
Advances in Data Analysis and Classification
https://doi.org/10.1007/s11634-024-00588-4

REGULAR ART ICLE

Clustering ensemble extraction: a knowledge reuse
framework

Mohaddeseh Sedghi1 · Ebrahim Akbari1 · Homayun Motameni1 ·
Touraj Banirostam2

Received: 26 October 2022 / Accepted: 26 February 2024
© Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
Clustering ensemble combines several fundamental clusterings with a consensus func-
tion to produce the final clustering without gaining access to data features. The quality
and diversity of a vast library of base clusterings influence the performance of the
consensus function. When a huge library of various clusterings is not available, this
function produces results of lower quality than those of the basic clustering. The
expansion of diverse clusters in the collection to increase the performance of consen-
sus, especially in caseswhere there is no access to specific data features or assumptions
in the data distribution, has still remained an open problem. The approach proposed
in this paper, Clustering Ensemble Extraction, considers the similarity criterion at the
cluster level andplaces themost similar clusters in the samegroup.Then, it extracts new
clusters with the help of the Extracting Clusters Algorithm. Finally, two new consen-
sus functions, namely Cluster-based extracted partitioning algorithm andMeta-cluster
extracted algorithm, are defined and then applied to new clusters in order to create
a high-quality clustering. The results of the empirical experiments conducted in this
study showed that the new consensus function obtained by our proposed method out-
performed the methods previously proposed in the literature regarding the clustering
quality and efficiency.
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1 Introduction

Clustering is one of the most important tasks in data mining because it uncovers useful
patterns in unlabeled datasets. In other words, it is the process of clustering data points
in such a way that the individuals in the same cluster have the most similarity to
one another and the least similarity to those in other clusters. In recent years, this
issue has grown increasingly relevant in machine learning, pattern recognition, etc.
(Tan et al. 2016). Many clustering methods have been created over the years, each
of which uses different distance/similarity measurements and/or objective functions
(Zhao et al. 2018). In general, different algorithms make predictions with varying
degrees of accuracy (FoziehAsghari et al. 2017). Choosing the bestmodel is not always
the best option because dismissing the findings of less effectivemodels can result in the
loss of potentially vital information (Fern and Lin 2008; Alizadeh et al. 2014). One of
the most fundamental questions is: How should we choose one amid so many options?
(Zhao et al. 2018; Alizadeh et al. 2015). There is no single best clustering algorithm for
all cases, according to the Kleinberg theorem (Akbari et al. 2015). Clustering results
vary depending on the method and the parameters used. One alternative response to
this question is that we do not have to choose at all because we can generate different
options by (1) producing a group of base clustering (BC) results, or (2) utilizing a
consensus function to create a final clustering. Clustering Ensemble (CE) (Strehl and
Ghosh 2002), as a knowledge reuse framework, is based on this theory and has become
popular in the clustering community in recent years (Fern and Lin 2008; Topchy et al.
2005). CE is defined as the process of integrating numerous clustering results into
final clusters without accessing the features or algorithms; it is a useful method for
preserving privacy and reusing information (Strehl and Ghosh 2002). A consensus
approach is used to combine clusterings (Akbari et al. 2015). CE can considerably
increase the stability, robustness, and quality of a clustering solution in comparison
with a single clustering technique (Li et al. 2019). Many clustering ensembles, such
as categorical data (He et al. 2005; Iam-On et al. 2012), high dimensional data (Jing
et al. 2015), noisy data (Yu et al. 2015), temporal data (Yang and Chen 2011), and
feature selection, have been successfully handled using the CE technique (Elghazel
and Aussem 2015). Scientists have proved that all the base clustering results do not
contribute to the creation of the final clustering (Jia et al. 2011). Some methods can be
used to analyze and select a subset of partitions that yield ensemble results similar to,
or better than, those that are based on the entire set of partitions, in order to improve
clustering quality. "Clustering Ensemble Selection" or "cluster ensemble selection"
(CES) is the common name for these procedures (Jia et al. 2011). Previous research
has demonstrated that such selection can greatly increase the final partition quality.
As a result, there is a need for a thorough assessment of the candidate partitions for
combination (Naldi et al. 2013). Diversity and quality play critical roles in the selection
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of the partitions to be combined. The main purpose of CES is to select a subset of
large libraries and a consensus of base clusters for best performance so that the clusters
could be of high quality while still being significantly different. In knowledge reuse,
if the base clusterings are small and without diversity, CES cannot find a subset of
base clusterings with appropriate diversity; therefore, it cannot achieve an acceptable
result. For a variety of reasons, e.g., the unavailability of original features, the high
quality of the label, the confidentiality of features, and the information distributed,
various clusterings for the objects under consideration may already exist in several
applications and one prefers to apply them to new clusterings instead of throwing
them away. This is knowledge reuse. On the other hand, clusters may be available
with low diversity and small size, without the main features. In this case, the question
is how new clusters could be created by having clusters with such features so that they
could have a good variety and their labels could be near to reality. In this paper, a
new approach is proposed, namely Clustering Ensemble Extraction (CEE). Figure 1
depicts the overall flow of our approach. CEE involves four steps: first, basic clustering
is provided in binary form. Then, with the use of the Jacquard similarity measure, a
set of base clusters is selected from among the existing clusters. Afterward, a method
is proposed to extract the clusters (see Fig. 4). By the iterative method, two clusters
are selected from among those available and then, with the help of logical relations,
the new clusters are extracted. Therefore, the quality of the cluster does not decrease.
Then, at the last step, using the consensus function, final clustering is obtained. Table
1 summarizes the contributions of the proposed method in comparison with existing
ones.

Fig. 1 The proposed approach is depicted in a flow diagram

Table 1 Contributions of the proposedmethod compared to themethods previously proposed in the literature

The proposed method Previous methods

(1) It does not have access to the main features of
the data, and due to the existing base
clusterings, it produces a new set of clusters
with high diversity

(2) Despite the small library and low diversity,
selecting a subset of clusters will not lead to
clustering labeled ‘close to reality’; to address
this problem, we proposed the clusters
extraction approach

(3) It proposes a new consensus function for the set
of extracted clusters instead of clusterings

(1) In previous methods, a large library of
clusterings is available, which leads to the
production of extremely diverse clusters

(2) In most of the methods previously proposed,
picking a subset of clusterings from a vast
library of clusterings may increase diversity,
but it generates the same unreal clusters in the
chosen clusterings

(3) In previous methods, the consensus function
was applied to a collection of basis clusterings
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In the experimental section, we explain the importance of the proposed extracted
clusters and demonstrate its superiority regarding consensus quality over the well-
known clustering group methods found in several datasets. The main contribution of
this approach is generating a new set of clusters instead of clusterings in knowledge
reuse. In addition, a set of diverse clusters is generated for base clusterings with small
size and low diversity. In summary, the contributions of the proposed approach are as
follows:

• Generating a new set of clusters from base clusterings using the Jaccard similarity
measure.

• Extracting the new set of the generated clusters using the Boolean function with
bigger size and higher diversity.

• Proposing two new consensus functions for the set of extracted clusters instead of
clusterings.

The outline of the rest of the paper is as follows. Section 2 reviews the related work
already existing in the literature. Then, Sect. 3 presents the background knowledge
about the presentation of base clusters, diversity andqualitymeasures, and the Jacquard
similarity measure. Next, Sect. 4 introduces the proposed algorithm in detail. After-
ward, Sect. 5 empirically demonstrates the performance of the proposed algorithm.
Finally, Sect. 6 concludes the paper.

2 Related work

CE is a widely used method for improving the quality and stability of clustering
results in the clustering research area. There may be high quality and diversity in dif-
ferent clusterings. On the other hand, in a certain clustering, a number of low-quality
clusters may be included, which cannot be eliminated. Our main goal is to gener-
ate a diverse set of clusters with a significant level of diversity. The diversity stage
(creating multiple clusters) and the consensus function (combining multiple clusters)
are the two primary stages of CE) Akbari et al. 2015). The production of different
clustering solutions involves five methods: (1) the initialization of various parameters
such as cluster centers in the K-means clustering method to create a homogeneous
set of data; (2) the use of different clustering algorithms called heterogeneous groups;
(3) the creation of different subsets of features; (4) the implementation of different
subsets of objects; and (5) projection to subspace. The second stage in the cluster-
ing ensemble (i.e., consensus function) refers to combining these solutions to obtain
a final accurate result. The six families of techniques that make up the consensus
function are hypergraph methods, voting approaches, information theoretic methods,
co-association-based methods, mixture models, and evolutionary algorithms. Several
CE approaches exist in the literature, which can be classified into four categories:

1. Vote approaches: The Hungarian method can be used to re-label the two basic
clusters, and then the data is assigned to the clusters by a voting process.

2. Feature-based approaches: These methods identify the best subset of features.
Attributes can be thought of as a middle ground where the algorithms perform
clustering to get the optimum results in predicting class labels (Kuhn 1955).
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3. Pairwise approaches: These approaches produce a co-association (CA) matrix by
comparing the number of cluster instances, which is then utilized to generate a
new clustering algorithm (Fred and Jain 2005).

4. Graph-based approaches: These methods create the edge and then perform a
weighting process based on the edges’ similarity. Finally, they create the final
partition by cutting the chart’s edges (Strehl and Ghosh 2002; Hamidi et al. 2019;
Ma et al. 2020).

The CES technique was adopted by Azimi and Fern (2009), Parvin et al. (2012),
and Saidi et al. (2017) by selecting a subset of clusterings to improve the clustering
ensemble solution. The diversity and quality of the base clusters are two essential ele-
ments that improve CE, to the researchers mentioned above. Different methods for the
enhancement of quality and diversity have been considered in the literature. The accu-
racy between clusters is measured using two criteria: Normalized Mutual Information
(NMI) (Strehl and Ghosh 2002) and Adjusted Round Index (ARI) (Akbari et al. 2015).
According to Fern and Brodley (2004), low diversity reduces performance improve-
ment; consequently, a high-diversity subset of partitions should be considered. They
compared the effects of base partition diversity and stability on selective ensemble
performance. Kuncheva and Hadjitodorov (2004) expanded on Fern and Brodley’s
work by suggesting that the number of clusters in each base division be set at random
in order to be greater than the expected number. The best selective clustering ensemble
algorithms rely on diversity to pick a subset of clustering results. Naldi et al. (2013)
provided a number of clustering validity indicators. Alizadeh et al. (2014) developed
an asymmetric criterion to evaluate the cluster-partition relationships. This criterion
is used to determine which cluster is the best. The co-matrix was then constructed
using the Extended Evidence Accumulation Clustering (EEAC) method. Akbari et al.
(2015) proposed the Hierarchical Cluster Ensemble Selection approach (HCES), in
which a subset of cluster members is determined using three techniques: average-
linkage, single-linkage, and complete-linkage agglomerative. HCES determines the
subset of cluster members by considering both diversity and quality as important
factors. In addition, their research developed a novel relative diversity measure. The
criteria of independence and diversity in cluster ensemble selection were introduced
by Yousefnezhad et al. (2016). They calculated the independence of two basic cluster-
ing algorithms using an exploration criterion based on the technique of turning code
into graphs in software testing. Furthermore, homogeneity, a novel similarity criterion,
was proposed to assess the diversity of the underlying results. For semi-surveillance
clustering, Fozieh Asghari et al. (2017) presented an approach based on the WOC
theory. Their method included a semi-surveillance clustering algorithm, a strategy for
evaluating and selecting early results based on the feedback mechanism, and a new
criterion for evaluating the variability of the underlying results by decreasing the size
of data based on monitoring information. In regard to consistency under constraints,
diversity among group members, and overall set quality, Yang et al. (2017) provided
a new approach to solving the constraint group set selection problem, referring to it
as a hybrid optimization problem. Li et al. (2018) examined a technique considering
the discrepancies between the objectives of the group selection stage and those of
the group integration stage in the selected clustering set. Yang et al. (2017) looked at
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cluster ensemble selection in the context of various limitations. Three criteria were
used: compatibility under limitations, ensemble quality, and diversity among ensem-
ble members. They employed several ways to use restrictions in group selection rather
than library production, taking quality and diversity into account. Huang et al. (2018)
developed an ensemble clustering strategy based on the ensemble-driven cluster uncer-
tainty assessment and a local weighting technique. They used the entropy criteria to
estimate cluster uncertainty without having access to the original data features, by
evaluating the cluster label throughout the full ensemble. Then, they developed a col-
laboration matrix with local weighting and provided two consensus functions: LWEA
and LWGP. To evaluate the quality of clusters, cluster similarity, and object similarity,
Bai et al. (2019) proposed a weighted consensus criterion based on the entropy of
information. To generate a high-quality final cluster, they presented weighted feature
consensus, weight labeling consensus, and pairwise similarity consensus methods. To
increase diversity andquality in base clusters, Zhao et al. (2018) introduced a sequential
clustering algorithm based on SECG, minimizing anticipated entropy, and normalized
cross-information to achieve high-quality basic clustering results and variability for
mixed data in group clustering. Unlike many other basic clustering production algo-
rithms, the proposed algorithm takes into account correlations between different basic
clusterings while producing such clusterings. The sample frequencies employed by
Li et al. (2019) differed between clusters. They presented a clustering approach that
took into account sample stability to reflect differences (CEs). The samples are cate-
gorized into two groups by their algorithms: core and halo. The cluster core samples
are then used to find a clear structure; on the other hand, the samples from the cluster
halo are gradually assigned to the clear structure. Ma et al. (2020) concentrated on
clustering and multiple selection while taking quality and diversity into considera-
tion. They provided the results of the MCAS approach with two main methods of
combining the selected solutions: direct combination and clustering. Bagherinia et al.
(2020) suggested a fuzzy clustering ensemble based on fuzzy cluster-level weighting
without access to the object attributes base. They used the entropic criterion to assess
cluster unreliability and the reliability cluster-based index to consider the reliability
of fuzzy clusters. To build the final clustering, two consensus functions were pro-
vided: (1) the fuzzy weight correlation matrix built from the ensemble consensus, and
(2) the fuzzy clustering reliability-based graph partitioning fuzzy clustering ensemble
(RBGPFCE). Mahmoudi et al. (2021) proposed a two-level clustering-based consen-
sus function method (CFTLC). Using the average of the hierarchical clusters on the
cluster similarity matrix, their suggested method produced a collection of meta clus-
ters. The basic BCs with the greatest cluster–cluster similarity are combined first via
CFTLC. The object-cluster similarity is then used to assign each data point to a meta
cluster. Finally, at the output of the clustering consensus, the meta cluster was consid-
ered the consensus cluster. Banerjee et al. (2021) proposed using several set selection
procedures on weighted clusters after creating a new clustering set. To accomplish
this, they first created a cluster-level surprising measure derived from the principle of
agreement and disagreement among all clusters in the ensemble. In the second step,
they calculated the merit of a clustering by adding up the cluster-level surprisal values
of the constituent clusters and mathematically demonstrated that this clustering-level
surprisal measure could be treated as a valid entropy measure. This measure can be
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used to prioritize clusterings in forming a quality consensus. In the final phase, they
suggested a coupled ensemble selection method based on the clustering level surprise
criteria. The iterative procedure took one of the clusters from the time set and built
a consensus, keeping the quality of the consensus from dropping monotonically. The
consensus was calculated in each iteration by applying the Weighted Hierarchical
Agglomerative Clustering Ensemble (WHAC) algorithm to the correlation matrix,
which was changed by the cluster level established in step one. In all the clustering
methods presented so far, the main features of the data are available; as a result, the
final clustering is created by selecting the appropriate criteria of the features, which
leads to the quality and variety of clustering and selection of a subset of the data.Wang
et al. (2022) developed a graph-based clustering model using row vectors as vertices
and row vector similarity as edges. Then, they used the Markov process to derive the
graph-based clustering model. Li et al. (2022) proposed a clustering framework based
on density hierarchical clustering (AHC) methods, which includes clustering method-
ology and similarity evaluation. The proposed approach is a model selection-based
Meta-Clustering Ensemble technique (MCEMS). To enhance ExtractedClusters (EC),
MCEMS used a two-weight approach to address the model selection problem. Several
individual AHC approaches clustered the data with different features to produce major
clusters. They estimated the similarity between cases based on the findings of several
methods. The MCEMS system was used for the re-clustering purposes. After cluster-
ing, the ideal number of ideal clusters was calculated by merging comparable clusters
and considering a threshold. Finally, the similarity of samples with meta-clusters was
determined. And each sample was assigned to a meta-cluster with the highest simi-
larity to produce the final clusters. However, the problem is that if only the primary
clusters are available and there is no access to the main features for various reasons,
then the primary library will be small, and selecting a subset of the clusters for the new
clustering will not be effective. This article proposes a way to generate new clustering
with small libraries without access to basic features in such a way that the clustering
labels could be close to reality.

3 Preliminaries

3.1 Representation of base clusterings

This section introduces the general formulation of the ensemble clustering problem.
Let o � {o1, o2, . . . , on} represent a dataset where oi , i � 1, 2, . . . , n denotes the i-
th data object and n represents the number of objects in thedataset . Consider a dataset
with l partitions (or clusterings), each of which is handled as a base clustering and
contains a specific number of clusters. The ensemble of l base clusterings is formalized
as follows: LetH � {h1, h2, . . . , hl} be a set of clusterings where hi , i � 1, 2, . . . ,
l is a clustering. Each clustering can be represented as a set, vector, or binary value.
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Table 2 Illustrative cluster ensemble problem withl � 4, and m � 3. original label vectors (left) and
equivalent hypergraph representation with 12 hyperedges (right)

3.1.1 Set representation

Let hm � {cm1 , c
m
2 , . . . ., cmkm } be a set of base clusterings, wherem � 1, 2, . . . .l, cmi is

the i-th cluster inhm , and km denotes the number of clusters inhm . Each cluster is a set of
homogeneous objects. As an example, leto � {o1, o2, o3, o4, o5, o6}. Four clusterings
are presented in the dataset o by set representation, which areh1 � {{o1, o2, o3}, {o4,
o5, o6}},h2 � {{o1, o2}, {o3, o4, o5, o6}}, h3 � {{o1, o2}, {o3, o4}, {o5, o6}} and
h4{{o1, o2, o3, o4}, {o5, o6}}.Obviously, the entire dataset is represented by the union
of all clusters in the samebase clustering, i.e.,∀ hm ∈H,

⋃nm
i�1 c

m
i � o. In the samebase

clustering, different clusters do not overlap: ∀cmi , cmj ∈ hm s.t. i �� j , cmi
⋂

cmj � ∅.

Let clsm(oi ) denote the cluster in hm ∈ H to which object oi belongs. That is, if oi
belongs to the k-th cluster in hm , i.e., oi ∈ cmk , then we have clsm(oi ) � cmk .

3.1.2 Vector representation

In the case of order objects, the label vector pεNn is a vector of integer numbers
corresponding to the objects, such that if oi ∈ cm , cm(xi ) � m. The label vectors of
the above examples are p1 � (1, 1, 1, 2, 2, 2), p2 � (1, 1, 2, 2, 2, 2), p3 � (1, 1,
2, 2, 3, 3), and p4 � (1, 1, 1, 1, 2, 2), respectively (see Table 2(a)).

3.1.3 Binary representation

The binary representation indicates a binarymatrixH � { hi j |i � 1, 2, . . . , n; j � 1,
2, . . . , k} ∈ {0, 1}n∗k ,

where hi j �
{
1 i f object i include j − th cluster
0 else

}

(1)

For example, the binary representations of h1, h2, h3andh4 are shown in Table 2
in the example above (b).
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3.2 Diversity and quality measures

This section briefly discusses the concepts of base cluster quality and accuracy, as
well as their implications for base clustering. After a set of base clustering findings, a
number of samples stay in one category consistently, while others alternate between
groups on a regular basis. The tendency of a sample to change its group can be used to
describe this phenomenon. This tendency is useful for a variety of clustering ensemble
tasks, such as assessing the quality of the base clustering results (Li et al. 2019). The
cluster set’s quality and diversity of fundamental partitions are two important factors;
the former reflects the accuracy of the group’s members, while the latter measures the
diversity of the group’s predictions. If the labels on one partition do not match the
labels on the other, the two partitions are different. To quantify the diversity or quality
of partitions, NMI (Strehl and Ghosh 2002) and ARI (Akbari et al. 2015) are often
used. Definition 1 formally defines NMI and ARI.

Definition 1 Let ha � {ca1 ,c
a
2 , . . . , caka} and hb � {cb1, c

b
2, . . . , cbkb} be two base

clusterings for the data set X ; ARI and NMI between them are given as follow:

ARI (ha , hb) �
∑ka

i�1

∑kb
j�1

(
ni j
2

)

− t3

1
2 (t1 + t2) − t3

(2)

where t1 � ∑ka
i�1

(
nia
2

)

, t2 � ∑kb
j�1

(
n jb

2

)

, t3 � 2t1t2
n(n−1)

and

NMI (ha , hb) �
−2

∑ka
i�1

∑kb
j�1 ni j log

(
n·ni j
nia ·nbj

)

∑ka
i�1 nia log

( nia
n

)
+

∑kb
j�1 nbj log

( nbj
n

) (3)

where in both equations,ha �{ca1 ,c
a
2 , . . . , caka} and hb � {cb1, cb2, . . . , cbkb} with ka

and kb clusters, respectively, are two clusterings on dataset D with n samples; ni j
signifies the number of common objects in cluster ci in clustering ha and in cluster c j
in clustering hb; nia denotes the number of objects in cluster ci in clustering ha ; and
nbj stands for the number of objects in cluster c j in clustering hb. NMI affects both
clustering performance and is easy to calculate. The lower the NMI value, the higher
the diversity is. NMI can help express a reliable estimate of how much information
is shared between any two clustering solutions. Some samples remain consistently in
one category after achieving a set of base clustering results, whereas others regularly
switch between groups. The tendency of a sample to change its group can be used to
describe this phenomenon. External and internal diversities are two types of diversity
metrics. When class labels are provided, the external diversity metric is defined as
follows, using a quality measure such as NMI or ARI.

Definition 2 Given the external diversity, the measure is computed as follows:

Diversity (h, hi ) � 1 − quality(h, hi ) (4)
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where h is the known class label and hi , i � 1, 2, . . . , l is clustering. Remember that
NMI in this study is employed as a measure of quality. The average of diversity is

De � 1

L

L∑

i�1

Diversity (h, hi ) (5)

Pair-wise and non-pair-wise diversities are two types of internal diversity. Each
clustering is implicitly picked as a class label in pair-wise diversity, and other cluster-
ings are measured by the chosen class label. The following formula is used to calculate
diversity:

Diversity (hi , h j ) � 1 − quality(hi , h j ) (6)

where i �� j , i � 1, 2, . . . , l. The diversity measure can be averaged as follows:

Dp � 1

l(l − 1)

l∑

i�1

l∑

j � 1
j �� i

Diversity (hi , h j ) (7)

The following is the definition of the non-pair-wise diversity measure:

Diversity (h∗, hi ) � 1 − quality(h∗, hi ) (8)

where i � 1, 2, . . . , l and h∗ stands for the result of using a consensus function.
The following is the average of diversity:

Dnp � 1

l

l∑

i�1

Diversity (h∗, hi ) (9)

According to Kuncheva and Hadjitodorov (2004), ensembles with a larger variety
of individual diversities perform better than those with a smaller range. As a result, a
new relative diversity measure is proposed in this research based on the hn derived by
a consensus function and hi , i � 1, 2, . . . ., l that are ensemble members:

Diversity (h∗, hi ) � |quali t y(h∗, hi ) − quali t y(h∗, h j )| (10)

In comparison with the reference consensus partition,h∗, the relative diversity
measure determines the absolute distance between qualities of hi and h j .

3.3 Jaccardmeasure

The Jaccard similarity measure is also used in this study. The Jaccard resemblance
index (also known as the Jaccard similarity coefficient) analyzes members from two
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sets to see which are similar and which are distinct (Sulaiman and Mohamad 2012).
This measurement is the same for both data sets, and it ranges from 0 to 100%. The
closer the two populations are, the greater the percentage. Although it is simple to use,
it has a high sensitivity to sample size and may produce incorrect results, particularly
with very small samples or data sets with missing observations. The formal definition
of the Jaccard similarity measure is provided in Definition 3.

Definition 3 The Jaccard similarity pair of sets S and T is defined as:

Jaccard similarity �
∣
∣S

⋂
T

∣
∣

|S|+|T |−∣
∣S

⋂
T

∣
∣

(11)

where
∣
∣S

⋂
T

∣
∣ calculates the number of members that are common to both sets, |S|

is the total number of members in set S, and |T | is the total number of members in set
T .

4 Cluster ensembles extraction for knowledge reuse

The aim of ensemble clustering is to produce a stronger and more robust clustering
by combining numerous base clusterings in the ensemble H . In this paper, a new
set of clusters (instead of clusterings) is generated with greater size and diversity.
For example, a chain store with M distributed stores divides its customers into three
clusters: active, intermediate, and inactive. Each store may have defined these three
clusters based on different criteria. Therefore, there will be three clusters with different
criteria for n customers. The number of stores is small; thus, with low clusterings,
the basic data that feature the customers is not available. The current study aims
to increase the diversity of clusters by extracting them from base clusters. So far,
researchers working in this domain have first created a large library and then selected
different clusters from among them. But if the library is small, selecting a subset of
the library as well as the consensus function will not be suitable for this library. For
that reason, our purpose will be to create a new library consisting of clusters from the
old library, which includes clustering. The present paper proposes a new CE approach.
Note that since compilers can only examine cluster labels and do not have original
features, it is a framework for reusing knowledge. Cluster tags are symbolic, so the
communication problem must be solved. In addition, the form of the given clusters
might vary depending on the clustering method and the particular perspective of the
data used in thatmethod. Therefore, in this study, first, themain clusteringwas changed
to binary. Next, the set information was used to estimate the cluster similarity based on
the Jacquard similarity measurements. A new set of clusters was selected and created
from the main cluster. The existence of similar clusters in a group, according to this
article, can be a useful indicator for cluster extraction. Thus, new clusters were created
with logical relationships. Finally, the new clusters were extracted with the consensus
function. The framework of the cluster group extraction method used in this paper is
shown in Fig. 1.
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4.1 Generating base clusterings

It has been demonstrated that diversity is essential for improving ensemble learning
performance (Jia et al. 2011) and has an impact on the quality of the final solution.
The K-means algorithm creates various clusters with different initial values and a
choice of k between

[
2,

√
n
]
(k number of clusters in a cluster). This is useful for

creating different types of clusters (Hamidi et al. 2019). Available evidence indicates
that if the size of clusters and their variety are small, the clusters created by K-means
are variable, but with low accuracy. The question is how we can produce clustering
with high accuracy if there is a set of clusterings with small size and low diversity.
Since there are no real small base clusterings, the current study attempted to produce
it experimentally with the K-means algorithm as follows. The K-means algorithm was
employed with constant value ofk, and different number of initial clusters size varying
from 30 to 50 (see Fig. 3). Since in the next steps there are only the cluster labels and
these labels are symbolic, the cluster labels are merged into binaries to integrate them.

4.2 Selecting set of clusters

Our goal in comparing the sets is to see how similar they are in composition, and
the Jaccard Index is the most straightforward approach to this task. This index is a
proportion of how many objects two sets share out of the total number of objects
they have, and is the measurement of asymmetric information on binary variables.
This index is used to calculate the separation of the clusters due to the shape of the
clusters and their overlap. The generic formulation of the ensemble clustering problem
is presented in this section. Assume O � {o1, . . . , oN } is a dataset, oi refers to the
i-th data object, and the number of objects in O is N . Consider the datasetO , which
has l partitions (or clusterings), each of which is treated as a base clustering and has a
specified number of clusters. Formally, the ensemble of l base clusterings is denoted
as follows: H � {h1,h2, . . . , hl}, where hk � {ck1, ck2, . . . , ck

nk
} is the k-th base

clustering, and cki denotes the i-th cluster inhk , and nk is the number of clusters inhk .
Each cluster consists of a collection of data elements. The union of all clusters in the
same base clustering, obviously, encompasses the complete dataset, i.e., ∀ hk∈ H ,
⋃nk

i�1 c
k
i � O . Within the same base clustering, different clusters do not intersect with

each other, i.e., ∀cki ,ckj∈ hk s.t. i �� j , cki
⋂

ckj � ∅. Let clsk(oi ) denotes the cluster in
hk ∈ H to which object oi belongs. That is, if object oi belongs to the m-th cluster
inhk , i.e., oi∈ckm , then we have clsk(oi )=ckm .

The Jaccard index frequently outperforms other methods for evaluating binary two-
vector similarity as well as in high-dimensional data sets (Strehl and Ghosh 2002).
In this work, each cluster is treated as a binary vector, and the degree of similarity
between two clusters was computed using this index. For example, according to Fig. 2,
c11 � (1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0), and c21 � (1, 1, 1, 1, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0) therefore the jaccard (c11, c

2
1) � 5

7 . At this point, the cluster’s similarity
to all other clusters in the clustering is determined. For this aim, formula (12) was
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Fig. 2 An ensemble of three base clusterings: h1, h2, and h3

presented to compute similarity using Jaccard, and the average similarity of the clusters
was utilized as a criterion to choose the selected clusters.

Definition 4 Given the base clusterings H , the similarity of cluster C j with the entire
ensemble H is computed as follows:

w(ckj , h
k) � 1

l − 1

l∑

r � 1
r �� n

max{ jacard(ckj , crs )} (12)

Inckj , j � 1, 2, . . . , nk ,k � 1, 2, ..., l, ands � 1, 2, ..., nr . Figure 3 and Table 3
show how to compute cluster similarity using an ensemble of three base clusterings.
For the dataset o � {o1, o2, . . . .o15} with 15 data objects, three base clusterings (h1,
h2andh3) are created, each consisting of three clusters (see Fig. 2).Of the three clusters
in h1, c11 contains seven objects, c21 three objects, and c31 five objects. On the other
hand, of the three clusters in h2, c12 contains six objects, c22 four objects, and c32 five
objects. Cluster c11 contains eight objects that belong to three different clusters inh2.
Then, the similarity of the three clusters in h1 and h2 was computed. According to
Definition 1, with Jaccard (c11, c

2
1)� 0.75, then Jaccard (c11, c

2
2)� 0.25 and Jaccard (c11,

c23) � 0. hence the maximum similarity of c11 in base clustering h2 is 0.75. Similarity
Jaccard (c11,c

3
m) can be obtained. The cluster c

1
1 has the highest similarity jaccard with

Fig. 3 Illustration of clusters
extraction from base clustering
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Table 3 Computation of cluster similarity for the clusters in the ensemble shown in Fig. 2

Base clustering Cluster Max similarity Cluster similarity θ Result

h1 c11 Max(Jaccard(c11, c21),

Jaccard(c11, c22),

Jaccard(c11, c
2
3))

Max(Jaccard(c11, c
3
1),

Jaccard(c11, c
3
2),

Jaccard(c11, c
3
3))

W(c11, h
1) � 0.56 0.5 0.56

c12 Max(Jaccard(c12, c21),

Jaccard(c12, c22),

Jaccard(c12, c
2
3))

Max(Jaccard(c12, c
3
1),

Jaccard(c12, c
3
2),

Jaccard(c12, c
3
3))

W(c12, h
1) � 0.31

c13 Max(Jaccard(c13, c21),

Jaccard(c13, c22),

Jaccard(c13, c
2
3))

Max(Jaccard(c13, c
3
1),

Jaccard(c13, c
3
2),

Jaccard(c13, c
3
3))

W(c13, h
1) � 0.75 0.75

h2 c21 Max(Jaccard(c21, c11),

Jaccard(c21, c12),

Jaccard(c21, c
1
3))

Max(Jaccard(c21, c
3
1),

Jaccard(c21, c
3
2),

Jaccard(c21, c
3
3))

W(c21, h
2) � 0.64 0.5 0.64

c22 Max(Jaccard(c22, c11),

Jaccard(c22, c12),

Jaccard(c22, c
1
3))

Max(Jaccard(c22, c
3
1),

Jaccard(c22, c
3
2),

Jaccard(c22, c
3
3))

W(c22, h
2) � 0.31
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Table 3 (continued)

Base clustering Cluster Max similarity Cluster similarity θ Result

c23 Max(Jaccard(c23, c11),

Jaccard(c23, c12),

Jaccard(c23, c
1
3))

Max(Jaccard(c23, c
3
1),

Jaccard(c23, c
3
2),

Jaccard(c23, c
3
3))

W(c23, h
2) � 0.67 0.67

h3 c31 Max(Jaccard(c31, c11),

Jaccard(c31, c12),

Jaccard(c31, c
1
3))

Max(Jaccard(c31, c
2
1),

Jaccard(c31, c
2
2),

Jaccard(c31, c
2
3))

W(c31, h
3) � 0.37 0.5

c32 Max(Jaccard(c32, c11),

Jaccard(c32, c12),

Jaccard(c32, c
1
3))

Max(Jaccard(c32, c
2
1),

Jaccard(c32, c
2
2),

Jaccard(c32, c
2
3))

W(c32, h
3) � 0.51 0.51

c33 Max(Jaccard(c33, c11),

Jaccard(c33, c12),

Jaccard(c33, c
1
3))

Max(Jaccard(c33, c
2
1),

Jaccard(c33, c
2
2),

Jaccard(c33, c
2
3))

W(c33, h
3) � 0.68 0.68

the cluster in which it is placed; the similarity value here is 1. Therefore, the similarity
Jaccard of clusterc11, on the entire ensemble H can be computed as: Max (Jaccard
(c11, c

1
1), Jaccard (c11, c

1
2), Jaccard (c11, c

1
3)) + Max (Jaccard (c11, c

2
1), Jaccard (c11, c

2
2),

Jaccard (c11, c
2
3)) + Max (Jaccard(c11, c

3
1), Jaccard (c11, c

3
2), Jaccard (c11, c

3
3)))/(m − 1)

� (1 + 0.75 + 0.42)/(3 − 1) � 0.56, where M is the number of base clustering inH .
Accordingly, the Jaccard similarity of the other clusters in H can be calculated (see
Table 2). Algorithm 1 summarizes the general ASC algorithm for greater clarity. As
shown in Table 2, of the nine clusters inH , we compared the average similarity of
the clusters with the value of θ . Given the similarity value in the table, the average
similarity of some clusters will be found very low. It could indicate that, for example,
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Table 4 Similarity clusters in clustering HN

Cluster W(1) W(2) W(3) W(4) W(5) W(6)

Similarity 0.56 0.75 0.64 0.67 0.51 0.68

these clusters have more noise. Therefore, θ is set as a threshold for similarity, then the
clusters that are less similar to θ are removed.Next, new clusters (HN ) are createdwith
the remaining clusters (Fig. 3). The similarity of the remaining clusters is presented
in Table 4.

Algorithm 1 Average similarity of two clusters (ASC)

4.3 Clusters extraction

This section describes the framework of the extraction method. Two clusters are ran-
domly selected with the help of the Jaccard measure in w(i) fromHN � {q1, q2, . . . ,
qr }, then the similarity of these two clusters is calculated. If the similarity of these two
clusters is more than the threshold, these two clusters are compared to make sure that
the clusters are not completely opposite. To compare the clusters, they are summarized
logically (see Table 5(a)). If the result of the logical sum of the clusters is zero, it means
that two clusters are not completely different (Table 5(b)). At the next step, the clus-
ters are mutated. To create mutations, two methods are used: logic combination (OR)
and logic multiplication (AND). In the former, a new cluster, calledq′, is produced
from the logic combination of two clusters. With the help of the Jaccard measure,
the similarity of q′ with two parent clusters is determined. If the similarity of q′ and
each of the parent clusters is greater than or equal to the similarity of the two parent
clusters, then q′ is added as a new cluster to the set of children. In the latter, AND, after
logically multiplying two clusters, a new cluster, calledq", is produced. Similar to the
previous step, the similarity of q" with the parent clusters is calculated. If it is greater
than or equal to the similarity of two parent clusters,q" will also be added to the set of
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Table 5 Computing the logical sum of clusters (a), removed clusters whose logical sum is zero (b)

child clusters as a new cluster. For example, withi � 3, 4; the similarity of q3 and q4
in HN with Jaccard measure equaled 0.8. Since the similarity of these two clusters
is higher than the threshold, two logical operations (AND and OR) are applied. In
the first step,q3 and q4 are logically combined and a new cluster like q′ is created;
Jaccard (q3, q′) � 1, and Jaccard (q4, q′) � 0.8. Since the similarity of q′ is greater
than or equal to that of both parent clusters (q3,q4), the cluster q′ is added to the set of
extraction clusters. At the next step, q3 and q4 are logically multiplied. A new cluster
like q" is created. The similarity between q" and both parents are calculated with the
help of the Jaccard. If the similarity is greater than or equal to that of both parents, then
q" is added to the set of extraction clusters. The previous steps are continued until the
number of children is equal to the number of parents in the initial cluster set (Table 6).
The framework of the cluster extraction approach is given in Fig. 4.

Table 6 Computing the similarity of clusters

q1 q2 q3 q4

Similarity q2 q5 q5 q4 q6 q6

0.57 0.42 0.4 0.8 0.71 0.57
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Fig. 4 Framework of the cluster extraction method

Algorithm 2 Extracting Clusters Algorithm (ECA)
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4.4 Consensus function for a set of different clusters

The goal of consensus function is to find a better consensus cluster result and also
directly determining the quality of the final solution. As a result, it is regarded as
the most important component of an ensemble. The consensus functions that have
been presented so far use a combination of clustering members to generate the final
partition. Based on the information provided by the CE members, we propose two
novel consensus functions in this article: the Cluster-based Extracted Partitioning
Algorithm (CEPA) and the Meta-Cluster Extracted Algorithm (MCEA).

4.4.1 Cluster-based extracted partitioning algorithm

In this section, a similarity matrix is proposed based on the extracted clustering solu-
tions in an ensemble, in which each pair of data points is clustered together. Definition
5 formally defines Cluster-based Extracted Partitioning Algorithm (CEPA) as follows:

Definition 5

EHC � {eq1, eq2, . . . ., eqs}

where eqi denotes the set of clusters.

A well-acknowledged viewpoint is that two items have a similarity of 1 when they
are in the samecluster; otherwise, theyhave a similarity of 0.As a result, each clustering
might have a matrix with n rows and n columns. The entry-wise maximum of r in
matrices that represent the r sets of groupings will produce a finer-resolution overall
similarity matrix (matrix M). S is the fraction of clusterings in which two objects are
in the same cluster, and it may be obtained in one sparse matrix multiplication:

S � max(sum(EHC(i , :)))

where i � 1, 2, . . . , n, and “:” stands for all columns.

M � 1

s
(EHC · EHCt ) (13)

Now, the final clustering can be created using the cut graph on the matrix M (vertex
� cluster, edge weight � similarity).

4.4.2 Meta-cluster extracted partitioning algorithm

In this subsection, the second algorithm is to group and collapse related hyperedges and
assign each object to the collapsed hyperedge in which it participates most strongly.
TheMeta-Cluster Extracted PartitioningAlgorithm (MCEA) is based on the EHN set’s
clusters, which are extracted using clustering principles. MCEA operates by grouping
and collapsing similar hyperedges before assigning each object to the collapsed hyper-
edge with the most active edge. Objects are used as graph nodes in the construction of

123



M. Sedghi et al.

a meta graph. The weight of the edges is proportional to the vertices’ similarity. The
Jaccard binarymeasurement is the appropriate similarity criterion for the graph’s edge.
Formally, the edge weight weqi , eq j

between two vertices eqi , eq j , as defined by the
binary Jaccard measure of the associated indicator vectors eqi andeq j , is formalized

as follows: weqi , eq j � eqti .eq j

||eqi ||22−||eq j ||22−eqti .eq j
. At this stage, the clusters are divided

into k clusterings using the METIS (Karypis and Kumar 1998) diagram partitioning
package. In other words, each meta-graph cluster contains a set of clusters. A meta-
clustering represents a set of appropriate labels since each vertex in the meta-graph
represents a separate clustering label.

5 Experiments

This section summarizes the results of the study’s trials on a number of real-world
datasets in order to compare the proposed strategy with state-of-the-art ensemble
clustering approaches.

5.1 Datasets and evaluationmethods

Based on the NMI values, we compared CEE solutions to BC solutions in our experi-
ments. The studies were conducted on real data sets with known true natural clusters.
Because our data sets were labeled, we could use external criteria to evaluate the
quality of the clustering solutions (Hadjitodorov et al. 2006). Although CEE extracts
new clusterings from BC without accessing the data, we need access to the original
features to generate BC. In this paper, the K-means algorithm with different initial
cluster center locations generates BC with nearly identical qualities (Akbari et al.
2015). The mismatch between the structure defined by clustering and the structure
defined by class labels was measured using external criteria. All of the experiments
were repeated ten times, with the findings averaged across each dataset. Ten genuine
data sets were used to assess the performance of CEE. The real data sets came from
the UCI machine learning repository.1 Table 7 contains the specifics of these data sets.
BC was obtained by K-means with true k and 50 iterations (the number of BC was set
to L � 50). The ASC algorithm was used to extract BCs of the size (M � L � 40)
at the first stage of our experiment. The ECA algorithm was then used to extract dif-
ferent ECs in the second half, with the number of ECs ranging from 10 to 100 with
incremental steps of 10. This approach led to a variety of qualities and diversities. It
is worth noting that diversity and quality are two essential aspects that influence the
quality of the final solution. To measure the success of clusterings, two extensively
used assessment measures, normalized mutual information (NMI) (Strehl and Ghosh
2002) and adjusted rand index (ARI), are used. It should be noted that higher NMI
and ARI values indicate better clustering results (Huang et al. 2018). In this work, for
each benchmark dataset, 100 possible clusterings were randomly formed. The range
of NMI was set to 0–1.

1 http://www.ics.uci.com/mlearn/MLRespository.html.
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Table 7 Properties of selected UCI data sets

Number Data set Data size (n) Dimension (d) No.clusters(k)

1 Iris 150 4 3

2 Ecoli 336 7 8

3 IS 2310 7 7

4 Landsat 6435 36 6

5 Leukemia 72 3572 2

6 Splice 3190 60 3

7 Wine 178 13 4

8 Yeast 1484 8 10

9 Satimage 6435 36 7

10 User knowledge modeling 145 5 4

The proposed methods and the baseline methods are evaluated by their average
performance over a large number of runs, where the clustering ensemble for each run
is constructed by randomly selectingM-based clusterings from the pool in order to rule
out the factor of getting lucky occasionally and provide a fair comparison. M � 40 is
commonly used as the ensemble size.

5.2 Choices of Parameter�

Parameter θ determines the average similarity between clusters. If the average simi-
larity is not less than the standard value, it leads to a stronger cluster similarity effect.
Since the K-means algorithm leads to the production of diverse clusters, the average
cluster similarity will also be dynamic. For each dynamic value of θ , the proposed
average similarity was performed between the base clusters 20 times. The average
scores of the similarity of clusters with different dynamic parameters θ are shown in
Fig. 5. We selected the value t at a point from which the density of similar clusters
was high and before that, the density of similar clusters was low. For example, in the
Iris database, the value of θ was set to 0.65, and in the Ecoli database, it was set to
0.1. Therefore, in different samples, the value of t differed.

5.3 Comparison with base clusterings

Clustering ensemble is an approach that combines basic clusters to achieve a consensus
clustering that could probably improve the quality and robustness of the final results.
In this section, a comparison is made between the Extracted Clusters (EC) and the
base clusterings. For each benchmark dataset, the proposed cluster extraction method
was run 10 times. Each time, the ensemble of base clusterings was picked at random
from the pool. Figure 6 shows the average NMI scores, variances of extracted clusters,
and basis clusterings. The proposed method outperformed the basic clusterings by
a significant margin. The benefit of the proposed method over the base clusterings
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Fig. 5 Quality measure for varying parameters θ

was much greater for the Ecoli, IS, Iris, Landsat, luekemia, Satimage, Splice, user
knowledge modeling, Wine, and Yeast datasets.

5.4 Comparison with other ensemble clusteringmethods

This section compares the proposed MCEA and CEPA methods with nine ensem-
ble clustering methods, namely, CSPA, HGPA, MCLA (Topchy et al. 2004), hybrid
bipartite graph formulation (HBGF) (Li et al. 2019), weighted evidence accumulation
clustering (WEAC) (Minaei et al. 2014), K-means-based consensus clustering (KCC)
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Fig. 6 Comparing the diversity of BC and EC

(Naldi et al. 2013), spectral ensemble clustering (SEC) (Lourenco 2013), Locally
Weighted Evidence Accumulation (LWGP), and Locally Weighted Graph Partition-
ing (LWEA) (Huang et al. 2018). The true-k criterion is used to determine the number
of clusters for the consensus clustering for each of the suggested and baseline meth-
ods. For the true-k, each approach was based on the number of classes in the dataset.
Each of the suggested approaches and the baseline methods were run 100 times using
the ensembles randomly constructed from the base clustering pool to ensure a fair
comparison. Table 8 shows the average performance and standard deviations of dif-
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Fig. 6 continued

ferent methods across 100 runs. As shown in the table, our proposed method (MCEA)
obtained the best data in the Ecoli, Iris, Leukemia, Satimage, Splice, Wine, and Yeast
datasets. However, CEPA obtained the best data in the Ecoli, Iris, Landsat, Leukemia,
User knowledge Modeling, Wine, Yeast, and IS data sets.
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Table 8 Over the course of 20 runs, several approaches with varying ensemble sizes of M were used to
compute the average performance (NMI)

Method Ecoli Iris Landsat Leukemia Satimage

CSPA 0.5157 ± 0.013 0.6523 ± 0.012 0.4543 ± 0.017 0.2131 ± 0.012 0.4513 ± 0.014

MCLA 0.5264 ± 0.012 0.7419 ± 0.014 0.4984 ± 0.012 0.2177 ± 0.015 0.6117 ± 0.012

HBGF 0.5287 ± 0.013 0.6205 ± 0.011 0.4536 ± 0.021 0.2245 ± 0.013 0.4527 ± 0.015

WEAC 0.5301 ± 0.012 0.7434 ± 0.009 0.4605 ± 0.009 0.2338 ± 0.012 0.4675 ± 0.011

KCC 0.5254 ± 0.011 0.5675 ± 0.013 0.4465 ± 0.018 0.2182 ± 0.011 0.4511 ± 0.008

SEC 0.5232 ± 0.014 0.6256 ± 0.012 0.4538 ± 0.013 0.2262 ± 0.016 0.4518 ± 0.016

LWGP 0.5305 ± 0.011 0.577 ± 0.011 0.4752 ± 0.012 0.2092 ± 0.013 0.4542 ± 0.012

LWEA 0.5254 ± 0.012 0.6162 ± 0.014 0.4871 ± 0.013 0.1942 ± 0.013 0.5455 ± 0.011

WHAC 0.5491 ± 0.014 0.7324 ± 0.010 0.4693 ± 0.015 0.2234 ± 0.012 0.5554 ± 0.012

MCEA 0.5615 ± 0.014 0.7582 ± 0.012 0.4796 ± 0.012 0.3101 ± 0.014 0.6122 ± 0.011

CEPA 0.5478 ± 0.013 0.7338 ± 0.013 0.4912 ± 0.011 0.2342 ± 0.013 0.4914 ± 0.014

Method Splice User
knowledge
modeling

Wine Yeast IS

CSPA 0.1878 ± 0.013 0.3447 ± 0.012 0.3952 ± 0.013 0.2109 ± 0.012 0.3073 ± 0.015

MCLA 0.2077 ± 0.012 0.3523 ± 0.016 0.4226 ± 0.011 0.2251 ± 0.011 0.3262 ± 0.013

HBGF 0.1885 ± 0.014 0.3615 ± 0.013 0.3876 ± 0.011 0.2012 ± 0.015 0.3214 ± 0.017

WEAC 0.1932 ± 0.009 0.3628 ± 0.015 0.3943 ± 0.012 0.2143 ± 0.013 0.3245 ± 0.012

KCC 0.1734 ± 0.011 0.3549 ± 0.011 0.3821 ± 0.009 0.2001 ± 0.016 0.3138 ± 0.013

SEC 0.1883 ± 0.014 0.3573 ± 0.023 0.3853 ± 0.008 0.2004 ± 0.012 0.3187 ± 0.022

LWGP 0.1764 ± 0.012 0.3661 ± 0.012 0.386 ± 0.012 0.2019 ± 0.011 0.3234 ± 0.011

LWEA 0.1853 ± 0.013 0.3832 ± 0.016 0.3861 ± 0.013 0.2241 ± 0.013 0.3256±0.018

WHAC 0.1878 ± 0.016 0.4036 ± 0.016 0.4087 ± 0.012 0.2352 ± 0.012 0.3329 ± 0.024

MCEA 0.2119 ± 0.012 0.3845 ± 0.015 0.4228 ± 0.012 0.2567 ± 0.013 0.3316 ± 0.016

CEPA 0.1892 ± 0.015 0.3934 ± 0.014 0.4435 ± 0.011 0.2388 ± 0.012 0.3528 ± 0.018

Bold face indicates best performance

5.5 Robustness to ensemble sizes

Additionally, in this study, different ensemble sizes, M, were used to compare the per-
formance of the proposed approaches with that of the baseline methods. The proposed
approaches and baseline methods were run 20 times on each benchmark dataset for
each ensemble size M, with the ensemble of M base clusterings being randomly deter-
mined each time. The proposed methods had better performance on the Leukemia data
set at size M � 30 compared with other sizes of M, but in other datasets, size M � 40
significantly exceeded the other sizes. compared to the basic methods, the proposed
methods often obtained the most consistent and robust functions with size M � 40 in
the datasets.
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6 Conclusion

This paper proposed a new CEE clustering approach based on extracting new clusters
from base clustering. In the proposed approach, two issues are considered: (1) Knowl-
edge could be reused, meaning that there are different clusters in a library, which could
be used to create new clustering; and (2) Traditional CE or CES needs a large library
of clusters; however, if the library is small and the diversity is low, it will not have
acceptable results. The proposed method is based on a set of clusters, not clustering.
CEE can generate a large library of clustering on the cluster extraction. In this study, at
the first step, the most effective clusters were identified. Then, the labels of the effec-
tive clusters (which were symbolic) were converted to binary, and new binaries were
used to extract the new clusters. In this way, a large library of clusters was produced.
At the next step, two new consensus functions, i.e., CEPA and MCEA, were created.
Extensive experiments were conducted on a variety of real-world datasets. Experi-
mental results (which were compared to those of advanced approaches) showed the
superiority of the proposed methods regarding the clustering quality and efficiency.

A worthwhile future work could be focused on the use of different methods to
extract new clusters with sizes different from those of the base clusters. For example,
we propose the following five-step approach: (1) select a random subset from the
base n clusters to create new clusters; (2) obtain the hn consensus cluster solution
using the consensus function; (3) find clusters that are of higher quality; (4) obtain the
clustering composition from the previous step; and finally, (5) obtain group solutions
with community function in the new clustering combination.
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