from label to label. Consequently, the
majority–minority class overlaps also vary across the labels. Working on this aspect,
we propose a framework where a single natural neighbor search is sufficient to identify
all the label-specific overlaps. Natural neighbor information is also used to find the
key lattices of the majority class (which we do not undersample). The performance of
the proposed method, NaNUML, indicates its ability to mitigate the class-imbalance
issue in multi-label datasets to a considerable extent. We could also establish a statisti-
cally superior performance over other competing methods several times. An empirical
study involving twelve real-world multi-label datasets, seven competing methods,
and four evaluating metrics—shows that the proposed method effectively handles the
class-imbalance issue in multi-label datasets. In this work, we have presented a novel
label-specific undersampling scheme,NaNUML, formulti-label datasets.NaNUML is
based on the parameter-free natural neighbor search and the key factor, neighborhood
size ‘k’ is determined without invoking any parameter optimization.
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1 Introduction

Class imbalance is a note-worthy characteristic of data obtained from several real-
world domains. The naturally occurring biases in the real world give rise to varying
numbers of points in different classes of a dataset. Multi-label datasets—mostly
obtained from real-world sources (Li et al. 2014; Katakis et al. 2008) is no exception
to this. In a multi-label dataset, an instance is associated with more than one possible
label. Let D be a multi-label dataset with L labels. D � {(xi , Yi ), 1 ≤ i ≤ n}. xi ’s
denote the feature vectors and Yi denotes its membership to L labels. Yi � {yi1,
yi2, . . . , yiL} and for binary classification, yi j can be either 0 (negative class) or 1
(positive class). The task is to correctly predict the class (0 or 1) for L labels of a test
instance. In a two-class dataset, we term the class with a higher number of instances
and the class with a lower number of instances as the majority class and the minority
class respectively. In yeast dataset (Elisseeff and Weston 2001), the imbalance ratio
(ratio of majority set cardinality to that of minority set cardinality) is greater than 1.5
for 12 out of 14 labels. Alternatively, we can say that, for 12 out of 14 labels in yeast
dataset, one class has 50%more points than the other class. It is also observed that the
different labels of a multi-label dataset possess differing degrees of imbalances. This
aspect further intricates the issue and calls for dedicated and label-specific handling
of the class imbalance issue in a multi-label context.

Data preprocessing is a popular technique for handling the class imbalance of the
datasets. This particular technique is motivated to reduce the difference in cardinalities
of the classes in a dataset by (1) either removing the points from the majority class
(undersampling the majority class) or (2) by adding synthetic points to the minority
class (oversampling the minority class). This helps mitigate the bias of the majority
class in the classifier modeling phase and helps detect minority instances. In under-
sampling of data, points are removed from the majority class to reduce the difference
in the majority and the minority class cardinalities. It also reduces the overall training
data volume, thereby reducing the computation of the classifier modeling. Undersam-
pling is a convenient option for multi-label datasets as their dimensionality is high
concerning the number of points and features. We should also remember that—the
positive and negative class memberships vary across labels in a multi-label dataset.
Even though the feature vectors reside in the same locations of the feature space (for
all labels), their changing memberships lead to different majority and minority point
configurations.

In this work, we propose a natural neighborhood-based undersampling scheme
(NaNUML) to deal with the class imbalance of multi-label datasets. Due to disparate
ranges of imbalance ratios and the diversified distributions of majority and minority
points across the labels, we resort to a label-specific undersampling. We look at the
mutual co-locations of the majority and the minority points within a neighborhood
to find the majority candidates to be undersampled. Our principal aim is to find and
remove the majority points that overlap with many minority points. Removing the
majority points from the overlapped space will increase the cognition of the minority
points in those regions.

To find the majority points overlapping in the minority spaces, we employ the
technique of natural nearest neighborhood (Zhu et al. 2016). Two points p and q
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are natural neighbors of each other if (1) p is a k-nearest neighbor of q and also
(2) q is also a k-nearest neighbor of p. Unlike the identification of the neighbors
via a directional and one-sided nearness (like that in the k-nearest neighborhood),
natural neighbors are computed based on the mutual nearness of two points (hence,
commutative). The relative nearness of two points (relative to their neighborhood) is
instrumental in chalking out the neighborhood relation. The mutual nearness protocol
of natural neighborhoods aids in the efficient identification of themajority andminority
class overlaps. The other significant advantage of the natural neighborhood scheme
is computing the neighborhood size ‘k’ without human intervention or a parameter
optimization phase. This characteristic is helpful in any machine learning context,
and our scheme enjoys the advantage. In NaNUML, a single natural nearest neighbor
search is sufficient to compute all labels’ label-specific natural neighbor information.

For each label, we compute the minority natural neighbor count of the majority
points. A high minority neighbor count for a majority point indicates its increased
overlap with the minority space (as well as the minority points). Hence, the major-
ity points with higher minority natural neighbor counts are potential candidates for
undersampling. Accordingly, we remove the majority points in order of their decreas-
ing minority neighbor count. The majority point with the highest minority neighbor
count is removed first. The undersampled majority set and the original minority set
form the augmented training set and are used to learn a set of label-specific classifiers.

The major highlights of our work are as follows:

• We undersample the label-specific majority points to obtain an augmented yet
reduced training set for each label.

• Weemploy a parameter-optimization-free technique to compute the neighbors of the
points. The computation of the neighbors is based on a mutual nearness calculation,
which helps in an enhanced identification of the majority–minority overlaps.

• This is the first work to introduce the paradigm of natural neighborhoods in multi-
label learning.

• While undersampling the majority class, we also preserve the key lattice points
of the majority class by preserving (and not allowing the undersampling of) the
majority points (top 10%) with the highest majority natural neighbor count.

• The natural neighborhood search is not label-dependent and depends on the distri-
bution of the points in the feature space. Hence, only one natural neighbor search
is required (for all labels).

• The outcomes from an experimental study involving twelve real-world multi-
label datasets, seven competing methods (multi-label learners and generic class-
imbalance focused learning paradigms), and four evaluating metrics indicate the
proposed method’s competence over other competing learners.

2 Related works

This work is focused on the class-imbalance aspect of multi-label learning. The study
of the extant works will be devoted to both these aspects—(1) class imbalance learning
and (2) multi-label learning in general.
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Several diversified approaches are followed in the domain of class-imbalance learn-
ing to mitigate the bias of the majority class (He and Garcia 2009). Algorithm-based
methods are one of the earliest methods in this field. The methods mostly function
in one of two ways—(1) by shifting the boundary away from the minority class to
add more region in their favor, or (2) by employing a cost-sensitive learning frame-
work where the misclassification of minority instances incur a higher penalty. Other
approaches like kernel-based methods, multi-objective optimization methods, and
ensemble-based learners also focus on achieving the same goal.

Data preprocessing is a popular technique of handling the class-imbalance problem
(Ali et al. 2019). Here, the schemes are motivated to balance the cardinalities of
the majority and the minority classes. This can be done in the following ways—(1)
undersampling or removing points from the majority class (Pereira et al. 2020; Tahir
et al. 2012), (2) oversampling or adding synthetic points to the minority class (Charte
et al. 2015; Chawla et al. 2002), (3) hybrid sampling where both undersampling and
oversampling are involved (Choirunnisa and Lianto 2018; Ludera 2021). This step of
data sampling occurs before the classification step, and the classifier modeling is done
on the augmented data (obtained through preprocessing).

The focus of the researchers on multi-label learning dates back to the beginning of
this century (Joachims 1998; Godbole and Sarawagi 2004). The community’s ongoing
efforts have provided several ways of handling this issue (Moyano et al. 2018).

Multi-label methods are principally classified into (1) Problem transformation
approaches: in which several classifiers are modeled and learned to facilitate an
overall multi-label learning of the data at various levels of label association (they
are further classified into first-order, second-order and higher order according to the
degree of label associations in the classifiers (Zhang and Wu 2015; Sadhukhan and
Palit 2020; Tsoumakas et al. 2011; Fürnkranz et al. 2008), and (2) Algorithm adapta-
tion approaches:which consider tweaking of an existing classifier like Support Vector
Machine, nearest-neighborhood based classifier, random forest to accommodate the
multi-label learning (Gonzalez-Lopez et al. 2018; Nam et al. 2014; Liu et al. 2018;
Siblini et al. 2018).

The researchers in multi-label were quick to notice the issue of class imbalance
in multi-label datasets (Tahir et al. 2012). We should note that handling the class-
imbalance issue inmulti-label datasets is waymore knotty than single-label traditional
datasets. The principal causes are (1) the multi-output nature where the degree of
imbalance in each output varies from the others and (2) a set of imbalance ratios, one
for each label. Data pre-processing, being a popular choice, is explored in multi-label
contexts. MLeNN (Charte et al. 2014) uses the edited Nearest Neighbor rule principles
to undersample the majority points with similar label sets of its neighbors in a multi-
label dataset. In a hybrid sampling technique,ML-RUSdeletes the instances belonging
to the majority classes of a multi-label dataset. ML-ROS deletes the clone examples
with minority labels to facilitate better learning of the imbalanced multi-label datasets
(Pereira et al. 2020). ML-SMOTE resorts to the oversampling of minority classes to
balance the cardinalities of the majority and the minority classes of the labels (Charte
et al. 2015). Liu and Tsoumakas (2020) couples the majority class undersampling with
the classifier chain scheme’s ensembles to tackle the class imbalance issue. COCOA
(Zhang et al. 2020) presents a schemewhere the asymmetric distribution of classes and
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the pair-wise label correlations are considered, and a three-way learner is produced
for each pair of labels. Daniels and Metaxas (2017) exploits the Hellinger forests
to design an imbalance-aware multi-label classifier. In LIIML (Sadhukhan and Palit
2019), an imbalance-informed label-specific feature set is constructed for the labels,
followed by a cost-sensitive learning scheme to learn the multi-label datasets. In the
next section, we briefly describe the intuition and working principles of the natural
nearest neighborhood.

3 Principles of natural nearest neighborhood

Let us have a set of points x1, x2, . . . , xn and we want to find the natural neighbors
of xi from the given search space (excluding itself). For some k � α, (α >� 1), we
say that xi is a natural neighbor of x j (at k � α), if xi is a α-nearest neighbor of x j

and x j is also a α-nearest neighbor of xi (Zhu et al. 2016). Let NN (x j ) be a natural
neighbor of xi and K NNα(x j ) be a α-nearest neighbor of xi . x j ∈ NN (xi ) ⇐⇒
(xi ∈ K NNα(x j )) ∩ (x j ∈ K NNα(xi )).

The authors of this work have also stated the procedure for selecting a natural
neighbor eigenvalue (λ) (the neighborhood size). In a dataset, the minimum k-value
at which all points get at least one natural neighbor is to be noted. Let this critical
k-value be β. The natural neighbor eigenvalue, λ is computed from β. According to
the authors,

λ � √
β

Unlike k-nearest neighborhood search or reverse nearest neighborhood search, natural
neighborhood search retrieves a symmetric neighborhood configuration of a dataset.
We can identify the true majority and minority class overlaps via the symmetric neigh-
borhood or hand-shake configurations. In this work, NaNUML, the nearest neighbor
eigenvalue for each dataset, is computed and used in the subsequent stages for under-
sampling the majority class. The proposed approach is described in the next section.

4 NaNUML approach

Let a multi-label dataset be denoted D, and the number of labels be L.
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D � {(xi , yi ), 1 ≤ i ≤ n}. xi denote the ith feature vector and yi denotes its
class information corresponding to L labels. yi � {yi1, yi2, . . . , yiL} and each yi j
can be either 0 (negative membership) or 1 (positive membership). Example, y14 � 1
signifies that x1 belongs to (has) the positive class of the 4th label. Our primary task
is to predict the correct membership of the test points for all the labels.

1. Finding the natural neighbors of points in D Following the natural neighbor prin-
ciples, we find the natural neighbors of all points in D for k � λ (where λ is the
natural neighbor eigenvalue). λ is specific to a dataset. Let N (xi ) be the natural
neighbor set of xi .

N (xi ) � {x j ; (xi ∈ K NNλ(x j )) ∩ (x j ∈ K NNλ(xi ))}, i � 1, 2, . . . , n (1)

This step is common for all labels as the labels share the same feature points.
2. Imbalance ratios of the labels and the number of points removed For each label,

the points belonging to the positive and negative classes are segregated into two
mutually exclusive sets. In amulti-label dataset, usually, the positive class qualifies
as the minority class, and the negative class becomes the majority class. Class
inversion can indeed occur, where the negative and positive classes change their
roles. But, for clarity and synchronization, we denote the positive and negative
classes as the minority and majority classes, respectively. LetDM( j) andDm( j) be
the majority and the minority classes of label j, respectively.

DM( j) � {xi ; 1 ≤ i ≤ n and yi j � 0}
Dm( j) � {xi ; 1 ≤ i ≤ n and yi j � 1}

D � DM( j) ∪ Dm( j)

(2)

For each label, we compute the cardinality of the undersampled set from the
difference between the cardinalities of the majority and the minority classes. Let
u j be the number of points to be removed from DM( j). Let α be a number such
that 0 < α ≤ 1.

u j � max(α × (|DM( j)|−|Dm( j)|), 0), j � 1, 2, . . . , L (3)

α allows us to choose the number of points to be removed from the majority point
set. When α � 1, we equate the cardinality of the undersampled majority point
set with that of the minority point set. After the undersampling, the difference in
cardinalities of the undersampled majority class and the minority class is equal to
the (1−α)%of the original difference between the two sets.Note thatWhen there is
an inversion of the positive and the negative class for a label, [majority class (class
0) has lesser number of points than theminority class (class 1)], (|DM( j)|−|Dm( j)|)
will be negative and u j will be 0. We will not remove any point for that label.

3. Finding the majority points to be undersampled for each label and generating the
augmented dataset For each label, we find the natural neighbor count of the major-
ity points. The majority point set and the minority point set vary across the labels
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depending on the label-specific membership of the points. Additionally, we segre-
gate this count into two mutually exclusive counts—(1) majority natural neighbor
count and (2) minority natural neighbor count. Let countMi( j) and countmi( j)
denote the majority natural neighbor count and minority natural neighbor count,
respectively, of an instance xi for label j.

countM(i)( j) � |{xk : (xk ∈ Ni ) and (xk , xi ) ∈ DM( j)}|
countm(i)( j) � |{xk : (xk ∈ Ni ) and (xk ∈ Dm( j)) and (xi ∈ DM( j))}| (4)

• Finding the label-specific majority points, which are the key structural compo-
nents and preserving them from undersamplingWe explore the majority natural
neighbor counts to find the key structural points of the majority set. The points
with the higher majority natural neighbor counts are selected as the key struc-
tural points, and the top 10% points are kept away from the undersampling in
the next phase (even if their minority counts are higher).

• Finding the majority points to be removed from the remaining set of points
For a label j, we look at the minority natural neighbor count of the remaining
majority points. The majority point with the highest minority natural neighbor
count is removed (undersampled) first from the majority set. This procedure of
undersampling is continued (according to the decreasing order of the minority
natural neighbor counts of the majority points) till u j points are removed. A
majority point in a majority class-minority class overlapped region will have a
high minority natural neighbor count and is a good candidate for removal.

Let U( j) be the set of removed points from the majority setDM( j). The undersam-
pled majority set for label j,UM j is obtained by taking the difference of U( j) from
DM( j).

UM( j) � DM( j)\U( j), j � 1, 2, . . . , L (5)

The undersampled training set for label j, UD( j) is obtained by taking the union
of UM( j) and Dm( j).

UD( j) � UMM( j) ∪ Dm( j), j � 1, 2, . . . , L (6)

UD( j) is used to train the label-specific classifier for label j, and the classifier is
subsequently used to make the predictions for label j.

Remarks In this work, we suggest preserving 10%majority points as the key structural
components of the majority class. In datasets with an imbalance ratio (r > 10), this
will impose an upper limit on α.

α � 0.9r

r − 1
(7)

Given that, it is not possible to equate the cardinalities of the minority and the under-
sampled majority classes when r > 10. The experimental results on exploring α
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manifest that it is a fair trade-off. Too much removal of majority points can lead to the
distortion of the majority class. If it is of utmost necessity to balance the cardinalities
of the majority and minority classes, it has to be done by lessening the degree of
preservation.

In order, we present the Experimental Setup, Results and Discussion, and Conclu-
sion in the following three sections.

5 Experimental setup

• DatasetsWe have performed the experiments on 12 real-world multi-label datasets
enlisted in Table 1.1 Here, instances, inputs, and labels indicate the cardinality,
features, and the number of labels respectively in each dataset. Type indicates the
nominal or numeric nature of the features. The number of unique label combinations
present in a dataset is indicated by Distinct label sets. Cardinality is the average
number of labels per instance, and Density is Cardinality weighted by the number
of labels. We have pre-processed the datasets according to the recommendations in
Zhang et al. (2020) and He and Garcia (2009). Labels having a very high degree of
imbalance (50 or greater) or having too few positive samples (20 in this case) are
removed. For text datasets (medical, enron, rcv1-s1, rcv1-s2), only the input space
features with a high degree of document frequencies are retained.

• Comparing algorithms Seven schemes, comprising of, (1) six multi-label learning
schemes and (2) one generic class-imbalance focused learners are employed in
the empirical study. The multi-label learners involved in the study are COCOA
(Zhang et al. 2020), THRESHL (Pillai et al. 2013), IRUS (Tahir et al. 2012), CLR
(Fürnkranz et al. 2008), RAKEL (Tsoumakas et al. 2011) and ECC (Read et al.
2011). In COCOA, several imbalance-focusedmulti-class learners are implemented
in the Weka platform using the J48 decision tree with undersampling, where the
number of coupling class labels is set as K � min(L − 1, 10). IRUS is a label-
specific undersampling scheme like the proposed method, NaNUML where L are
trained, one for each label. Each label-specific classifier is trained using the label-
specific undersampled training data. IRUS is an ensemble method and the random
undersampling is repeated several times to produce a classifier ensemble.THRESHL
also learns in a label-specific settingwith one classifier for each label. The scheme of
THRESHL is to maximize the F-scores in a hold-out setting to find the threshold for
classification. CLR is a second-order learning scheme that exploits pair-wise label
correlations to obtain a multi-label learning performance. In ECC, the classification
outputs of a label are used as an input feature for predicting the succeeding labels,
thereby involving the correlations of the labels. RAKEL is also a higher-order
learning approach where the set of overlapping and non-overlapping subsets of
labels are considered, and multi-class classifiers are learned on the power set of
the labels. RML (Tahir et al. 2012) is a generic class-imbalance learner used in
the comparative study. In RML, the macro-averaging F measure is used as the
optimization metric while modeling the classifier. In IRUS, the C4.5 decision tree

1 http://mulan.sourceforge.net/datasets-mlc.html.
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is used as the base learner. In RAKEL, the recommended settings of k � 3 and
the number of subsets m � 2q are employed. In ECC, an ensemble size of 100 is
chosen. In CLR, a synthetic label is used to differentiate between the relevant and
the irrelevant labels. In NaNUML, we have used Support Vector Machine Classifier
with linear kernel and the regularization parameter is set to 1.

• Evaluatingmetrics Fourmulti-label domain-specificmetrics, namely—macro aver-
aging F1, macro-averaging AUC, average precision, and ranking loss are used to
compute the performance of the proposed and the competing methods. They are
briefly described as follows:

• Macro-averaging F1: it is the average of all the label-specific F1 scores. Let F1 j
be the F1 score for label j. The higher the macro averaging F1 score, the better
the performance.

Macro F1 � 1

L
L∑

j�1

F1 j (8)

• Macro-averaging AUC: it is the sum of the label-specific AUC scores, weighted
by the number of labels L. Let AUC j be the AUC score for label j. The higher
the macro averaging AUC score, the better the learner’s performance.

Macro AUC � 1

L
L∑

j�1

AUC j (9)

• Average precision: average precision evaluates the average fraction of relevant
labels ranked higher than a particular label. It is desirable that, for instance, the
relevant labels will be predicted with higher scores (more confidence) than that
of the irrelevant or absent ones. LetR(xi , lk) � {l j |rank(xi , l j ) ≤ rank(xi , lk),
l j ∈ Yi }

AveragePrecision � 1

n

t∑

1

1

|Yi |
∑ |R(xi , lk)|

rank(xi , lk)
(10)

• Ranking loss: is used to evaluate the percentage of misordered label pairs. Let
R(xi , lk) � {l j |rank(xi , l j ) ≤ rank(xi , lk), l j ∈ Yi }. Y′

i denotes the labels not
belonging to xi . The lower the value, the better the performance.

Ranking loss � 1

n

t∑

1

1

|Yi ||Y′
i |
(yik , yi j )| fk(xi )) ≤ f j (xi ), (yk , y j ) ∈ (Yi × Y′

i )

rank(xi , lk )

(11)

• Statistical significance testWe have conductedWilcoxon signed rank test to eval-
uate the difference in the methods’ performance statistically. We have conducted
the tests for a pair of methods—(NaNUML-50% or NaNUML-100% or Best of
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two) and each competing method on the results obtained from all four evaluating
metrics. We have made the evaluations at p � 0.05 significance level.

6 Results and discussion

We have randomly partitioned each dataset into two equal (or nearly equal), mutu-
ally exclusive halves to construct a training set and a test set for a single run. For
each run, we have obtained the results on three metrics. The values in the table are
the mean scores obtained from ten experiment runs. The scores obtained on macro-
averaging F1, macro-averaging AUC, average precision and ranking loss are shown
in Tables 2, 3, 4, and 5 respectively. NaNUML (NaNUML-50% and NaNUML-100%)
has obtained the best scores onmacro-averaging F1 in 9 out of 12 datasets. Of the nine
best scores obtained, NaNUML-50% obtains four, and NaNUML-100% obtains five.
COCOA (two) and RML (one) obtain the remaining three best performances. This feat
by NaNUML indicates its appropriateness in handling class-imbalance problems in a
multi-label context. The performance of NaNUML on macro-averaging AUC is a bit
subdued as compared to that of macro-averaging F1. NaNUML has obtained the best
scores in 6 out of 12 datasets only. The remaining best scores are shared by COCOA
(3 out of 6), CLR (2 out of 6), and ECC (3 out of 6). Between NaNUML-50% and
NaNUML-100%, the latter has attained a relatively better performance. NaNUML
has attained the best scores on average precision in 7 out of 12 datasets. We may also
note that NANUML-50% achieves six out of those cases, and only one is achieved
by NaNUML-100%. ECC has attained the remaining five best scores. The probable
reason regarding the loss of performance by NaNUML-100% is due to the deletion
of some majority instances, which leads to the loss of some pertinent information. On
ranking loss, NaNUML has the lowest loss values in 7 out of 12 cases. Out of these,
NaNUML-50% and NANUML-100% have achieved 4 and 3, respectively. ECC and
CLR have achieved four and one of the best scores, respectively.

We report the statistical significance of the improvement achieved by NaNUML.
We have presented the results of the statistical significance test in Table 6. On
macro-averaging F1, the performance of NaNUML (best of NaNUML-50% and
NaNUML-100% ) is better and statistically superior to all competing methods. Con-
cerning macro-averaging AUC, NaNUML has delivered a statistically significant
improvement against three competing methods and has failed to do so against three.
The three methods are COCOA, CLR, and ECC. This finding is in congruence with
the data presented in Table 3. On average precision and ranking loss, NaNUML
has obtained statistically superior performance against four competing methods, and
NaNUML’s performance is statistically comparable to that of COCOA and ECC. We
should also note that, only in one case, NaNUML-100% has achieved a statistically
inferior performance (against COCOA, on average precision). The above-summarized
results ascertain the appropriateness of the proposed method, NaNUML, over exist-
ing schemes dedicated to multi-label learning and class-imbalance mitigation. It is
to be noted that, being an undersampling scheme, NaNUML reduces the complexity
associated with the classifier modeling.
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6.1 The role of˛

The degree of undersampling performed on an imbalanced label is quantified and con-
trolled through α. It is varied between 0 and 1 where α=0 signifies no undersampling
and α � 1 leads to equal cardinalities of the majority and the minority classes. A low
value of α results in the prevalence of imbalance, whereas a too-high value can lead to
the distortion of the majority class. Hence, it is a critical parameter. We vary α across
the following range—0.25, 0.5,0.75, and 1, correlating with the variation of multi-
label performances. We explore six datasets—three with numeric features (CAL500,
Yeast, and Scene) and three with nominal features (Medical, Llog, and Enron). The
plots are shown in Fig. 1.

On macro-averaging F1, the best scores are rendered at α � 0.5 on three cases,
α � 1 at two case and α � 0.75 in one case. At α � 0.25, quite low macro-averaging
F1 scores are obtained. The results indicate that amedium to higher α range is effective
in improving the recognition of the minority class of each label. On ranking loss, the
best (lowest) scores are served at α � 0.0.5 in three cases, α � 0.75 in two cases, and
α � 0.25 in one case. At α � 1, ranking loss is pretty high.

A cumulative analysis in the context of the two metrics reveals that a low α can be
detrimental to recognizing the minority class instances. On the contrary, a high value
of α leads to a distortion of the majority case, thereby increasing the ranking loss.
Given these two findings, fixing α between 0.5 and 0.75 is judicious.

6.2 Exploration of classifiers

NaNUML is a data pre-processing method where we reduce the skewness in the rep-
resentation of the majority and the minority classes. To assess its intrinsic efficacy,
learning it using different classifiers is essential.We explore five classifiers—k-nearest
neighbors classifiers at k � 5, Decision Tree classifier, Support Vector Machine clas-
sifier with linear kernel and regularization parameter � 1, Random Forest Classifier
with depth level � 5 and number of estimators � 10, and AdaBoost classifier (with
base classifier Decision Tree at depth level� 1) in this study. The same six datasets and
two metrics used in the previous experiment are employed in this study. The outcomes
are shown in Fig. 2. For macro-averaging F1, the Adaboost classifier has performed
best. On ranking loss, the SVC has rendered the lowest loss values in most cases.
Decision Tree classifier could not fare well on both metrics. Random Forest Classifier
has delivered admissible performance on numeric datasets.

7 Conclusion

In this work, we have presented a novel label-specific undersampling scheme,
NaNUML, for multi-label datasets. NaNUML is based on the parameter-free natural
neighbor search, and the critical factor, neighborhood size ‘k’, is determined with-
out invoking any parameter optimization. In our scheme, we eliminate the majority
instances closer to theminority class. In addition, we preserve the critical lattices of the
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Fig. 1 Exploration of α on six datasets. SVC is used as the base classifier

majority class by looking at the majority natural neighbor count of the majority class.
The other advantage of the scheme is that we require only one natural neighbor search
for all labels. Undersampling schema has the intrinsic characteristic of reducing the
complexity in the classifier modeling phase (through the reduction in training data),
and NaNUML is no exception. The performance of NaNUML indicates its ability to
mitigate the class-imbalance issue in multi-label datasets to a considerable extent.

In our future work, we would like to design a natural-neighborhood-based over-
sampling scheme for class-imbalanced datasets. We would also like to explore if we
can incorporate label correlations in our undersampling scheme.
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Fig. 2 Exploration of different classifiers on six, NaNUML-undersampled dataset. α is fixed at 0.5 for all
cases
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