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Abstract
We consider the regression setting in which the response variable is not longitudinal
(i.e., it is observed once for each case), but it is assumed to depend functionally on
a set of predictors that are observed longitudinally, which is a specific form of func-
tional predictors. In this situation, we often expect that the same predictor observed
at nearby time points are more likely to be associated with the response in the same
way. In such situations, we can exploit those aspects and discover groups of predic-
tors that share the same (or similar) coefficient according to their temporal proximity.
We propose a new algorithm called coefficient tree regression for data in which the
non-longitudinal response depends on longitudinal predictors to efficiently discover
the underlying temporal characteristics of the data. The approach results in a sim-
ple and highly interpretable tree structure from which the hierarchical relationships
between groups of predictors that affect the response in a similar manner based on
their temporal proximity can be observed, andwe demonstrate with a real example that
it can provide a clear and concise interpretation of the data. In numerical comparisons
over a variety of examples, we show that our approach achieves substantially better
predictive accuracy than existing competitors, most likely due to its inherent form of
dimensionality reduction that is automatically discovered when fitting the model, in
addition to having interpretability advantages and lower computational expense.
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Mathematics Subject Classification 62J05 Linear regression; mixed models · 62-08
Computational methods for problems pertaining to statistics · 62H99 None of the
above, but in this section

1 Introduction

Longitudinal data sets that involve repeated observations of the same predictors over
time and/or space are commonplace in different regression domains due to recent
advances in data collection systems. Here, we consider the common situation of lon-
gitudinal predictors, whereas the response is not longitudinal. For example, in clinical
studies, patients’ medical histories on symptom measurements (such as routine blood
tests or tumor size), interventions (such as medicine or radiotherapy), and periodic
evaluations are consistently collected over time. As another application area, in eco-
nomic and financial studies, multiple characteristics such as closing price, P/E ratio,
andmarket capacity of each single stock are observed over time. In addition to temporal
data, enabled by the internet, sensors, and smartphone technologies, massive amounts
of location-based data are being generated and disseminated by billions of people each
second. The use of longitudinal data sets leads to massively high-dimensional mul-
tivariate regression models because each single predictor (aka, covariate) over time
and/or space must be treated as a large number of predictors in the regression model.

For predictive problems involving high-dimensional longitudinal data sets with
many predictors, obtaining an interpretable and accurate model in an efficient way
is a challenging issue. However, in practice, the predictors that are closer in space
and/or time are more likely to be associated with the response in approximately the
same way (i.e., they share a common regression coefficient, which is equivalent to the
subsequences of predictor observations that are contiguous in time and/or space affect-
ing the response only collectively via their sum), which enables a low-dimensional,
group-based representation that overcomesmanydifficulties of high-dimensional anal-
ysis. Since knowledge of the group structure is generally not available in advance,
discovering them automatically from the data is fundamentally important to extract
new interpretable predictors and to retrieve meaningful and actionable insights from
high-dimensional data. Interpreting and visualizing information extracted from high-
dimensional data is at the core of data science (Goodman and Flaxman 2017; Rudin
2018; Rai 2020). Models that facilitate interpretation by domain scientists and engi-
neers are important to better understand and design trustworthy systems, especially for
decision-critical environments. In this study, we propose a new tree-based method to
extract valuable group-based temporal characteristics from longitudinal data sets and
fit the subsequent linear regression model. Tree-based approaches have been used in
different contexts because they are very interpretable and conceptually simple (see for
examples in Eiras-Franco et al. (2019); Carrizosa et al. (2022); Bertsimas and Paskov
(2022)) due to their rule-based nature.

We consider the linear regression model (the general version, with ungrouped coef-
ficients) with n sampling units and p predictors, each of which is measured at the same
T time points:
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y � β1, 1x1, 1 + · · · + βT , 1xT , 1
+ β1, 2x1, 2 + · · · + βT , 2xT , 2 + · · ·
+ β1, px1, p + · · · + βT , pxT , p + ε,

(1)

where y � [
y1, y2, . . . , yn

]T, xt , j � [x1, t , j , x2, t , j , . . . , xn, t , j ]T for t � 1, . . . , T
(our convention is that time t � T corresponds to most recent, and time t � 1 to most
distant) and j � 1, . . . , p, and ε are length-n vectors of the response observations, the
predictor observations, and the independent and identically distributed (i.i.d.) noise
with a constant variance, respectively.Here, each element of xt , j , that is, xi , t , j , denotes
the value of the jth predictor at time t for observation i. For notational simplicity,
we assume predictor observations are measured at equally-spaced time points (more
generally, the T time points could have unequal spacing, as long as the time points
are common across all p predictors). Each βt , j is a regression coefficient for predictor
j at time point t. As an example of this model, suppose we collected the data to
predict political leanings (the response) based on TV viewing habits (the predictors)
of n households. In this example, the index i represents a household among a total
of n households, yi is the fraction of primary voters in household i who voted in the
Democrat primary, the index j represents different television programs, and so xi , t , j
is the amount of time (e.g., 40 min) household i spent watching program j over time
increment t (e.g., day t). Here, the time indices {1, 2, . . . , T } represent a set of T
viewing time increments leading up to the election.

Depending on the structure of the response variable, different variations of (1) may
be handled by our general framework. The model (1) represents the situation where
y is not a longitudinal time series and, instead, each element of y represents a single
response observation relevant to the entire time period {1, 2, . . . , T }. In this situation,
each row of the regression model represents a different sampling unit (e.g., a different
household) at the same time. Data sets with predictors recorded over time can be
considered a specific form of functional or sequential data. In addition to longitudinal
predictors, the data sets with a longitudinal response that is recorded over time are
often considered (see examples in Dietterich (2002); Wang et al. (2016)), although
we do not consider longitudinal responses in this work. Throughout the paper, we
develop the results around the situation of model (1), although the approach can also
be extended to the situation in which the response y is observed longitudinally.

The regression model in (1) can also be written in matrix form as
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Without loss of generality, we assume that each column and the response have been
centered to have a sample mean zero, so that there is no intercept in the model (1).

As mentioned above, temporal dependence reflects a situation where the predic-
tor values observed at one time point have the same (or very similar) effect on the
response as do the values of predictor observations at nearby time points. Moreover,
different predictors at the same time may also share the same coefficient. For example,
in the television viewing example mentioned above, the times spent watching differ-
ent related programs (e.g., college basketball and professional basketball; different
financial news shows; etc.) will share the same coefficient if the predictor that matters
most is the collective time spent watching within that group of programs; and the
time spent watching basketball on a Tuesday one month prior to the primary almost
certainly has a very similar effect as the time spent watching basketball on theMonday
(Wednesday) immediately before (after) that particular Tuesday. In such situations,
we can exploit those aspects and discover the groups of predictors that share the same
coefficient according to their temporal proximity (which is partially known in advance,
because the temporal ordering is known, but the cutpoints between temporal groups
are not) and/or similarity of their effects on the response (which is unknown in advance
and must be discovered entirely from the data). If we discover the temporal cutpoints
at which each predictor within a group begins and ends, a single derived predictor
represents the group of predictors that have the same effect on the response. To math-
ematically represent this single derived predictor for each group, let Sl be the set of
predictor indices in group l and tbl and tel denote the time points at which predictor
observations within group l begin and end, respectively. Then, letting Gl denote the
group, such that Gl � {Sl , [tbl , tel ]} (for l � 1, 2, . . . , m, where m is the number

of distinct groups) and considering the derived predictor zl � ∑
j∈Sl

∑tel
t�tbl

xt , j , the

linear regression model in (1) can be written as

y � α1z1 + α2z2 + · · · + αmzm + ε, (3)

where αl represents the common coefficient shared by all predictors in Gl . Within
group Gl the subsequence (xtbl , j

, xtbl +1, j
, . . . , xtel , j ) of predictor j ∈ Sl , i.e., the

observations of predictor j that are contiguous in time interval [tbl , t
e
l ], is represented

by the sum
∑tel

t�tbl
xt , j . If the unknown group structure can be discovered/identified

from the data, then the subsequences of predictors that share a common regression
coefficient can help users to understand the temporal patterns and the group structures,
and ultimately, help users to better understand and interpret their data.

Group-structured representations in linear regression problems in which the data
do not have a temporal characteristic have been studied in the prior literature. We
categorize existing methods by whether or not they assume prior knowledge about
the group structure. The first category of methods assumes known groups or known
ordering of the coefficients (see group lasso (Yuan and Lin 2006; Zhao et al. 2009),
fused lasso (Tibshirani et al. 2005), group SCAD (Wang et al. 2007), group MCP
(Breheny P 2009), group bridge (Huang et al. 2009), group hierarchical lasso (Zhou
and Zhu 2010), group exponential lasso (Breheny 2015)). The second category of the
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methods assumes no prior knowledge of the group structure and discovers the structure
from the data (see Pelora (Dettling and Bühlmann 2004), OSCAR (Bondell and Reich
2008) and CARDS (Ke et al. 2015)). The focus of this paper is on the second category
to discover predictive relationships that are not well understood in advance in addition
to considering temporal characteristics from longitudinal data sets.

There are many algorithms that transform time series into simpler representations
while preserving some of the underlying temporal order in the prior literature, includ-
ing the discrete Fourier transformation (DFT), the discrete wavelet transformation
(DWT) (Lin et al. 2003), the piecewise aggregate approximation (PAA) (Chakrabarti
et al. 2002) and the symbolic aggregate approximation (SAX) (Lin et al. 2007). Those
high-level representations of time series are important to reduce the dimension and
extract predictors. However, the low-dimensional space is generated in an unsuper-
vised way, without considering the effect of the predictors on the response variable,
which is essential for finding our group structures.

Apart from the traditional time series representations mentioned above, tree-based
time series representations have been studied in the prior literature as well. Geurts
(2001) fits a regression tree using the time index t as a predictor and xi , t , the value of
the predictor at time t for observation i, as a response variable. Because the time index
t is used as a predictor in this model, the terminal nodes in the tree representation
represent the intervals that are contiguous in time. As another tree-based time series
approach, Baydogan and Runger (2016) propose the learned pattern similarity (LPS)
method based on a tree-based learning strategy. LPS extracts all possible segments of
length L to construct a segment matrix using all time series observations, and then fits a
regression tree by considering the random column from a segmentmatrix as a response
variable. Baydogan et al. (2013) and Baydogan and Runger (2015) propose bag-of-
words approaches to generate new predictors to be used for classification of time
series. In Baydogan et al. (2013), random intervals and their characteristics such as the
mean, variance, and slope are used as predictors, whereas the symbolic representation
is used in Baydogan and Runger (2015). These methods extract the predictors in
an unsupervised setting and then use those predictors predicting the response. In
addition to these studies, there is a large body of literature on time series classification
problems that extract possible subsequences (called shapelets) without considering
the response when constructing the predictors, and then estimate the ones that are
maximally representative of each class (Ye and Keogh 2009; Mueen et al. 2011; Ye
and Keogh 2011).

One could also borrow from the usual CART (Classification and Regression Trees)
framework, and modify the split-point search procedure for functional data, as was
done in Balakrishnan and Madigan (2006), Belli and Vantini (2022), Möller et al.
(2016), Blanquero et al. (2023). The main difference between our tree approach and
the usual CART-based procedures is that our tree growing procedure splits the predic-
tors themselves into groups to find derived predictors in a supervised manner (with
each derived predictor being the sum of the predictors in each group; and for longi-
tudinal predictors the groups are the predictor values over contiguous intervals in the
longitudinal domain), whereas the CART-based tree growing procedures split the n
observations into groups of observations based on the values that the predictors assume
for each observation. Thus, each leaf node of our tree represents a group of predictors,
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whereas each leaf node in the CART-based procedures represents a region in the pre-
dictor space. As such, our final predictive model is still a linear regression model with
a parsimonious set of highly relevant derived predictors, whereas the CART-based
procedures are more like standard CART predictive models. In Balakrishnan and
Madigan (2006) and Belli and Vantini (2022), for example, novel splitting procedures
for functional predictors are proposedwithin the regular CART framework, and at each
functional split, the subsets of observations are split into two groups of observations.
Whereas the longitudinal domain intervals in LCTR are determined in a supervised
manner with the number of intervals and their widths chosen parsimoniously based
on how the response depends on the longitudinal predictor, any longitudinal intervals
used in forming the splitting predictors in the CART-based procedures are prespeci-
fied in an unsupervised manner without regard to the response. In parallel to this, in
order to utilize the predictive accuracy of multiple trees, Möller et al. (2016) applies
a random forest to the longitudinal data by generating intervals randomly drawn from
an exponential distribution to construct the splitting predictors for each CART-based
tree. Although combining predictions from different trees via an ensemble learner can
increase the predictive accuracy, the interpretability advantage of a tree is lost due to
the randomness of the intervals and the ensemble averaging. In contrast, interpretabil-
ity is one of the key aspects of our approach, achieved by engineering new predictors
in the form of subsequences that affect the response in a similar manner. Moreover,
recently, there has been a growing interest among the optimization community to find
various tree structures as an optimization problem (Blanquero et al. 2023). Similarly,
one could consider attempting to find our LCTR tree structure as an optimization prob-
lem. However, solving this combinatorial optimization problem exactly is obviously
computationally prohibitive. We view our proposed approach as a fast approximate
solution to this large-scale optimization problem that borrows computational strategies
from both linear regression and regression trees. The end result, which we demonstrate
in the numerical comparison examples and which we view as the main contribution of
this work, is an LCTR algorithm that provides substantially better predictive accuracy,
in addition to better computational expense, relative to existing alternatives.

For non-longitudinal data, the coefficient tree regression (CTR) approachwas devel-
oped to discover the unknowngroup structure in standard regression problems inwhich
the data do not have a temporal characteristic (Sürer et al. 2021a, b). In this paper,
we borrow concepts from Sürer et al. (2021a, b) and extend them to the longitudinal
predictor case. In particular, we take advantage of the special structure of longitudinal
data to develop a longitudinal CTR (LCTR) algorithm that is far more accurate than
just applying the original CTR, and that still preserves the computational advantage
compared to other group-based methods and fast, efficient implementation of ridge
and lasso regression. LCTR is an automated way to extract the derived predictors in a
supervised setting without extracting all possible subsequences.

The remainder of this paper is organized as follows. The LCTR algorithm and
computational issues are discussed in Sect. 2. Sections 3 and 4 present the results
of simulation studies and a real data analysis, respectively. Finally, some concluding
remarks are given in Sect. 5.
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2 Discovering temporal pattern in longitudinal data

Section 2.1 overviews the model building procedure for LCTR, and Sect. 2.2 intro-
duces a toy example to illustrate the main steps of LCTR. We then describe the
split-point search procedure for efficiently finding the predictor group structure in
Sect. 2.3. Details regarding the model update after each iteration are given in Sect. 2.4.
Section 2.5 extends LCTR for data sets comprised of a mixture of both longitudinal
and non-longitudinal predictors. Finally, Sect. 2.6 describes the termination criterion
for the LCTR algorithm.

2.1 Details of themodel building procedure for LCTR

LCTR discovers the group structure when the groups of predictors that share the same
coefficients are not known in advance. When the data have a temporal component,
predictors that are closer in time are more likely to be associated with the response
in a similar way. This means that predictors at nearby time points share similar coef-
ficients, so that they should be placed into the same group. However, the predictors
that belong to the group (if there are multiple predictors having similar effects, like
similar programs for the example described in the introduction) and the corresponding
time points at which each group begins and ends are not known in advance, and they
must be discovered from the longitudinal data. The LCTR algorithm that we develop
aims to discover the predictors and the corresponding temporal cutpoints at which
each group begins and ends to efficiently construct derived predictors iteratively from
high dimensional longitudinal data. During each iteration (k � 1, 2, . . .), one of the
existing groups is split into at most three groups (one split across time, and the other
split across predictors, as described later and illustrated in Fig. 5) in a manner that
most reduces the sum of squared errors (SSE). This is in analogy with the regular
CTR algorithm, which does not consider the temporal effect and only considers a
single split on the predictors at each iteration. Although the LCTR’s split-point search
procedure is designed to construct three subgroups from one group, it also allows
subgroups to be empty depending on the best split, in which case the group is only
split into two subgroups. Thus, at each iteration, an existing group is split into at most
three subgroups. For the mathematical expressions throughout the paper, we assume
a group is split into three subgroups, and if the number of subgroups is less than three,
any empty groups are not considered for splitting in the subsequent iterations. Thus, at
the end of iteration k, 2k +1 distinct groups are constructed via LCTR, and the set {z1,
z2, . . . , z2k+1} represents the corresponding derived predictors. After each iteration k,
LCTR fits a linear regressionmodel with all derived predictors. This process continues
until we obtain a final set of derived predictors satisfying a termination criterion that
will be described in Sect. 2.6. In this section, we briefly explain how the groups are
constructed via a toy example.

We first introduce some notation. In the context of multivariate temporal data,
recall that we consider a data set of n observations and p predictors, each of which
is measured at T time points. At each iteration k, the aim is to find the subset of
predictors Sk, l within group l and their temporal cutpoints tbk, l and t

e
k, l (for notational
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clarity, we have added a subscript k to each group and the corresponding derived
predictor and the cutpoints to denote that we obtain the model at the end of iteration
k). Considering the group Gk, l � {Sk, l , [tbk, l , tek, l ]} and the corresponding derived

predictor zk, l � ∑

j∈Sk, l

∑tek, l
t�tbk, l

xt , j at the end of iteration k, the fitted model with 2k +1

derived predictors has the following structure:

ŷ(α̂k) � α̂k, 1zk, 1 + α̂k, 2zk, 2 + · · · + α̂k, 2k+1zk, 2k+1

� α̂k, 1

∑

j∈Sk, 1

tek, 1∑

t�tbk, 1

xt , j + α̂k, 2

∑

j∈Sk, 2

tek, 2∑

t�tbk, 2

xt , j + · · ·

+ α̂k, 2k+1

∑

j∈Sk, 2k+1

tek, 2k+1∑

t�tbk, 2k+1

xt , j ,

(4)

where α̂k � [
α̂k, 1, α̂k, 2, . . . , α̂k, 2k+1

]T is the estimated coefficient vector, and ŷ(α̂k)
is the fitted response vector as a function of α̂k . We suggest that if the predictors are
originally in different units, one should standardize them first or alternatively, scale
them in some other meaningful way, since the group structure depends on the scaling
of the predictors.

It is important to note that LCTR can obtain accurate and interpretable predictive
models even when there is no explicit group structure. The LCTR approximation
can be viewed as a piecewise constant approximation of the longitudinal regression
coefficients. Figure 1 illustrates coefficients of p � 3 predictors with linear, quadratic
(with a discontinuity), and cubic trends over T � 500 time points. Piecewise linear
approximations of the coefficients using 20 pieces for each predictor are also shown
in this figure (since we only have the coefficients and no data observations here, the
approximations were obtained by fitting a standard regression tree to the ordered
coefficients {βt , j : t � 1, 2, . . . , 500} as a function of t). In all three situations, the

Fig. 1 Piecewise constant
approximation of smoothly
decaying longitudinal regression
coefficients of p � 3 predictors
with T � 500 time points using
20 groups for each predictor
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piecewise linear functions approximate the coefficients quite closely, with training r2

values (for representing the coefficients, not the response) very close to one. Therefore,
LCTR accurately represents the true coefficients with a small number of groups even
when the true coefficients do not have a group structure.

The coefficients for two of the predictors in Fig. 1 decay monotonically as one
proceeds backwards in time. Although this is likely to occur in practice for many lon-
gitudinal data sets (the recent past typically influences the response more strongly than
the distant past), this is not a requirement for LCTR to provide a close approximation
of the true coefficients. The requirement is that the coefficients vary smoothly over a
finite set of time intervals that together comprise the entire time history, with possible
abrupt changes allowed between intervals. This is illustrated with the quadratic (with
a discontinuity) trend in Fig. 1, which is comprised of two quadratically decaying
coefficient profiles connected by a discrete jump at around t � 250. Most longitudinal
data are likely to satisfy this requirement, except for data with strong seasonalities
covering many seasonality periods. For example, if there is a weekly seasonality with
large day-to-day differences and the time history covers many weeks, it would be
difficult to represent the coefficients as a piecewise constant profile with a reasonably
small number of pieces.

LCTR captures the temporal patterns from the data using an iterative procedure
described inAlgorithm1, and the regressiondependencies betweendifferent predictors
and time points can be visualized with an interpretable tree structure, as illustrated in
Fig. 3. In the tree, each node corresponds to a group (i.e., a set of indices of a group of
predictors and the corresponding time interval that defines one derived predictor per
model (4)), and the label on the branch just above the node represents the estimated
coefficient of the corresponding derived predictor. The level going down into the tree
from the root node corresponds to the iteration number k. At each iteration k, we call the
groups with nonzero coefficients included groups, and we call the set of all predictors
at all times that are not currently in any included group, which corresponds to a group
with a coefficient of zero, the excluded group. At iteration k � 0, we start at the root
node with all predictors and the time points in the excluded group, i.e., G0, 1 � {{1,
. . . , p}, [1, T ]} as in line 3 of Algorithm 1, and at each iteration k we grow the tree
by splitting one of the current groups into three groups. The existing groups that were
not split are carried over to the next iteration without modification. Thus, the number
of groups increases by two during each iteration. After iteration k−1, we have 2k−1
groups. The 2k − 1 groups are disjoint groups such that if Sk−1, i ∩ Sk−1, j �� ∅ then
[tbk−1, i , t

e
k−1, i ] ∩ [tbk−1, j , t

e
k−1, j ] � ∅ ∀{i , j} ⊆ {1, . . . , 2k − 1} (i.e., the predictors

included in two groups do not share a common time interval). During iteration k, one
of the 2k − 1 groups present after iteration k − 1 is split into three groups, and then
the coefficients for all derived predictors are updated. The tree is grown until we reach
some terminal number of groups based on a stopping criterion.
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To illustrate our approach, we use a matrix to represent each group where each row
and column represent the corresponding predictor and time point indices included in
the group, respectively. As an example, Fig. 2 shows the p × T matrix representation
of the group G0, 1 � {{1, . . . , p}, [1, T ]}. During iteration k, for each group Gk−1, l
generated after iteration k − 1 (for l � 1, . . . , 2k − 1 where 2k − 1 is the number
of groups obtained after iteration k − 1) we use a split-point search procedure that
will be described in Sect. 2.3 to split the group into three subgroups (see line 7 of
Algorithm 1). We split groups consistent with tree-structured splits of the 2D j × t
(i.e., predictor-by-time) space as illustrated in Fig. 2, but after permuting the predictors

Fig. 2 The p × T matrix
representation of the group
G0, 1: Each row represents a
predictor and each column
represents a time point
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within the group being considered for splitting (the j index) at each iteration. This has
the advantage of keeping the predictors in each group contiguous in time t but allowing
any grouping of predictors j. Among the 2k − 1 possible groups to split, we choose
the one that most reduces the SSE as the split group at the end of iteration k. This is
implemented in lines 6–11 in Algorithm 1. Thus, we obtain 2k + 1 distinct groups at
the end of iteration k by splitting the group into three groups. This process continues
until the termination criterion is satisfied as indicated in line 4 of Algorithm 1.

2.2 Illustration of interpretability via toy example

We now use the toy example in Fig. 3 to illustrate the LCTR tree growing procedure.
This example is included in the vignette of LCTR, which is an R package that imple-
ments the proposed approach and that can be found in our Git repository (Sürer et al.
2022). The details of how the groups are chosen during each iteration (based on the
data, with no prior knowledge of the group structure) are given in Sect. 2.3. In Fig. 3,
each level corresponds to an iteration k and shows the groups produced after that iter-
ation. This toy example uses a data set with p � 3, T � 10 and n � 104, generated
based on the linear model in (1), where ε ∼ N (0, σ 2I) and σ 2 was chosen to achieve
a true r2 � 0.9. Each regression observation (aka “row”) of predictors

[
xi , 1, 1, xi , 2, 1,

. . . , xi , 10, 1, . . . , xi , 1, 3, xi , 2, 3, . . . , xi , 10, 3
]T is sampled from a multivariate normal

distribution with mean 0 and covariance I. The true coefficient βt , j for predictor j
( j � 1, 2, 3) at time point t (t � 1, 2, . . . , 10) is given in Fig. 4. In this example, the
influence of the predictors increases with recency in time. We also included predictors
with coefficients equal to zero to show how LCTR performs variable selection.

For initialization (k � 0), since LCTR has not identified any derived predictor
yet, we have only the single group G0, 1 � {{1, 2, 3}, [1, 10]}, which contains all

Fig. 3 Illustration of a group structure for the example in Fig. 4 produced in the LCTR tree growing procedure
with p � 3 and T � 10 predictors and five nonzero- and one zero-coefficient groups in the final model

Fig. 4 The 3 × 10 matrix
representation of the true
coefficient β j , t values for
j � 1, 2, 3, and t � 1, . . . , 10
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predictors and time points and assigns them a common coefficient of zero. During
iteration k � 1, LCTR splits the initial group G0, 1 into three groups (see Sect. 2.3
for details of splitting procedure), where G1, 1 � {{1, 3}, [5, 10]} corresponds to the
group of predictors in the fitted model, and G1, 2 � {{2}, [5, 10]} and G1, 3 � {{1, 2,
3}, [1, 4]} are the excluded groups from the model. Our splitting convention is that the
groups always correspond to rectangular regions in the predictor-by-time space (i.e.,
the 2D (j, t) space) consistent with a tree structure after permutation of the predictors
(see Fig. 5 later). After iteration k � 1, the model is

ŷ(α̂1) � α̂1, 1z1, 1 � α̂1, 1

10∑

t�5

(xt , 1 + xt , 3), (5)

with α̂1, 1 � 3.19, α̂1, 2 � 0 and α̂1, 3 � 0. Thus, the first derived predictor z1, 1 chosen
by LCTR represents the most influential group of predictors in this example.

During iteration k � 2, LCTR found a new group of predictors by splitting the
zero-coefficient group G1, 3 into a nonzero-coefficient group G2, 3 � {{3}, [1, 4]} and
a zero-coefficient group G2, 4 � {{1, 2}, [1, 4]} (in general, at each iteration we split
one group into three groups, but in this case the third group is empty) while keeping
the remaining groups the same, that is,G2, 1 � G1, 1 andG2, 2 � G1, 2. Thus, the fitted
model after iteration k � 2 is

ŷ(α̂2) � α̂2, 1z2, 1 + α̂2, 3z2, 3

� α̂2, 1

10∑

t�5

(xt , 1 + xt , 3) + α̂2, 3

4∑

t�1

xt , 3,
(6)

with nonzero coefficients α̂2, 1 � 3.19, α̂2, 3 � 1.03 and zero coefficients α̂2, 2 � 0,
α̂2, 4 � 0.

During iteration k � 3, the excluded group G2, 2 � {{2}, [5, 10]} becomes an
included group G3, 2 � G2, 2 having a nonzero coefficient α̂3, 2 (i.e., the optimal split
of this group into three groups had two of the three groups empty). The remaining
groupsG2, 1,G2, 3 andG2, 4 were carried over to the next iterationwithoutmodification
(i.e., G3, 1 � G2, 1, G3, 3 � G2, 3 and G3, 4 � G2, 4). Thus, after iteration k � 3, the
fitted model is

ŷ(α̂3) � α̂3, 1z3, 1 + α̂3, 2z3, 2 + α̂3, 3z3, 3

� α̂3, 1

10∑

t�5

(xt , 1 + xt , 3) + α̂3, 2

10∑

t�5

xt , 2 + α̂3, 3

4∑

t�1

xt , 3,
(7)

with α̂3, 1 � 3.19, α̂3, 2 � 0.80, α̂3, 3 � 1.03 and α̂3, 4 � 0. After iteration k � 3, all
predictors that truly have nonzero coefficients have been included in the model.

Within an existing group of predictors, if some are more or less influential than
others in this group, the LCTR algorithm can split them into separate subgroups at
subsequent iterations to properly adjust their coefficients. For example, since the true
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coefficients of predictors within group G3, 1 vary, during iteration k � 4, the group
G3, 1 � {{1, 3}, [5, 10]} was split into three subgroups G4, 1 � {{1, 3}, [5, 7]},
G4, 2 � {{1}, [8, 10]} and G4, 3 � {{3}, [8, 10]}, after which the fitted model was

ŷ(α̂4) � α̂4, 1z4, 1 + α̂4, 2z4, 2 + α̂4, 3z4, 3 + α̂4, 4z4, 4 + α̂4, 5z4, 5

� α̂4, 1

7∑

t�5

(xt , 1 + xt , 3) + α̂4, 2

10∑

t�8

xt , 1 + α̂4, 3

10∑

t�8

xt , 3

+ α̂4, 4

10∑

t�5

xt , 2 + α̂4, 5

4∑

t�1

xt , 3,

(8)

with α̂4, 1 � 3.01, α̂4, 2 � 3.53, α̂4, 3 � 3.22, α̂4, 4 � 0.80, α̂4, 5 � 1.03 and α̂4, 6 � 0.
The algorithm terminated at this point, and the final fitted model includes five

nonzero-coefficient groups as in (8). Thus, the number of estimated coefficients
decreases from 30 (3×10) in the original regression model to five in the LCTRmodel.
In this final model, the predictors with coefficients of zero in the true model were cor-
rectly excluded from the fitted model and remained in the final zero-coefficient group
G4, 6 � {{1, 2}, [1, 4]}. In this sense, LCTR generates low-dimensional representa-
tion of the data via extracting derived predictors, and discards any other predictors as
redundant information by including them in the zero-coefficient group.
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2.3 The longitudinal split-point search procedure

As mentioned above, at iteration k, for each group in {Gk−1, l : l � 1, 2, . . . , 2k −1},
we use a split-point search procedure provided in Algorithm 2 to split the group and
obtain the corresponding regression fit as if that group would be split after iteration k.
Among 2k − 1 candidate splits, we choose the one that most reduces the SSE. Unlike
when growing standard regression trees, this is equivalent to using mean squared error
(MSE) to decide the best split, in the sense that it would result in the exact same
sequence of splits, since MSE in our case is the SSE scaled by the total number of
training observations n. LCTR and standard regression trees are different in that LCTR
splits a set of predictors into subgroups of predictors, whereas regression trees split
an interval of values of a single predictor into two subintervals and each region being
considered for splitting contains a different number of observations. Considering all
possible ways to split a given group and computing the corresponding regression fit
for each possible split is computationally prohibitive, especially for large multivari-
ate temporal data. Therefore, we develop a greedy split-point search procedure to
efficiently split the group into three subgroups.

To illustrate the split-point search procedure, suppose the split group is Gk−1, l �
{Sk−1, l , [tbk−1, l , t

e
k−1, l ]} at iteration k. To simplify the illustration, suppose Sk−1, l

includes all predictors, that is, Sk−1, l � {1, . . . , p}, and the predictors are reordered
and then numbered from 1 to p (if Sk−1, l contains less than p predictors the procedure
is exactly the same butwith p replaced by the number of predictors in Sk−1, l ) according
to the sorting criterion in line 5 of Algorithm 2. The matrix in Fig. 5 represents the
current group Gk−1, l , and the goal is to optimally (to most reduce the SSE) split it into
three groups with the split structure shown in Fig. 5. That is, we first make a single
vertical split on t and refer to the subgroup {{1, 2, . . . , p}, [tbk−1, l , t − 1]} as the “left
subgroup” and the remainder of Gk−1, l as the “right subgroup”. Following this, we
make a single horizontal split of the right subgroup on j. For each candidate vertical
split point t ∈ {tek−1, l , t

e
k−1, l − 1, . . . , tbk−1, l}, we find the corresponding optimal

horizontal split point (denoted by jt ) by first sorting the rows of the right group and

Fig. 5 The goal of the split-point search is to find the split points t and j to split the groupGk−1, l � {Sk−1, l ,

[tbk−1, l , t
e
k−1, l ]} into three subgroups Gk, l � {{1, . . . , j}, [t , tek−1, l ]}, Gk, l+1 � {{ j + 1, . . . , p}, [t ,

tek−1, l ]} and Gk, l+2 � {{1, . . . , p}, [tbk−1, l , t − 1]} and obtain the corresponding three derived predictors
zk, l � ∑ j

j ′�1

∑tek−1, l
t ′�t xt ′, j ′ , zk, l+1 � ∑p

j ′� j+1

∑tek−1, l
t ′�t xt ′, j ′ and zk, l+2 � ∑p

j ′�1

∑t−1
t ′�tbk−1, l

xt ′, j ′

123



Discovering interpretable structure in longitudinal…

then searching all p possible split points j ∈ {1, 2, . . . , p} for the sorted rows. In the
following, we first describe the sorting procedure and then describe the horizontal (j)
split point search procedure to find jt . After finding jt for each t ∈ {tek−1, l , t

e
k−1, l − 1,

. . . , tbk−1, l} and the corresponding reduction in SSE for that vertical-then-horizontal
split, we choose the optimal t as the one for which the SSE was most reduced and split
Gk−1, l as in Fig. 5. This is implemented in lines 11–14 in Algorithm 2.

In the above procedure, to sort the rows of the right group for a specific t ∈ {tek−1, l ,

tek−1, l −1, . . . , tbk−1, l}, we initially obtain the sum st , j � ∑tek−1, l
t ′�t xt ′, j to represent the

corresponding subsequence (xt , j , xt+1, j , . . . , xtek−1, l , j
) for each predictor j ∈ Sk−1, l

(see line 4 of Algorithm 2). After obtaining st , j for each j ∈ Sk−1, l , as indicated in
line 5, we order the predictors based on squared partial correlations between st , j and
the response, after regressing out their dependencies on the existing derived predictors.

After sorting the rows of the right group for a specific t, we search for the optimal jt
as follows. At temporal cutpoint t, we aim to obtain the corresponding horizontal split
point jt to consider a candidate split of the group Gk−1, l . To do this, the split-point
search procedure sequentially scans through the ordered elements of Sk−1, l . Using
the ordered Sk−1, l and sums st , j for each j ∈ Sk−1, l , we update the derived predictor
z (at each t, we initially set z � 0n×1) sequentially by adding st , j onto the existing
derived predictor z at each step of the split-point search procedure, and compute the
corresponding reduction in the SSE as if the derived predictor z is included in the
model. Here, each step corresponds to moving the split point down by one predictor in
order as illustrated in the 2D representation in Fig. 5. Consequently, after the first step
we have the derived predictor z � st , j1 (here, j1 represents the first predictor index in
the ordered Sk−1, l ), whereas z � ∑

j∈Sk−1, l
st , j after the last step at time t. Among

|Sk−1, l | different horizontal split points, jt is the one at which the SSE is minimized.
We repeat this procedure for each t ∈ {tek−1, l , t

e
k−1, l − 1, . . . , tbk−1, l}, and among

all (t , jt ) pairs, the one that most improves the fit is selected as the best split point.
Consequently, to split the group Gk−1, l , we consider (tek−1, l − tbk−1, l + 1) × |Sk−1, l |
possible splits, and then we pick the one that most reduces the SSE (see lines 3–16 of
Algorithm 2).

Returning to our toy example in Fig. 3, at iteration k � 1, the excluded groupG0, 1 �
{{1, 2, 3}, [1, 10]} is split into three subgroups G1, 1 � {{1, 3}, [5, 10]}, G1, 2 � {{2},
[5, 10]} andG1, 3 � {{1, 2, 3}, [1, 4]} as illustrated in Fig. 6. In this example, tb0, 1 � 1
and te0, 1 � 10, and |S0, 1|� 3. Therefore, there are 30 � (10 − 1 + 1) × 3 candidate
splits, and among those candidates we choose the one whose split most improves the
fit. Towards this end, we first check the candidate vertical split point t � 10 and find

Fig. 6 For the Fig. 3 example, illustration of the splits at iteration k � 1. After iteration k � 1, the
zero-coefficient group G0, 1 � {{1, 2, 3}, [1, 10]} is split into three groups G1, 1 � {{1, 3}, [5, 10]},
G1, 2 � {{2}, [5, 10]} and G1, 3 � {{1, 2, 3}, [1, 4]}
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its corresponding best horizontal split point j10 as follows. We obtain s10, 1 � x10, 1,
s10, 2 � x10, 2 and s10, 3 � x10, 3 for each predictor in S0, 1 � {1, 2, 3}, respectively, and
order the predictors based on partial correlations between s10, 1, s10, 2, s10, 3 and the
response after regressing out their dependencies on the existing derived predictors (in
this case, at iteration k � 0 there is no derived predictor in the model as initialization).
We then obtain the ordered S0, 1 � {3, 1, 2}. As illustrated in Fig. 7, because the
third predictor is the first predictor in the ordered S0, 1 � {3, 1, 2}, we initially obtain
z � s10, 3. As a next step, we move the split point down by one predictor in order and
update z � s10, 3 + s10, 1. Finally, we have z � s10, 3 + s10, 1 + s10, 2. For each candidate
derived predictor z, we compute the reduction in the SSE as if z is included in the
model (the details to compute the SSE reductionwill be explained later in this section).
It turned out that j10 � 1 is the optimal horizontal split point at temporal cutpoint
t � 10 at which the reduction in the SSE is maximized. We repeat this procedure for
each t ∈ {10, 9, . . . , 1}, and at each time t find the corresponding best horizontal
split. Finally, we select the split points t and jt as the ones that most reduce the SSE.

We now explain how to compute the reduction in the SSE when adding a new
derived predictor z (for any z) into the model in the general case. Without loss of
generality, suppose that the groups are reordered so that the first k̃ groups are the
included groups. Thus, Zk−1 � [

zk−1, 1, zk−1, 2, . . . , zk−1, k̃

]
represents all nonzero

derived predictors in the fitted model at the end of iteration k − 1. In order to compute
the reduction in SSE when the derived predictors grow from Zk−1 to

[
Zk−1, z

]
in a

computationally efficient manner, we use well-known geometric arguments for least
squares with orthogonal projections as shown in Sürer et al. (2021a). Consequently,

Fig. 7 For the Fig. 6 example, at the candidate vertical split point t � 10, illustration of finding the horizontal
split point j10 after obtaining ordered S0, 1 � {3, 1, 2}
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letting R(z) denote the reduction in SSE with the addition of z into the model, we have

R(z) � (eTyez)
2

eTzez
� N 2

D
, (9)

where N ≡ eTzey and D ≡ eTzez. Here, ez � [
I − Zk−1(ZT

k−1Zk−1)
−1ZT

k−1

]
z and

ey � [
I − Zk−1(ZT

k−1Zk−1)
−1ZT

k−1

]
y are the errors in projecting z and y onto the

span of Zk−1, respectively. Now, suppose that during the search procedure at cutpoint
t we ordered the predictors (i.e., rows in 2D representation as in Fig. 5) as explained
above, and obtained the reduction R(zold ) in the SSE for a derived predictor zold such

that R(zold ) � N2
old

Dold
. Then, for the next predictor in the order (say predictor with index

j), we need to compute the reduction R(znew) in the SSE, where znew � zold + st , j �
zold +

tek−1, l∑

t ′�t
xt ′, j . Instead of computing R(znew) via (9), one can show that R(znew) can

be computed efficiently using the numerator and denominator of R(zold ) as

R(znew) �

(
Nold + eTy

∑tek−1, l
t ′�t et ′, j , k−1

)2

Dold + 2eTzold
∑tek−1, l

t ′�t et ′, j , k−1 +

(
∑tek−1, l

t ′�t et ′, j , k−1

)T( ∑tek−1, l
t ′�t et ′, j , k−1

) ,

(10)

where et , j , k−1 � xt , j − Pk−1xt , j and Pk−1 � [
Zk−1(ZT

k−1Zk−1)
−1ZT

k−1

]
.

In the split-point search procedure updates, the decision on how to split the predic-
tors into groups is based on the squared partial correlations ρt , j between st , j and the
response y, after regressing out their dependencies on the existing derived predictors,
where

ρt , j �

(
eTy

∑tek−1, l
t ′�t et ′, j , k−1

)2

(
∑tek−1, l

t ′�t et ′, j , k−1

)T(∑tek−1, l
t ′�t et ′, j , k−1

) , (11)

and it is themarginal reduction inSSE for each sum st , j as if the derivedpredictors grow
from Zk−1 to [Zk−1, st , j ]. Theorem 1 in Appendix 1 provides a justification for our
ordering procedure. According to Theorem 1, the rationale of the ordering procedure is
that sums with the largest values with squared partial correlation are good candidates
for reducing the SSE. When ordering predictors in Sk−1, l , in addition to marginal
reduction in SSE for each sum, we consider the sign of the correlation coefficient.
If the largest squared partial correlation has a negative correlation coefficient (i.e.,

eTy
∑tek−1, l

t ′�t et ′, j , k−1 is negative), we sort the rows in ascending order, otherwise we sort
them in descending order. If we only consider the marginal SSE reduction, then the
two sums with partial correlations different in sign can be included in the same group.
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In this case, the negative and positive values (say, for Nold and eTy
∑tek−1, l

t ′�t et ′, j , k−1,
respectively) in the numerator of (10) would cancel each other resulting in the low
SSE reduction even though their marginal SSE reduction is large. In this sense, our
sorting criterion encourages the sums of predictors that affect the response in the same
direction to be included in the same group at iteration k.

2.4 Updating themodel at the end of each iteration

The split-point search procedure is the same for both zero- and nonzero-coefficient
groups. However, theway themodel is updated after the split slightly differs depending
on whether the split group is a zero- or nonzero-coefficient group, which we describe
in the following.

First, suppose that one of the zero-coefficient groups (i.e., one of the excluded
groups) is split during iteration k and say the split group is Gk−1, 2k−1 to illustrate the
model update. As mentioned in Sect. 2.3, we construct groups Gk, 2k−1, Gk, 2k and
Gk, 2k+1 and the corresponding derived predictors zk, 2k−1, zk, 2k and zk, 2k+1 such that
zk, 2k−1 is the only derived predictor with a nonzero-coefficient. Then, the nonzero-
coefficient derived predictors after iteration k are Zk � [

Zk−1, z
]
for a single new

derived predictor z � zk, 2k−1. Consequently, at the end of iteration k, splitting a zero-
coefficient group into three subgroups increases the number of derived predictors in
the model by only one.

For our example shown in Fig. 3, recall that at iteration k � 1 the zero-coefficient
group G0, 1 is split into three groups G1, 1, G1, 2 and G1, 3 as in Fig. 6. The coefficients
of the corresponding derived predictors resulting from the split of zero-coefficient
group G0, 1 are α̂1, 1 � 3.19, α̂1, 2 � 0 and α̂1, 3 � 0 as shown in Fig. 3. As a result,
the number of the derived predictors in the model increases by one (in this case, the
number of derived predictors increases to 1 from 0 at iteration k � 1).

Suppose instead that one of the included groups in {Gk−1, l : l � 1, 2, . . . , k̃}
is split during iteration k and (without loss of generality) the groups are reordered
so that the split group is Gk−1, k̃ . On the surface, splitting one of the existing groups
actually creates three new derived predictors and removes one existing derived pre-
dictor in the model. In this case, the k̃ − 1 predictors

[
zk−1, 1, zk−1, 2, . . . , zk−1, k̃−1

]

remain unchanged in the model during iteration k, so that the derived predictors after
iteration k are Zk � [

zk−1, 1, zk−1, 2, . . . , zk−1, k̃−2, zk−1, k̃−1, zk, k̃ , zk, k̃+1, zk, k̃+2
]
,

whereas the derived predictors after iteration k − 1 are Zk−1 � [
zk−1, 1, zk−1, 2, . . . ,

zk−1, k̃

]
. However, the four sets

[
zk, k̃ , zk, k̃+1, zk, k̃+2

]
,
[
zk−1, k̃ , zk, k̃+1, zk, k̃+2

]
,
[
zk−1, k̃ ,

zk, k̃ , zk, k̃+2
]
and

[
zk−1, k̃ , zk, k̃ , zk, k̃+1

]
all span the same three-dimensional subspace,

because zk, k̃ , zk, k̃+1 and zk, k̃+2 were formed by a single split of zk−1, k̃ . Thus, Zk and[
Zk−1, zk, k̃ , zk, k̃+1

]
(or

[
Zk−1, zk, k̃ , zk, k̃+2

]
or

[
Zk−1, zk, k̃+1, zk, k̃+2

]
) span the same

(k̃ + 2)-dimensional subspace. In such a case, after iteration k the dimension of the
model increases by only two, and we can update the model via a rank-2 update, which
is equivalent to updating the model via two rank-1 updates (that is, first update the
model from

[
Zk−1

]
to

[
Zk−1, zk, k̃

]
, and then update it from

[
Zk−1, zk, k̃

]
to

[
Zk−1,

zk, k̃ , zk, k̃+1
]
). Efficient rank-1 updates are provided in Appendix 2.

123



Discovering interpretable structure in longitudinal…

Returning to our toy example to illustrate the procedure, at iteration k � 4, the
nonzero-coefficient group G3, 1 is split into three subgroups, and the estimated coef-
ficients of the subgroups resulting from the split are α̂4, 1 � 3.01, α̂4, 2 � 3.53 and
α̂4, 3 � 3.22. In such a case, on the surface (as illustrated in the tree structure as well),
we removed the derived predictor corresponding to G3, 1 from the model, and created
three new derived predictors corresponding to G4, 1, G4, 2 and G4, 3. The remaining
groups stayed the same, i.e., G4, 4 � G3, 2, G4, 5 � G3, 3 and G4, 6 � G3, 4. However,
in our computations we used a rank-1 update twice to efficiently update the model.

2.5 Including non-longitudinal predictors in LCTR

LCTR is designed to discover temporal pattern from the data. However, in many
settings, data sets include both longitudinal and non-longitudinal predictors at the same
time. For example, in the television viewing example mentioned in the introduction, in
addition to TVviewing habits over time, the average annual salary and/or the education
level of an household are two non-longitudinal predictors that can help predicting the
political leanings of each household in the data set. In such situations, LCTR can be
modified to discover the group structure existing in both the longitudinal and non-
longitudinal predictors.

As described above, LCTR starts with a single groupwith all predictor observations
included in group G0, 1 � {{1, . . . , p}, [1, T ]}. When there exists predictors that do
not have a longitudinal characteristic (i.e., static) as well, for the sake of complete-
ness, we order them and label as predictors p̃ + 1, . . . , p, where p̃ is the number of
longitudinal predictors, and p − p̃ is the number of non-longitudinal predictors. In
this case, at iteration k � 0, one can create an additional zero-coefficient group of
all non-longitudinal predictors, which we denote by Gnl

0, 1 � { p̃ + 1, . . . , p}. Then,
at each iteration, in addition to the groups of longitudinal predictors, one can con-
sider splitting groups of non-longitudinal predictors, and choosing the split that most
improves the SSE. Each group of non-longitudinal predictors can be represented in a
one-dimensional predictor space, and the split-point search procedure can be imple-
mented as if the group is a longitudinal group but with the ending time point equal
to the beginning time point, in which case no temporal split search is conducted.
Non-longitudinal predictors are therefore only split on predictors and not on time.

2.6 Finding the size of a longitudinal coefficient tree regression

LCTR grows the tree structure by splitting a group into three subgroups and construct-
ing the corresponding derived predictors at each iteration. Thus, at the end of iteration
k, LCTR constructs 2k + 1 distinct groups, and we have 2k + 1 nodes in the corre-
sponding tree structure as represented in Fig. 3. We need a termination criterion to
determine the best k number of iterations. The total number of iterations at termination
is the only tuning parameter for LCTR, and we use cross validation (CV) to find the
best parameter value.

We use 10-fold CV in our experiments. Care must be taken to do every step of the
model building within CV to avoid overfitting. This is analogous to how searching
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and sequentially adding predictors in stepwise regression must be done within CV,
since doing it as a pre-processing step prior to CV will result in overfitting. We first
divide the data set into 10 equally-sized folds. For the ith hold-out fold, we fit the
LCTR model using the remaining 9 folds as a training set with some sufficiently large
number of iterations kmax . Then, for each model with the number of iterations ranging
from 1 to kmax , we obtain the CV SSE to predict the ith fold as the validation set. We
repeat this procedure 10 times, each time leaving out a different fold for the validation
set and taking the remaining 9 folds as the training set. Finally, we average the CV
SSE across 10 folds to give the overall CV SSE for each of the kmax models, and
choose the best k as the one that minimizes the overall CV SSE. To obtain the final
group structure, we fit the LCTR model with the number of iterations set equal to the
best k.

The user must select a suitable kmax value to obtain the best k. To accomplish this,
we recommend initially using somemoderate kmax value depending on a user’s choice.
If the best k obtained through CV is equal to this initial kmax , this is an indication that
the best k is larger than the initial kmax value. In this case, a user should increase the
kmax value to a larger value. If this is the case, instead of fitting each CV model from
scratch, one can use a warm-start strategy by inputting the outputs (including the fitted
CV models with number of iterations ranging from 1 to the initial kmax ) for the initial
kmax value to the new model. This warm-start feature is implemented in our LCTR R
package.

3 Experiments

This section compares the performance of LCTR with various methods under differ-
ent settings. Section 3.1 provides the details of the experiment designs used in our
numerical experiments. Section 3.2 presents the main takeaways from the experiment
results.

3.1 Settings

We first examine the predictive and computational performance of LCTR in compar-
ison with ridge and lasso. We also include OLS to serve as reference for comparison.
We use the R language package glmnet for ridge and lasso (Friedman et al. 2010)
and lm for OLS (Team 2017). For LCTR, we implement our own R package LCTR.
We then provide examples to illustrate the advantages of LCTR, relative to some well-
known unsupervised models based on regression trees and the piecewise aggregate
approximation (PAA) and the original CTR, which does not incorporate any longi-
tudinal characteristics. Regression trees and PAA are generated through the rpart
(Therneau and Atkinson 2019) and TSrepr (Laurinec 2018) packages, and CTR is
built with CTR R package (Sürer et al. 2021c). Finally, LCTR is tested with a real data
set that includes both longitudinal and non-longitudinal predictors. All experiments
were completed using hardware consisting of a computer withmacOS Sierra operating
system and 2.5 GHz processor with 16 GB RAM.
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Fig. 8 True coefficient distributions for four different experiments with p � 20 and T � 50

Our initial simulations compared the accuracy, variable selection performance, and
run times of differentmodels on data generated from the regressionmodel in (1), where
ε ∼ N(0, σ 2I) and each row of [x1, 1, . . . , xT , 1, . . . , x1, p, . . . , xT , p] is MVNp×T (0,
I). We used p � 20 and T � 50 so that in total we have 1000 predictors and varied
the number of observations as n ∈ {1500, 2000, 3000} for the accuracy comparisons.
Smaller data sets are used to evaluate the variable selection performance and larger data
sets are used for the run-time comparisons described later. We considered a number
of different true models, each with a different β � [β1, 1, . . . , βT , 1, . . . , β1, p, . . . ,
βT , p], and noise level. For all experiments, we represented varying noise levels by

using a true r2 ∈ {0.5, 0.7, 0.9}, where true r2 � V(y−ε)
V(y) .

For the accuracy comparisons with independent predictors, we organize the true β

in four categories as in Fig. 8. Each line in the plot shows the coefficient values for
a predictor’s observations over time. Figure 8a–b are used to illustrate the predictive
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Fig. 9 Estimated coefficients for the experiment with p � 5, T � 20, r2 � 0.7, and n � 300. Markers and
dashed line illustrate the true and estimated coefficients, respectively

performance of LCTR when there is a true group structure without and with sparsity,
respectively. In Fig. 8a, the coefficients of all predictors are positive and decay to zero
over time, whereas in Fig. 8b the coefficients vary in magnitude and flip signs over
time. Moreover, our simulations compared the accuracy when there is no actual group
structure as in Fig. 8c–d. In Fig. 8c, the effect of coefficients smoothly changes over
time, whereas in Fig. 8d, the coefficient values show strongly seasonal effects. These
last two examples were included to demonstrate that LCTR still performs quite well
even when there is no actual group structure in the predictors. We then investigate
how LCTR’s split-point search procedure allows variable selection across both time
and predictor space. We use a simulation experiment with a true β given in Fig. 9
with p � 5, T � 20 and n ∈ {150, 200, 300}. In Fig. 9, markers indicate the true
coefficients for each predictor. Thus, there are two predictors with entirely nonzero
coefficients, two with entirely zero coefficients, and one with a mixture of zero and
nonzero coefficients. In total, we have 50 nonzero- and 50 zero-coefficient predictors.
We also considered larger data sets when investigating the computational performance
of LCTR. For these experiments, we used the setting in Fig. 8d with n ∈ {103, 104,
105, 106} and p ∈ {10, 20, 40, 80} and T � 50.

Our approach assumes the errors ε are i.i.d., but autocorrelation in the predictors is
allowed, so that any temporal autocorrelation in the response is due to its dependence
on the predictors. In addition to synthetic data sets introduce above, we consider exam-
ples with autocorrelated predictors and certain interpretability implications. Dividing
longitudinal data into subsequences and replacing the predictor observations with their
sums (or their means) have certain interpretability advantages since it preserves the
underlying temporal characteristics and reduces the dimension by creating new pre-
dictors in the form of sums. Moreover, representing many predictors with their sum
reduces the noise, and thus helps improve the predictive accuracy. However, if the sub-
sequences are constructed without considering the predictors’ effects on the response
variable, the derived predictors are not necessarily relevant to predicting the response
variable, and thus the predictive accuracy decreases. The goal of LCTR is to identify
the critical subsequences in a supervised way to enhance both interpretability and the
predictive accuracy of a linear regression model.

To illustrate this, we first compare LCTR with PAA method (Chakrabarti et al.
2002) using a synthetic longitudinal data set generated via random walks with a sin-
gle predictor (i.e., p � 1) observed over time T � 60. Among other transformation
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methods such as DFT and DWT, we use PAA to find derived predictors in an unsu-
pervised manner, since it has predictors that would be most similar to the derived
predictors of LCTR which seem the most relevant for these examples. We considered
a true model where βi , 1 � 0 for i � 1, . . . , 27, βi , 1 � −3 for i � 28, . . . , 49,
βi , 1 � 3 for i � 50, . . . , 57, and βi , 1 � 10 for i � 58, . . . , 60. Thus, there are three
nonzero coefficient groups and a zero-coefficient group, and the influence of predictor
observations increases with recency in time. We varied the number of observations as
n ∈ {60, 90, 120}.

To divide the longitudinal data into different-length subsequences, one could also
use traditional regression trees by considering time index t as a predictor and the value
of a predictor at time t as the response variable (Geurts 2001; Baydogan and Runger
2016). Once a tree is constructed, the split points across time are used to construct
the derived predictors. To illustrate this, we used the same true coefficient structure
as in the example above, and each row of [x1, 1, . . . , xT , 1] is MVNT (0, 6) where
6t , t ′ � 0.7|t−t ′| for t , t ′ � 1, . . . , T .

Unlike the existing methods discussed above, CTR (Sürer et al. 2021a) was devel-
oped to discover the group structure in a supervised way. CTR finds the groups by
recursively splitting the predictors into sets that have similar coefficients, where each
successive split is chosen to maximize the reduction in the SSE. However, when find-
ing splits, CTR does not consider the temporal characteristic of predictor observations
at T time points, and only considers splitting on the predictors at each iteration. In
other words, for a longitudinal data set with p predictors and T time points, instead of
having a 2D predictor-time space over which to search, as illustrated in Fig. 2, CTR
only considers a one-dimensional predictor space with a total of p × T predictors.

Fig. 10 Estimated coefficients for the experiment with p � 5, T � 20, and r2 � 0.9. Blue dashed lines
show the true coefficients of five predictors over time T � 20, and each marker illustrates the estimated
coefficients for each predictor
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To compare CTR and LCTR, we considered two true models for β with p � 5 and
T � 20, each of which is illustrated in Fig. 10 as blue dashed lines. Each observation
is sampled from amultivariate normal distribution with mean 0, and for each predictor
j � 1, . . . , 5, the covariance between xt , j and xt ′, j is set to 0.5|t−t ′| for t , t ′ � 1, . . . ,
T , and the between predictor covariance is set to zero. As in the comparisons above,
the sample size and the noise level are varied with n ∈ {100, 200, 300} and r2 ∈ {0.5,
0.7, 0.9}.

For each experiment (i.e., for each combination of true model, n, and true r2), we
generated one test set of 10,000 observations and 100 training data sets of size n, the
latter representing 100 replicates of the experiment. Themodel complexity parameters
for ridge, lasso (a regularization parameter), CTR and LCTR (the iteration number k)
were all chosen using 10-fold CV. In order to select the best k, for each training data,
we computed the CV SSE for the model size ranging from 1 to kmax as described in
Sect. 2.6, and then the one with minimumCV SSE is chosen as the best tree size. After
the best tree size is obtained via CV, the model is fitted to the entire training data using
the best k to obtain the estimated group structure and the associated group coefficients.
Then, this final fitted model is applied to the test data to compute the test r2. Similarly,
for each training data set, the regularization parameters for ridge and lasso are obtained
using CV, and then this selected regularization parameter value is used when fitting
the final model to the training data. For benchmarking with regression trees, on each
training data set, the best tree size is also chosen using 10-fold CV. We first divide the
data set into 10 equally-sized folds. For the ith hold-out fold, we fit a regression tree
using the remaining 9 folds with the number of terminal nodes varying from 1 to 10.
Then, a linear regression model is fitted with the number of derived predictors ranging
from 1 to 10. For each model, we obtain the CV SSE to predict the ith fold. We repeat
this for each hold-out fold (i � 1, . . . , 10) and then sum the CV hold-out SSEs to
give a CV SSE for each of the 10 models. Among 10 possible models, we retain only
the one that has the smallest CV SSE. We summarize the accuracy of the models over
the 100 replicates by averaging the test r2 values (denoted r̄2).

3.2 Results

Experiment results comparing the accuracy with independent predictors are plotted
in Figs. 11, 12, 13, 14. In the figures, columns correspond to different true r2 values,
and different values of n are shown within each panel. The main takeaways from the
numerical experiments are as follows.When the coefficients have a true group structure
as illustrated in Fig. 8a–b, LCTR outperforms other methods in all cases as shown in
Figs. 11, 12 including the high-noise experiments. In all of these experiments, LCTR
almost achieves the true r2 values by correctly identifying the group structure. In
addition to being more accurate, LCTR encourages simple and parsimonious models.
For example, in Fig. 8a experiment, we compute the mean number of predictors with
nonzero-coefficient estimates across 100 replicates. On average, when n � 1500 and
the true r2 � 0.5, lasso produces 467 predictors with nonzero-coefficient estimates,
and when n � 3000 and the true r2 � 0.9, lasso produces 959 predictors with
nonzero-coefficients (the true coefficients have no sparsity in this example). Ridge
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Fig. 11 Simulation results for the experiments illustrated in Fig. 8a

Fig. 12 Simulation results for the experiments illustrated in Fig. 8b

Fig. 13 Simulation results for the experiments illustrated in Fig. 8c
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Fig. 14 Simulation results for the experiments illustrated in Fig. 8d

includes all predictors at all replicates. The means of all the estimated coefficients
across 100 replicates are nonzero with lasso because of no sparsity in the coefficients
in this example. On the other hand, when n � 1500 and the true r2 � 0.5, LCTR
terminated in 6 iterations on average (obtained via 10-fold CV), and when n � 3000
and the true r2 � 0.9, the average number of iterations is 27. We design the Fig. 8c
experiment to reflect a real-life situation when the coefficients change smoothly over
time based on some exponential and linear curves. Even though the coefficients do
not have an explicit group structure, LCTR is superior to other methods in all cases.
Finally, similar to the time series data, in Fig. 8d experiment, we enforce a repeating
pattern on the coefficients. Even though the split-point search procedure gives priority
to the predictors observed at the most recent time points to be included in the model
through splitting groups starting from the most recent time point, LCTR achieves the
best accuracy levels in all cases as in Fig. 14 except the case when n � 3000 and the
true r2 � 0.9. In this case, the accuracy is comparable with lasso, which is expected,
because half of the coefficients are 0. We terminated the runs when kmax � 60, and
for almost all replicates when n � 3000 and the true r2 � 0.9, the CV finds the best
k as 60, which indicates that with an increasing kmax , LCTR may achieve a better
predictive accuracy than lasso for this case as well.

We evaluate the performance ofLCTR, lasso, and, ridge to understandwhether zero-
and nonzero-coefficient predictors are accurately identified. The rows of Fig. 15 show
the number of falsely identified zero- and nonzero-coefficient predictors, respectively.
Since ridge does not perform any variable selection, all zero-coefficient predictors are
falsely identified as nonzero-coefficient predictors and all nonzero-coefficient predic-
tors are correctly identified as expected. On the other hand, LCTR is able to identify
more than 80% of the predictor observations correctly in almost all cases, which is
far better than lasso. Additionally, we analyze the bias in the coefficients with the
medium-size noise level (e.g., r2 � 0.7) and relatively larger sample size n � 300.
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Fig. 15 Variable selection performance for the experiment with p � 5 and T � 20 across 100 replicates

In Fig. 9, lines correspond to the means of the estimated coefficients across 100 repli-
cates. While the lasso penalty shrinks all of the estimated coefficients toward zero,
LCTR group structure introduces almost no bias on the coefficient estimates.

Table 1 reports the average computation times (in seconds) across ten replicates of
each experiment (there was low replicate-to-replicate variability). The computation
times for LCTR, lasso, ridge include 10-fold CV to select their model complexity
parameter. In terms of computational expense, LCTR, lasso and ridge are all roughly
linear in n and p as shown in Table 1, and LCTR is faster than glmnet implementation
of lasso and ridge, which is considered extremely fast in the literature.

PAA is used to reduce the dimension of longitudinal data and extract predictors in
an unsupervised way. Figure 16a illustrates an observation from the data set (i.e., one
row of [x1, 1, . . . , xT , 1]) and its four splits produced by PAA. PAA groups predictor
observations into four equal-length subsequences, and constructs new predictors in the
low-dimensional space by taking the mean of the observations in each subsequence.
For a predictive comparison, on each training data, a linear regression model is then
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Table 1 Computational time
(sec.) comparison of LCTR,
lasso, and ridge for various pT
and n

pT LCTR Lasso Ridge

(a) n � 104 and p ∈ {10, 20, 40, 80} and T � 50

500 5 21 30

1000 11 38 58

2000 26 83 121

4000 59 194 248

n LCTR Lasso Ridge

(b) pT � 500 and n ∈ {103, 104, 105, 106}
103 1 3 4

104 5 21 30

105 74 208 301

106 924 3377 4398

Fig. 16 Estimated group structure via PAA vs. LCTR for p � 1, T � 60, and βi , 1 � 0 for i � 1, . . . , 27,
βi , 1 � −3 for i � 28, . . . , 49, βi , 1 � 3 for i � 50, . . . , 57, and βi , 1 � 10 for i � 58, . . . , 60. Blue
dashed lines represent the true coefficients, and the markers represent the estimated coefficients in (b) and
(c)
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fitted by using the four new predictors produced by PAA, and the estimated coefficients
are transformed back to the original 60 dimensional space for illustration. For com-
parison, LCTR is fitted with k � 4 since the number of groups in the true coefficient
structure is four. Figure 16b–c demonstrate the coefficient estimates obtained with
PAA and LCTR, respectively, for a replicate with the true r2 � 0.9 and n � 120. For
the PAA results in Fig. 16b, while the most influential predictor observations (i.e., the
predictors [x58, 1, x59, 1, x60, 1]) are grouped with the ones that have less influence on
the response variable, some of the predictors that have a true negative influence on the
response variable are placed into the group that has a positive coefficient estimate. In
contrast, in LCTR, the length of subsequences varies depending on their effect on the
response variable. In this sense, relevant subsequences of predictors are automatically
detected, and the ones that have no effect on the response variable are assigned a zero
coefficient. Table 2 illustrates the predictive advantage of LCTR over PAA via average
test r2 and MSE values. Since the test r2 value is a scaled version of (one minus) the
test MSE, we provide both the test r2 and MSE values for only this example as an
illustration.

For comparison of regression trees and LCTR, Table 3 summarizes the average test
accuracy and the best model size for different true r2 values and different values of
n. While the best model size is always around four with LCTR, for traditional trees,

Table 2 Comparison of PAA and LCTR by averaging the test r2 values across 100 replicates. Numbers in
the parenthesis are the average test MSE values

r2

n 0.5 0.7 0.9

PAA 60 0.39 (44,332) 0.60 (20,966) 0.80 (8,354)

90 0.42 (42,395) 0.62 (20,243) 0.80 (8,095)

120 0.42 (41,935) 0.62 (20,007) 0.81 (7,930)

LCTR 60 0.40 (43,389) 0.65 (18,493) 0.87 (5,166)

90 0.44 (40,525) 0.67 (17,503) 0.88 (4,856)

120 0.46 (39,510) 0.68 (16,994) 0.88 (4,781)

Table 3 Comparison of regression tree and LCTR by averaging the test r2 values across 100 replicates.
Numbers in the parenthesis are the average number of derived predictors at the best model

r2 Regression tree LCTR

n 0.5 0.7 0.9 0.5 0.7 0.9

60 0.29 (8.4) 0.48 (8.7) 0.72 (9.1) 0.37 (2.9) 0.59 (4.3) 0.87 (5.0)

90 0.35 (8.6) 0.55 (9.0) 0.76 (9.1) 0.41 (3.9) 0.64 (4.3) 0.88 (5.1)

120 0.38 (8.6) 0.57 (9.1) 0.76 (9.2) 0.43 (4.2) 0.66 (4.4) 0.89 (5.4)
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Table 4 Comparison ofCTRandLCTRby averaging the test r2 values across 100 replicates for two different
true β structures

r2 CTR LCTR

n 0.5 0.7 0.9 0.5 0.7 0.9

Experiment 1 100 0.23 0.48 0.75 0.32 0.56 0.84

200 0.35 0.58 0.84 0.40 0.63 0.87

300 0.39 0.61 0.86 0.43 0.65 0.88

Experiment 2 100 0.26 0.48 0.76 0.33 0.57 0.84

200 0.36 0.58 0.83 0.40 0.63 0.87

300 0.39 0.61 0.86 0.43 0.65 0.88

the best test accuracy is obtained with a larger number of derived predictors. More-
over, the overall predictive accuracy of LCTR is consistently better than predictive
accuracy for traditional trees. Since the true group structure is not correctly identified
with traditional trees, and they split the predictors into smaller pieces, this reduces
interpretability in addition to worsening predictive accuracy.

Table 4 summarizes the predictive accuracy of CTR andLCTRmodels by averaging
the test r2 values across 100 replicates. The best iteration number k is chosen via CV
for bothCTRandLCTRusing kmax � 20. For both of the truemodels, LCTRperforms
significantly better than CTR. To illustrate the interpretability advantages of LCTR
over CTR, Fig. 10 shows the estimated coefficients for a replicate with n � 300
and r2 � 0.9, which is the setting in which both methods perform best. CTR is not
able to capture the temporal characteristic of the true coefficients, and coefficient
estimates (illustrated with markers) do not follow the true group structure. On the
other hand, with LCTR, the coefficient estimates for each predictor are contiguous in
time. Therefore, even though the predictor observations at the closer time points have a
similar effect on the response variable, the CTR’s split-point search procedure includes
those predictor observations into different groups with different coefficients, and thus
the predictors in the same group are not necessarily contiguous in time. On other other
hand, LCTR’s split-point search procedure considers potential splits on both time and
on the predictors to preserve the interpretability and the predictive accuracy.

We finally evaluate LCTR for examples in which there are both longitudinal and
non-longitudinal predictors. For this, we use the residential building data set from
the UCI Machine Learning Repository (Rafiei and Adeli 2016). The data set consists
of 8 physical and financial non-longitudinal predictors and 19 economic predictors,
each of which is measured at five different time points (thus comprising 5× 19 � 95
predictor observations) resulting in a total of 103 predictors.We consider two different
regression settings, in which the actual sales price and actual construction cost are the
two response variables. The data set consists of 372 observations, and we randomly
split the data into training and test sets, where we vary the size of the training set as
74, 186, 298, and the size of the test set is fixed as 74 to examine the effect of the
amount of training data on out-of-sample performance. We repeated this process for

123



Discovering interpretable structure in longitudinal…

Table 5 Predictive performance

comparison via average r2 value
for the residential building data
set with two different response
variables. The numbers in the
parentheses are the average
number of groups in the final
model across 100 replicates

n LCTR Lasso Ridge

(a) Actual sales prices

74 0.96 (6) 0.96 0.49

186 0.97 (8) 0.97 0.95

298 0.97 (9) 0.98 0.96

(b) Actual construction cost

74 0.94 (6) 0.95 0.72

186 0.96 (7) 0.96 0.94

298 0.96 (6) 0.96 0.94

100 different random splits of the data into training and test sets of respective sizes
and then computed the average test r2, averaged across the 100 replicates. Table 5
summarizes the predictive accuracy of LCTR, lasso, and ridge. Although LCTR and
lasso perform comparably well, ridge does not perform well when the sample size is
small. This indicates that a small number of predictors may be enough to explain both
of the response variables, and since ridge is unable to do variable selection, this may
explain its poor performance for small sample size. On the other hand, LCTR is able to
discover important predictors within a relatively small number of groups indicated by
the numbers in parentheses in Table 5. Regarding interpretability of the LCTR model,
we examined the group structure of an LCTRmodel fit to all 372 training observations.
To predict the actual construction cost, the preliminary estimated construction cost and
the duration of construction are the two non-longitudinal predictors included into the
final model. In addition to those two predictors, the project locality and the price
of a unit at the beginning of the project are two other non-longitudinal predictors
that are influential to predict the actual sales price. The remaining groups include the
longitudinal predictors.

Additional experiments using two publicly available data sets with longitudinal
predictors are provided inAppendix 3 to compare the predictive performance ofLCTR,
lasso, and ridge.

4 Discovering temporal pattern: engagement with newsmedia

We now illustrate LCTR on a real data set studying local news engagement, high-
lighting the interpretability of the model. Media websites that offer news are shifting
away from relying on advertising revenues toward user-supported subscription mod-
els. In the past, such sites would attract a large audience with low subscription fees
and then sell access to the audience to advertisers. Today media platforms, primarily
Google and Facebook, mediate news content and direct consumers to newspaper sto-
ries. These platforms take an increasingly large share—up to 70% (Sterling 2019)—of
advertising revenue. The result is that the organizations that create news content face
declining advertising revenue, thus limiting their capacity to produce news. Newsroom
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employment has plummeted by 46.7% between 2008 and 2018 (Pew Research Center
for Journalism and Media 2019). One consequence is “news deserts,” in which 1,300
communities have been left with no news coverage, and 2000 of the 3,143 counties in
the US have no daily newspaper (Abernathy 2018). A promising strategy is to increase
subscription fees so that readers are underwriting a much large share of the cost to pro-
duce news. This strategy, however, depends on creating unique, differentiated content
for which consumers are willing to pay (WTP).

At the same time, news organizations now have access to better data on reading
behaviors than ever before. Click stream data records every page that every user
views over time, as well as contextual information such as the device and browser
used, location of the session, and the amount of advertising. We use the regularity of
reading as a proxy for WTP, where regularity is measured by the number of days in
a month that a subscriber reads at least some content. Regularity is a reflection of a
reading habit and is a good leading indicator of customer retention and WTP (Kim
et al. 2021). Such models could provide editors with valuable insights for enhancing
reader engagement with the content, which, in turn, increases regularity and WTP.
Building such predictive models, however, is not straightforward because the number
of possible pieces of content a user can view is very large and page-view (PV) counts
per article are sparse (small counts). While there is a large literature on using PV data
to measure user engagement (Lalmas et al. 2014), extant methods have not made the
link to regularity andWTP. One conclusion that can be drawn from the literature is that
not all PVs are equal. Some are highly engaging, others are less engaging, and some
may even disengage the reader (Lu et al. 2019;Miroglio et al. 2018). Identifyingwhich
reading behaviors are highly engaging and disengaging is important to understand the
drivers of regularity and retain subscribers.

We analyze data from a local news site located in one major US city. Our universe
for the analysis is all households that had digital-only subscriptions to the paper as of
September 15, 2019. The response variable is the number of days that a subscriber read
any content during the last four-week period (September 16–October 14), and thus
takes values 0–28. The predictors consist of the PV counts of 47 topics or contextual
experiences during the previous 48 weeks, giving a total of 48×47 � 2256 predictors.
We used kmax � 20 and 10-fold CV, and obtained the best iteration number k � 8.
The tree structure is given in Fig. 17. The final group structure is given below:

• Derived predictor 1 (α̂8, 1 � 0.20) with G8, 1 � {{college basketball, college foot-
ball, obituaries, homepage views, location 1, location 2, location 3, location 4,
source Google search, source direct, source email, source social media, source
Bing/Yahoo/AOL, source Legacy.com, source Google search, source newsletter},
[45, 47]}

• Derived predictor 2 (α̂8, 2 � 0.68): G8, 2 � {{college basketball, obituaries, home-
page views, location 1, location 2, location 3, location 4, source Google search,
source direct, source email, source social media, source Bing/Yahoo/AOL, source
Legacy.com, source Google search}, [48, 48]}

• Derived predictor 3 (α̂8, 3 � 0.12) with G8, 3 � {{college football, source newslet-
ter}, [48, 48]}
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• Derived predictor 4 (α̂8, 4 � −0.20) with G8, 4 � {{crime, other sports, US news,
state, opinion, college news, living, life/culture, real estate, outdoor, pro football,
health, baseball, Ncomment, posts to social media, source Google News}, [45, 48]}

• Derived predictor 5 (α̂8, 5 � 0.19) with G8, 5 � {{news, business, politics, high
school sports, entertain, weather, schools, restaurant/food, celebrity, state fair, traf-
fic, ad blocker}, [45, 48]}

• Derived predictor 6 (α̂8, 6 � 0.26) with G8, 6 � {{crime, news, obituaries, schools,
source email, source Bing/Yahoo/AOL, source newsletter}, [40, 44]}

• Derived predictor 7 (α̂8, 7 � −1.53) with G8, 7 � {{politics, US news, restau-
rant/food, real estate, pro football}, [44, 44]}

• Derived predictor 8 (α̂8, 8 � 0.39) with G8, 8 � {{college basketball, other sports,
US news, weather, college news, restaurant/food, life/culture, celebrity, state fair,
health, traffic, posts to social media, location 4, source direct, source social media,
source Google News}, [42, 43]}

• Derived predictor 9 (α̂8, 9 � −0.33) with G8, 9 � {{college football, business,
politics,USnews, high school sports, entertain, real estate, state fair, traffic, baseball,
posts to social media, homepage views}, [40, 41]}

Derived predictor 2 has the largest positive coefficient (0.68) and mainly consists of
local topics during the most recent week (48). The city has a university with popular
basketball and football teams. The news organization provides some of the best cover-
age of these teams, and reading articles about them is associated with more reading in
the future. Other engaging topics include obituaries and home PVs, where subscribers
are likely scanning headlines for an update. PVs from four locations are also included,
indicating that readers who are not from out of state (location 5) tend to read more
next month. Certain sources are better than others. Derived predictor 1 has the same
variables, but from an earlier time period (weeks 45–47) and with a smaller coefficient
(0.20). LCTR has thus determined that it should give more weight to recent behavior
(week 48) than earlier behavior. We do not see variables from weeks 1–39, suggest-
ing that roughly two months of data is sufficient to predict future reading regularity.
Derived predictor 3 assigns even more weight (0.12) to stories about the local college
football team, and readers who come from clicks on newsletters, which are an impor-
tant way for news organizations to drive traffic to their sites without being dependent
on the page ranking algorithms used byGoogle, Facebook and other social/search plat-
forms. Derived predictors 5 and 6 identify other topic areas that drive engagement for
the news organization, although with smaller coefficient (0.19 and 0.26, respectively).

Not all content engages readers, and some drives them away. The editor should be
alerted to these areas so that alternative approaches of covering them could be tried.
Derived predictor 4 has a negative association (−0.20) with regularity next month.
Topics such as US news, professional football and baseball, and health are covered
in many other news outlets, probably with greater resources and higher quality. For
example, US news is covered by cable and network TV, news magazines, national
newspapers, etc. The local news organization has no competitive advantage in covering
such topics, other than perhaps discussing local implications of national news. It might
be better for the local news organization not to try to cover such topics unless there is a
local angle. Similar statements may be true for living, life/culture, and outdoor. Crime
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is most likely local and not covered elsewhere, but the negative slope suggests that the
way it is covered might be off-putting. State and news about the local college should
be strengths since they are local topics, but reading them seems to drive users away.
Derived predictor 7 makes the negative association between some of these variables
and future regularity even more negative (−1.53), using data from an earlier week
(44).

Derived predictors 8 (α̂ � +0.39) and 9 (α̂ � −0.33) include predictor observations
from earlier weeks. Some of those on derived predictor 9 have opposite signs, such
as college football, which has a positive coefficient during the weeks 45–47, and a
negative coefficient during the weeks 40–41. While including a core, local topic like
college football on a predictor with a negative coefficient could be spurious, the editor
might also consider that weeks 40–41 are July 15–28, which is prior to the start of the
football season (officially August 24, 2019) when there is less coverage of the topic.
College football has a positive coefficient during weeks 45–47 (August 19–September
8). Preseason football coverage should be examined.

To analyze the predictive performance of LCTR, we split the data into training and
test sets, and the size of the test set is fixed at 336 (i.e, 20% of the data set with the
sample size of 1676). We repeat this process for 30 random splittings of the data into
training and test sets, and compute the average test r2. The average test r2 values
are 0.49, 0.51, and 0.51 for LCTR, lasso, and ridge, respectively. In this example,
lasso and ridge perform slightly better than LCTR in terms of predictive accuracy.
However, LCTR is parsimonious with small number of groups and provides insight
into the relationship between predictors via its tree structure. While LCTR has nine
derived predictors in the final model, lasso and ridge include 162 and 2042 predictors,
respectively, in their final model. The computation times including 10-fold CV for
LCTR, lasso, and ridge are 2, 5, and 8 s, respectively.

Fig. 17 Illustration of the LCTR-estimated hierarchical group structure and coefficients in the news engage-
ment example
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5 Conclusion

In this paper, we develop a novel CTR algorithm for longitudinal data (LCTR) to iden-
tify temporal patterns in high-dimensional multivariate longitudinal data sets. LCTR
leads to a simple, highly-interpretable tree structure via successively partitioning the
subsequences of predictor observations that have the similar effect on the response
variable into the groups. Finding such groups of predictors that share a common regres-
sion coefficient is an automated way of feature engineering and selection where the
sumof predictorswithin each group represents a new derived predictor. The simulation
results demonstrated that the prediction performance is superior to ridge, lasso, and
OLS because the LCTR algorithm considers the time component during the search
procedure. In addition to being more accurate, LCTR can be considered as a faster
alternative to the regularized regression methods such as ridge and lasso.

There are many opportunities for future research. One line of future research could
be to developways to include nonlinear transformations of the observed and/or derived
variables. One way of doing this is to allow nonlinear functions of derived predictors,
where the derived predictors are still sums over contiguous time intervals. A related
extension would be to search for interactions between derived variables. We have
focused on the situation where each row of the regression model represents a different
sampling unit. A similar approach can be developed for the situation with temporal y
values, where y is a time series with each row of the regression model representing
the response at different times, for either a common sampling unit or for different
sampling units. In this case, since past response values serve as additional predictors,
they should be included alongwith other predictors in the split-point search.Moreover,
modifications of CV appropriate for regressions with correlated ε would have to be
used to select k. While being promising for temporal data sets, the LCTR method can
be further extended to other longitudinal studies with spatial patterns. In this case, the
split-point search procedure should be modified to search across multiple domains.
With more sensors and digital environments, all of these types of data will become
more common in the future, increasing the need for automated supervised learning
procedures like LCTR.
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Appendix 1: Proofs

Theorem1 During iteration k, suppose we consider splitting groupGk−1, l � {Sk−1, l ,
[tbk−1, l , t

e
k−1, l ]} at temporal cutpoint t, and search for the optimal horizontal split point

jt that most reduces the SSE when augmenting the basis from Zk−1 to [Zk−1, st , jt ]

such that st , jt � ∑tek−1, l
t ′�t xt ′, jt . The derived predictor st , jt is obtained as the maximizer
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of the following mathematical model

st , jt � argmax
{st , j :∑

tek−1, l
t ′�t

xt ′ , j ,∀ j∈Sk−1, l }
R(st , j ), (12)

and among the set {st , j : ∑tek−1, l
t ′�t xt ′, j , ∀ j ∈ Sk−1, l} of sums, st , jt is the one with the

largest squared partial coefficient ρt , jt .

Proof We know that the reduction R(znew) in the SSE when the derived predictors
grow from Zk−1 to

[
Zk−1, znew

]
is computed via (10), where znew � zold + st , j �

zold +
∑tek−1, l

t ′�t xt ′, j . For the case when augmenting the basis from Zk−1 to [Zk−1, st , j ],
let znew � st , j and zold � 0. In such a case, Nold � 0, Dold � 0, and ezold � 0, and
plugging these values into (10), we obtain

R(st , j ) �

(
eTy

∑tek−1, l
t ′�t et ′, j , k−1

)2

(
∑tek−1, l

t ′�t et ′, j , k−1

)T( ∑tek−1, l
t ′�t et ′, j , k−1

) . (13)

From (13), we find that R(st , j ) � ρt , j . Therefore, among the set {st , j : ∑tek−1, l
t ′�t xt ′, j ,

∀ j ∈ Sk−1, l} of sums, the sum st , jt with the largest squared partial correlation ρt , jt
maximizes the reduction R(st , jt ) in the SSE. In other words, ρt , jt ≥ ρt , j for j ∈
Sk−1, l . �

Appendix 2: Efficient model updating

For computational purposes, after finding the new derived predictor z (z � zk, 2k−1
when splitting a zero-coefficient group or z � zk, k̃ when splitting a nonzero-coefficient
group as explained in Sect. 2.4) at the end of the kth iteration, we update the model as
follows. Let the (t, j)th column of the matrix Ek (the column that corresponds to jth
predictor at time t) be the cumulative sum of errors from the most recent time point T
to the time point t, i.e., Ek is defined such that its (t, j)th column is

(Ek)t , j �
T∑

t ′�t

et ′, j , k �
T∑

t ′�t

xt ′, j − Pk

T∑

t ′�t

xt ′, j

�
T∑

t ′�t

et ′, j , k−1 − eTz, k−1

∑T
t ′�t et ′, j , k−1

eTz, k−1ez, k−1
ez, k−1,

(14)

and (wk)t , j � ∑T
t ′�t e

T
t ′, j , ky and (uk)t , j �

(
∑T

t ′�t et ′, j , k

)T ∑T
t ′�t et ′, j , k .Weupdate

and store the n× pT matrixEk and the pT×1 vectorswk anduk at the end of iteration k
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using the relationship between the cumulative errors at iteration k−1 versus at iteration
k in an efficient manner. The n × pT matrix Ek can be updated from Ek−1 via

Ek � Ek−1 − ez, k−1

eTz, k−1ez, k−1
vTk , (15)

where the pT × 1 vector vk � ET
k−1ez, k−1. After calculating vk , the vectors wk and

uk can be updated via

wk � wk−1 − vk
eTz, k−1y

eTz, k−1ez, k−1
and uk � uk−1 − vk ◦ vk

eTz, k−1ez, k−1
, (16)

which follows from their definitions. Here, ◦ denotes the element-wise product. The
updates (15)–(16) provide an efficient means of updating Ek , wk and uk at the end
of iteration k to be used during the split-point search at iteration k + 1 to compute
the reduction R(znew) in (10). In the case of splitting an existing group, we apply the
updates (15)–(16) twice because the number of derived predictors effectively increases
by two as explained in Sect. 2.4 (see lines 12–16 in Algorithm 1 for updating the
model).

Appendix 3: Additional experiments

In this section, we compare the predictive performance of LCTR with ridge and lasso
using publicly available real data sets.We first use the weekly sales transaction data set
(Tan 2017) from the UCI Machine Learning Repository. The data set contains weekly
purchased quantities of 811 products over 52 weeks. For each product, the response is
the maximum number of sales during the last four-week period, and predictors consist
of sales during the previous 48weeks. About half of the products are selected randomly
to serve as the training set (e.g., 405 products) and the remaining half serves as the test
set (e.g., 406 products). We repeated this process for 30 different random splittings of
the data into training and test sets, and computed the average test r2 value across all
30 replicates. All methods performed comparably well in terms of predictive accuracy
with the resulting average test r2 values being approximately 0.94 for LCTR, lasso,
and ridge. Figure 18 presents the estimated coefficients obtained with LCTR, lasso,
and ridge in their final model fitted with all 811 products. For this real data example,
we do not know the ground truth regarding which predictors are most influential.
However, from Fig. 18, both lasso and ridge find that predictors between time points
20 and 30 are the most influential ones. As pointed out in Sect. 2, LCTR is able to
provide a close piecewise approximation to both lasso and ridge estimates using in
this case only five pieces (i.e., five groups) without losing predictive advantage even
though the distant past influences the response more strongly than the recent past.

Next, we consider the electricity load diagrams data set (Trindade 2015) also from
the UCI Machine Learning Repository. The data set contains the electricity consump-
tion of n � 370 clients recorded every 15 min. In this experiment, we compare the
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Fig. 18 Estimated coefficients for the weekly sales transaction data set

predictive performance of LCTR, lasso, and ridge using the 2014 electricity consump-
tion data such that the response is constructed from the data observed in December,
and predictors are constructed from the data observed from January to November. To
check the performance for varying numbers of predictors (i.e., for n > p, n ≈ p, and
n < p cases), we considered three different regression settings, in which the predic-
tors are generated at three different granularity levels. First, the predictors consist of
the weekly electricity consumption of a client during the initial 48 weeks. Next, we
consider the daily electricity consumption from January to November with a total of
334 predictors per client. Finally, the energy consumed per 12 h is taken as a predictor
to construct a total of 668 predictors. For these three different regressions, the corre-
sponding response variables are taken to be the maximum weekly, daily, and 12-hour
electric consumption during December, respectively. For each of these three regres-
sions, 370 observations are randomly split into training and test sets with an 80:20
ratio repeated for a total of 30 different random splittings, and the average test r2 val-
ues are given in Table 6. In this example, LCTR and lasso consistently perform better
than ridge (LCTR performs slightly better than lasso, although both have r2 close to
1.0), and coefficient estimates in the final models of LCTR and lasso indicate that
while only a few predictors observed at the most recent time points have substantial
effects, the remaining predictors have almost no effect on the response. As a possible
explanation for the slightly better performance of LCTR versus lasso, although lasso
is able to select the influential predictors, it also tends to include some predictors that
may not be influential due to the noise in the data. Ridge includes all predictors in
the model, which may explain why its average test accuracy is always lower. For this
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Table 6 Predictive performance comparison via average test r2 value for the electricity load diagrams data
set. The numbers in the parentheses are the average number of groups for LCTR and the average number
of nonzero-coefficient predictors for lasso and ridge in the final model across 30 replicates

T × p LCTR Lasso Ridge

Weekly 48 1.00 (4.5) 0.99 (6.1) 0.90 (48)

Daily 334 0.99 (1.6) 0.97 (14.7) 0.91 (334)

12-hour 668 0.98 (1.9) 0.97 (15.6) 0.87 (668)

situation, LCTR’s model building procedure allows parsimonious models with a small
number of groups, and its split-point search encourages the most recent points to be in
these groups. As a result, it predicts the response with near-perfect accuracy. We also
note that strong multicollinearity is present between the predictors of both data sets
considered in this section, and LCTR produces groups with easy-to-interpret group
structure.
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