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Abstract
Depth functions offer an array of tools that enable the introduction of quantile- and
ranking-like approaches tomultivariate and non-Euclidean datasets.We investigate the
potential of using depths in the problem of nonparametric supervised classification of
directional data, that is classification of data that naturally live on the unit sphere of
a Euclidean space. In this paper, we address the problem mainly from a theoretical
side, with the final goal of offering guidelines on which angular depth function should
be adopted in classifying directional data. A set of desirable properties of an angular
depth is put forward. With respect to these properties, we compare and contrast the
most widely used angular depth functions. Simulated and real data are eventually
exploited to showcase the main implications of the discussed theoretical results, with
an emphasis on potentials and limits of the often disregarded angular halfspace depth.
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1 Introduction: classification of directional data

In many research areas, data living in nonlinear subdomains of Rd are common. That
data can be described by random variables whose support is a nonlinear manifold.
The complicated nature of such datasets calls for methods going beyond the standard
statistical techniques, and the need for specific tools applicable to nonlinear datasets
arises.

Our work considers directional (or spherical) data whose support is the surface of
the unit hyper-sphere Sd−1 of Rd , or a subset of it. Directional data describe values
typically recorded as a set of angles (for d � 2, also known as circular data) or as unit
vectors in R

d . A large amount of literature exists on the analysis of this kind of data,
from the seminal book of Mardia (1972) to many recent works on clustering (Salah
and Nadif 2019; Bry and Cucala 2022), and on nonparametric data analysis (Arnone
et al. 2022; Saavedra-Nieves and Crujeiras 2022), to cite a few.

We focus on the use of angular depth functions in supervised classification. That is,
onwhich angular depth should be adoptedwhen classifying newly observed directional
values into groups, given a preliminary knowledge of directional data whose group
labels are available. Also known as supervised learning of directional objects, this
issue has become quite an active area of research in recent years (see, e.g., Figueiredo
(2009); Tsagris and Alenazi (2019); Jana andDey (2021)).We pursue a nonparametric
approach, andwithin themany, we consider angular depth functions and the associated
DD-classifiers (depth-depth classifiers). Statistical depth functions (Liu et al. 1999;
Zuo and Serfling 2000a) present a set of tools applicable to multivariate and non-
Euclidean data that generalize notions of ranks, orderings, and quantiles to more
complex datasets. Exploiting the nonparametric nature of statistical depth functions
and their robustness properties, the depths have already been successfully applied
also in the context of directional data analysis (Liu and Singh 1992; Agostinelli and
Romanazzi 2013; Ley et al. 2014; Demni et al. 2021).

DD-classifiers were first introduced for multivariate data living in R
d (Li et al.

2012). Because of their simplicity, efficacy, and optimality properties, they have been
soon extended to data defined over different domains, such as functional data (Cuesta-
Albertos et al. 2017; Mosler and Mozharovskyi 2017) and networks (Tian and Gel
2019).

Depth functions evaluate how much “inner” a point is with respect to a probability
distribution. DD-classifiers assign to any point in the training set its depth value with
respect to each of the competing distributions/groups. Next, these values are mapped
into a Euclidean space spanned by the depths themselves (DD-space), and a discrim-
inating function within such a DD-space is constructed. In the second step, new data
points are classified by evaluating their depth with respect to each labeled training
set, and assigned to a class by means of the discriminating function previously con-
structed in the DD-space. The depths thus serve as a tool offering elaborate nonlinear
dimension reduction methods applicable to classification.

In principle, any depth function can be used to construct a DD-classifier. However,
its performance is related to the depth which is adopted. A crucial issue is there-
fore the choice of a depth among the many available. In R

d , related problems have
been addressed from a different perspective, even recently (Mosler andMozharovskyi
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2022). For directional data and angular depths, though, apart from a few remarks
in particular simulation studies, no discussion on that pressing issue is found in the
literature.

The aim of this work is twofold. First, we propose a set of desired conditions that
angular depths should satisfy. The focus will be on the properties exploitable in a
classification setting. Second, we compare the available angular depths in view of
those conditions, and we offer a series of theoretical results regarding the general
behavior and the shapes of the depth contours for the most established angular depths.

The paper is organized as follows. After introducing notations (Sect. 1.1), Sect. 2
lists a set of desirable properties for an angular depth function. Several observations
regarding these conditions are given; in particular, the conditions are contrasted to those
available for depths in linear spaces (Liu 1990; Zuo and Serfling 2000a; Serfling 2006)
and the special traits of directional data are stressed out. Section 3 introduces several
prominent angular depth functions and discusses which of them enjoy the properties
laid out in Sect. 2. Our theoretical analysis pinpoints the often disregarded angular
halfspace depth (Small 1987) as a candidate suitable to be used for classification
purposes. Section 4 uses simulated and real datasets to outline the main implications
of the obtained theoretical results, focusing on the power of the angular halfspace
depth and its limitations within a supervised classification setting. Final remarks are
offered in Sect. 5. Technical details and proofs of our theoretical results are postponed
to the Appendix.

1.1 Notations

We write Rd for the Euclidean space of points x ∈ R
d equipped with the Euclidean

norm ‖x‖ and a scalar product 〈·, ·〉. A vector x � (x1, . . . , xd)T ∈ R
d is meant to

be a column vector; when not necessary, the transposition in (x1, . . . , xd)T will be
dropped to ease the notations. The unit sphere in R

d is Sd−1 � {x ∈ R
d : ‖x‖ � 1

}
;

elements of Sd−1 are frequently called directions. For a topological space S, P(S)

stands for the collection of all Borel probability measures on S.

2 Desirable properties of angular depth functions

We begin by discussing the main properties that an angular depth function should
enjoy in a classification framework. A depth D on a topological space S is, formally
speaking, a bounded mapping1

D : S × P(S) → [0, ∞) (1)

that to a point x ∈ S and a probability measure P ∈ P(S) assigns D(x; P), the depth
of x with respect to (w.r.t.) P. The depth is intended to quantify how much “inner”, or

1 Some depth functions, e.g., the angular Mahalanobis depth treated in Sect. 3.1 below, are not defined for
all P ∈ P(S), but rather only for x ∈ S and P in a subsetD ⊆ P(S) of probability measures. We slightly
abuse the notation and write (1) for simplicity.
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630 S. Nagy et al.

“centrally located” the point x is w.r.t. the distribution P. The set of points maximizing
the depth function x 
→ D(x ; P) is called the set of depth medians. As one moves
away from the median set, the depth w.r.t. P is supposed to decrease until it reaches
values close to zero when x is taken far from the main bulk of the mass of P. Any
depth D is naturally characterized by the collection of all its central regions

Dα(P) � {x ∈ S : D(x ; P) ≥ α} with α ≥ 0, for any P ∈ P(S). (2)

The shape of the regions Dα(P) should reflect the geometry of the distribution P. We
are naturally concerned by describing the shapes and the structural properties of these
central regions, since they play a crucial role in depth-based classification.

2.1 Depth functions in linear spacesRd

The methodology of statistical depth functions in linear spaces Rd has been studied
thoroughly by Zuo and Serfling (2000a). According to Zuo and Serfling (2000a), a
(statistical) depth D in the linear space S � R

d is a function (1) that fulfills the
following properties for all P ∈ P(Rd

)
:

(L1) Affine invariance: D(x ; P) � D(Ax + b; PAX+b) for all x ∈ R
d , A ∈ R

d×d

non-singular, and b ∈ R
d , where PAX+b ∈ P(Rd

)
stands for the distribution of

the transformed random vector AX + b with X ∼ P;
(L2) Maximality at center: If μ ∈ R

d is a “center” of P then

D(μ; P) � sup
x∈Rd

D(x ; P); (3)

(L3) Monotonicity along rays: D(x ; P) ≤ D(μ + α(x − μ); P) holds for all x ∈ R
d

and α ∈ [0, 1], where μ ∈ R
d is any point that satisfies (3);

(L4) Vanishing at infinity: lim‖x‖→∞ D(x ; P) � 0.

The notion of a “center”μ in condition (L2) is ambiguous. It ismeant to be applied to
a specified notion of symmetry of P, with μ being the unique center of that symmetry.
Often, P is considered to be symmetric aroundμ if each closed halfspace that contains
μ carries P-mass at least 1/2, which corresponds to the so-called halfspace symmetry
ofP, the arguably weakest notion of symmetry considered inP(Rd

)
. Indeed, as shown

in Zuo and Serfling (2000b), many other familiar notions of multivariate symmetry
(spherical, elliptical, central, or angular) imply halfspace symmetry of a measure in
R
d .
In addition to conditions (L1)–(L4), several other desiderata of depths have been

proposed. For classification, interesting are those concerning the shapes of the central
regions (2). In Serfling (2006), the following conditions can be found.

(L5) Upper semi-continuity: D(·; P) : R
d → [0, ∞) : x 
→ D(x ; P) is upper

semi-continuous;
(L6) Quasi-concavity: The central regions (2) are convex for all α ≥ 0.
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For the central regions Dα(P), condition (L5) guarantees that each set Dα(P) is
closed inRd , which togetherwith the boundedness condition from (L4) implies that the
central regions (2) must be compact sets for all α > 0. The additional condition (L6)
refines (L3). In (L3), we require that each straight line segment between a maximizer
μ ∈ R

d of D(·; P) and x ∈ R
d lies inside the central region Dα(P) with α � D(x ; P).

That property is called the star convexity of the central regions aroundμ. The stronger
convexity condition (L6) refines this and requires that for any two points x , y ∈ Dα(P)
the whole line segment between x and y is contained in Dα(P), for any α ≥ 0.

A prototypical depth function in R
d that satisfies all conditions (L1)–(L6) is the

Tukey’s halfspace depth (Tukey 1975; Donoho and Gasko 1992), defined for x ∈ R
d

and P ∈ P(Rd
)
by

hD(x ; P) � inf
u∈Sd−1

P(Hx , u), (4)

where Hx , u � {
y ∈ R

d : 〈y, u〉 ≥ 〈x , u〉} is a closed halfspace whose boundary
hyperplane passes through x with inner normal u. An angular version of hD will be
presented and studied in Sect. 3.4 below.

2.2 Angular depth functions in Sd−1

In the setup of directional data, we design depths on the unit sphere S
d−1 w.r.t. a

distribution P ∈ P(Sd−1
)
. An angular (or directional) (statistical) depth function

aD should thus naturally be a bounded function

aD : Sd−1 × P
(
S
d−1
)

→ [0, ∞) (5)

that fulfills the following properties for all P ∈ P(Sd−1
)
:

(D1) Rotational invariance: aD(x ; P) � aD(Ox ; POX ) for all x ∈ S
d−1 and any

orthogonalmatrixO ∈ R
d×d ,where POX ∈ P(Sd−1

)
stands for the distribution

of the transformed random vector OX with X ∼ P;
(D2) Maximality at center:

aD(μ; P) � sup
x∈Sd−1

aD(x ; P), (6)

for any P with “center” at μ ∈ S
d−1;

(D3) Monotonicity along great circles:

aD(x ; P) ≤ aD((μ + α(x − μ))/‖μ + α(x − μ)‖; P) (7)

holds for all x ∈ S
d−1 \ {−μ} and α ∈ [0, 1], where μ ∈ S

d−1 is any point that
satisfies (6);

(D4) Minimality at the anti-median: aD(−μ; P) � inf x∈Sd−1 aD(x ; P), for any μ ∈
S
d−1 that satisfies (6).
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Conditions (D1)–(D4) are direct translations of the classical requirements (L1)–(L4)
from R

d to S
d−1. Indeed, since no sensible notion of an affine transform exists in

S
d−1, a natural family replacing the set of affine maps in (L1) is the set of orthogonal

transforms in the ambient space Rd , that leave the unit sphere intact. Condition (D3)
interprets straight lines in R

d as geodesics, which are the shortest curves joining any
couple of points. The geodesics in Sd−1 are the great circles passing through pairs of
directions; naturally, the expression (μ + α(x − μ))/‖μ + α(x − μ)‖ on the right hand
side of (7) encodes the points of the shortest arc betweenμ and x �� −μ parameterized
by α ∈ [0, 1]. The case x � −μ is excluded in (D3), because there are infinitely many
great circles joining μ and −μ. The latter situation is therefore specifically treated
in (D4), which can be seen as an analog of the vanishing property (L4) from R

d .
Indeed, interpreting the meridians of great circles joining μwith−μ as “straight lines
centered at μ” in Sd−1, the antipodal point −μ plays the role of all “points at infinity”
in Sd−1.

The vague notion of a “center” from (D2) is the most difficult to translate to Sd−1. A
simple solution is to consider only rotationally symmetric distributions2 in Sd−1 (Ley
and Verdebout 2017), and to declare (D2) to be desired only for μ being (one of the
two antipodally symmetric) directions of rotational symmetry of P ∈ P(Sd−1

)
. There

are two issues to be addressed when applying (D2) with this definition of a center:

• The center of rotational symmetry is never unique. For example, whenever O fixes
μ, it fixes also its antipodal direction −μ ∈ S

d−1.
• The uniform distribution on S

d−1 is rotationally symmetric around each direction.

The first problem may be resolved by defining the “center” in (D2) to be exactly one
of the points {μ, −μ}. Its antipodal point is then used in (D4). The second problem
with the uniformly distributed random variable U ∼ PU ∈ P(Sd−1

)
on S

d−1 is of a
more fundamental nature. The rotational invariance (D1) immediately gives that for
any aD satisfying (D1), aD(·; PU ) must be a constant on Sd−1, and thus no ordering of
points is possible. This is, however, understandable since the symmetry of PU makes
it impossible to distinguish points of Sd−1 w.r.t. their location; see also our Theorem 1
below.

We now consider analogues of conditions (L5) and (L6) in S
d−1. The upper semi-

continuity from (L5) is defined in any topological space, and in particular, it is simple
to state also in S

d−1. We say that a function g : Sd−1 → R is upper semi-continuous
if

lim supxn→x g(xn) ≤ g(x) for all x ∈ S
d−1

for any sequence {xn}∞n�1 ⊂ S
d−1 that converges to x ∈ S

d−1. A set A ⊆ S
d−1 is

called spherical convex (see, e.g., Besau and Werner (2016)) if its radial extension
defined as

rad(A) �
{
λ a ∈ R

d : a ∈ A and λ ≥ 0
}

⊆ R
d (8)

2 Recall that a distribution P ∈ P
(
S
d−1
)
is called rotationally symmetric around a direction μ ∈ S

d−1 if

X ∼ P has the same distribution as OX for any orthogonal matrix O ∈ R
d×d that fixes μ, that is Oμ � μ.
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is convex in R
d . Observe that if a spherical convex set A is not contained in a closed

hemisphere in S
d−1, necessarily A � S

d−1. This particular property of spherical
convexity will be important later in our discussion.

We are ready to state the directional versions of conditions (L5) and (L6):

(D5) Upper semi-continuity: aD(·; P) : Sd−1 → [0, ∞) : x 
→ aD(x ; P) is upper
semi-continuous;

(D6) Quasi-concavity: The central regions (2) are spherical convex for all α ≥ 0.

As in the linear case, condition (D5) guarantees that the central regions (2) for depth
aD are closed in Sd−1. Since Sd−1 is a bounded space, it guarantees that a directional
median μ ∈ S

d−1 of P induced by aD in (6) always exists, since the supremum must
be attained. Condition (D6) is stronger than (D3) in the same sense as inRd .While (D3)
can be seen as a spherical version of star convexity of the central regions of aD(·; P),
condition (D6) imposes spherical convexity of the central regions.

We already argued that for the very special uniform distribution on S
d−1, any

sensible angular depth aD must take a constant value over Sd−1. Our first observation
is that, as a consequence of our conditions, amuch larger set of directional distributions
must possess angular depth that is constant over Sd−1. The proof of the following
theorem, as well as the proofs of all our other theoretical results, are deferred to
Appendix B.1.

Theorem1 Suppose that aD is an angular depth (5) that satisfies (D1), (D4), and (D5).
Let P ∈ P(Sd−1

)
be centrally symmetric, meaning that X ∼ P has the same distri-

bution as −X . Then aD(·; P) must be constant over Sd−1.

Observe that the condition of central symmetry in Theorem 1 is a weak one. As
proved by Rousseeuw and Struyf (2004, Theorem 2), P ∈ P(Sd−1

)
is centrally

symmetric as in Theorem 1 if and only if it is halfspace symmetric around the origin
0 ∈ R

d . Equivalently, P is centrally symmetric if and only if each closed hemisphere
of Sd−1 is of P-mass at least 1/2. For an additional discussion on these symmetry
considerations see Zuo and Serfling (2000b) and Nagy et al. (2019, Sect. 4.2). Another
direct consequence of our conditions follows for rotationally symmetric distributions.
Its proof is in Appendix B.2.

Theorem 2 Let aD be an angular depth (5) that satisfies (D1), and let P ∈ P(Sd−1
)

be rotationally symmetric around μ ∈ S
d−1. Then aD(·; P) is a function of the inner

product 〈·, μ〉 only, i.e. there exists a function ξ : [−1, 1] → [0, ∞) such that
aD(x ; P) � ξ(〈x , μ〉) for all x ∈ S

d−1. If, in addition, also (D3) is true, then ξ can
be taken monotone on [−1, 1]; under the additional assumption (D5), the function ξ

is upper semi-continuous on [−1, 1].

Theorem2gives that forP rotationally symmetric, also the angular depth contours of
anyaD that verifies (D1)must be invariantw.r.t. rotations fixing the center of symmetry
μ of P. If also (D3) is true, all central regions (2) must be spherical caps orthogonal
to μ.3 Note, however, that Theorem 2 does not claim that only rotationally symmetric

3 A spherical cap S is defined as an intersection of Sd−1 with a (closed) halfspace H in R
d . The cap S is

said to be orthogonal to the direction u ∈ S
d−1 of the unit normal of H.
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measures can have rotationally symmetric angular depth contours. An example is the
angular Mahalanobis depth that will be discussed in Sect. 3.1.

At this point, it is also important to realize that even in the situation when P is
rotationally symmetric (and thus all central regions aDα(P) are spherical caps by The-
orem 2), the spherical convexity (D6) does not have to be satisfied for aD. Remarkably,
spherical caps of the form

{
x ∈ S

d−1 : 〈x , μ〉 ≥ β
}
are spherical convex sets only for

β ≥ 0; the only spherical convex set larger than a closed hemisphere is Sd−1 itself.
We formalize our observation in the following result proved in Appendix B.3.

Theorem 3 Suppose that aD is an angular depth (5) that satisfies (D6). Then for
any P ∈ P(Sd−1

)
there must exist a direction u ∈ S

d−1 such that all points in the
open hemisphere S � {x ∈ S

d−1 : 〈x , u〉 < 0
}
attain the same depth, i.e. there exist

u ∈ S
d−1 and c ≥ 0 such that aD(x ; P) � c for all x ∈ S

d−1 such that 〈x , u〉 < 0. If,
in addition, the depth aD satisfies (D4), then c � infx∈Sd−1 aD(x ; P).

We see that contrary to the linear case where the quasi-concavity assumption (L6)
is rather standard, for directional data the requirement (D6) of convexity of central
regions is questionable. As we will see in Sect. 3, the only common angular depth that
satisfies condition (D6) in full is the angular halfspace depth.

While full-blown quasi-concavity of angular depth functions does not appear to be
completely desirable, it is certainly beneficial if the contours of the angular depth reflect
the geometric properties of the distribution P ∈ P(Sd−1

)
. In the linear space Rd , the

affine invariance (L1) tacitly imposes this requirement. Its directional analogue (D1),
however, does not allow for transformations other than orthogonal, which would in
R
d correspond to mere rotation invariance of a depth — a condition that is known to

be too weak for many practical applications. Several procedures have therefore been
proposed tomake statistical depths inRd satisfy the stronger affine invariance (L1); we
refer to Serfling (2010). The desire for an angular depth to reflect the shape properties
and the geometry of the distribution P ∈ P(Sd−1

)
brings about our final requirement

on the contours of an angular depth function. It can be phrased as a requirement of
non-rigidity of the central regions (2) of aD.

(D7) Non-rigidity of central regions: There exists a measure P ∈ P(Sd−1
)
such that

for some α > 0 the central region aDα(P) from (2) is not a spherical cap.

3 Angular depth functions and their properties

We now revise several angular depth functions known from the literature4 (i) the
Mahalanobis depth (Ley et al. 2014); (ii) the angular distance-based depths (Pandolfo
et al. 2018) including the arc distance depth, the cosine distance depth, and the chord
distance depth; (iii) the angular simplicial depth (Liu and Singh 1992); and (iv) the
angular halfspace depth (Small 1987). Our main interest is in the study of the desired
properties (D1)–(D7) from Sect. 2. A summary of our main results is in Table 1.

4 The very recently introduced spatial depth for directional data from Konen (2022) is not discussed here;
for a comprehensive treatment of that depth we refer to the PhD thesis Konen (2022).
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Table 1 A table of results summarizing which of the theoretical properties (D1)–(D7) are satisfied (indicated
by �) or not (indicated by ×) for the considered angular depths

Sec. Angular Depth Properties

(D1) (D2) (D3) (D4) (D5) (D6) (D7)

3.1 Angular

Mahalanobis1
aMD � � � � � × ×

3.2.1 Cosine
distance

aDcos � � � � � × ×

3.2.2 Arc distance aDarc � × × � � × �
3.2.3 Chord aDchord � × × × � × �
3.3 Angular

simplicial
asD � × × × � × �

3.4 Angular
halfspace

ahD � � � � � � �

[1] Defined only if the Fréchet median of X ∼ P is unique

3.1 Angular Mahalanobis depth

Arguably one of the simplest depths for directional data is the angular Mahalanobis
depth from Ley et al. (2014). It depends crucially on the notion of a median direction,
which is typically taken to be the Fréchet median (Fisher 1985) defined as (any)
direction μ ∈ S

d−1 that minimizes the objective function

ϕ : Sd−1 → [0, π ] : x 
→
∫

Sd−1
arccos(〈x , y〉) d P(y). (9)

The value arccos(〈x , y〉) is the arc length distance between x and y on Sd−1. Thus, in
analogy with the median fromR, we search forμminimizing the expected distance of
x from X ∼ P . The objective function (9) does not have to beminimized at a singleton;
in case there are multiple points of minima of (9), the whole set of thoseμ ∈ S

d−1 that
minimize (9) is called the set of Fréchet medians of P. One situation when the Fréchet
median is not unique is the casewhen the distribution of X ∼ P ∈ P(Sd−1

)
is centrally

(sometimes also called antipodally) symmetric, i.e.X has the same distribution as−X ,
in which case the set of Fréchet medians is antipodally symmetric (for each Fréchet
median μ ∈ S

d−1 of P is also −μ a Fréchet median of P).
The angularMahalanobis depth is definedonly for P ∈ P(Sd−1

)
that admit a unique

Fréchet median μ ∈ S
d−1 (Ley et al. (2014), Assumption A). For such distributions

P ∈ P(Sd−1
)
, the angular Mahalanobis depth of x ∈ S

d−1 w.r.t. P is

aMD(x ; P) � P(〈X , μ〉 ≤ 〈x , μ〉).

Here, X ∼ P is a random vector distributed as P that is defined on a probability space
(�, F , P). Clearly, the angular Mahalanobis depth depends only on the angle of x and
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μ, or equivalently on the quantity 〈x , μ〉. Its central regions (2) are thus always of the
form

aMDα(P) �
{
x ∈ S

d−1 : 〈x , μ〉 ≥ cα

}
, (10)

where cα ∈ [−1, 1] is the α-quantile of the univariate distribution of 〈X , μ〉, with
X ∼ P .

The Fréchet median of P is certainly rotationally equivariant. Thus, as remarked
already in Ley et al. (2014), under the condition that P ∈ P(Sd−1

)
possesses a

unique Fréchet median, the angular Mahalanobis depth trivially satisfies all condi-
tions (D1)–(D5). It does not satisfy the directional quasi-concavity condition (D6)
because of Theorem 3. The angular Mahalanobis depth is well suited especially for
rotationally symmetric distributions with unique Fréchet median, particularly due to
the very rigid form of its central regions (10). That collection of distributions con-
tains some of the most important families, such as the Fisher-von Mises-Langevin
distributions (Ley and Verdebout (2017), Sect. 2.3.1), for which the Fréchet (and thus
also aMD-induced) median coincides with their location parameter. Nevertheless, a
downside of aMD is that it does not satisfy condition (D7).

3.2 Angular distance-based depths

We now proceed to elaborate on the properties of the class of distance-based angular
depths (Pandolfo et al. 2018), based on the seminal work of Liu and Singh (1992). For
δ : [−1, 1] → [0, ∞) bounded and non-increasing, a general depth of this type is, for
x ∈ S

d−1 and P ∈ P(Sd−1
)
, given by

aDδ(x ; P) � δ(−1) − E δ(〈x , X〉), (11)

where X ∼ P is a random variable distributed as P. Note that because 〈x , X〉 ∈ [−1,
1] and δ is bounded, these depths are well defined for any P ∈ P(Sd−1

)
. It is also

easy to see that for any O ∈ R
d×d orthogonal we have

〈Ox , Oy〉 � xTOTOy � xTO−1Oy � xTy � 〈x , y〉 for all x , y ∈ S
d−1,

meaning that each distance-based depth trivially satisfies condition (D1). Provided
that δ is continuous on [−1, 1], it is easy to see that using the Lebesgue dominated
convergence theorem (Dudley (2002), Theorem 4.3.5) for the function

ϕδ : S
d−1 → [0, ∞) : x 
→ E δ(〈x , X〉) �

∫

Sd−1
δ(〈x , y〉) d P(y),

we obtain that as xn → x in S
d−1, we have that δ(−1) − aDδ(xn ; P) � ϕδ(xn) →

ϕδ(x) � δ(−1) − aDδ(x ; P) as n → ∞. Thus, for any δ continuous, condition (D5)
is satisfied, even with continuity in x ∈ S

d−1 for any P ∈ P(Sd−1
)
.
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Three different choices of the distance function δ are considered in Pandolfo et al.
(2018):

δcos(t) � 1 − t (cosine distance) ,

δarc(t) � arccos(t) (arc distance) ,

δchord (t) � √2 (1 − t) (chord distance) .

The function δcos leads to the so-called cosine distance depth, δarc to the arc distance
depth, and δchord to the chord distance depth. Following Pandolfo et al. (2018), we
denote the cosine distance depth by aDcos , the arc distance depth by aDarc, and the
chord distance depth by aDchord . We elaborate on the properties of these depths case
by case.

3.2.1 Cosine distance depth

The cosine distance depth of x ∈ S
d−1 simplifies to

aDcos(x ; P) � 2 − E (1 − 〈x , X〉) � 1 + 〈x , E X〉.

This depth can be seen as a variant of the angular Mahalanobis depth discussed in
Sect. 3.1. In particular, just asaMD, alsoaDcos depends only on the angle of E X ∈ R

d

and x represented via the inner product 〈x , E X〉, and thus all its central regions are
spherical caps oriented in the direction of E X , given that E X �� 0 ∈ R

d . A distinctive
feature of this depth is that it may happen that E X � 0 ∈ R

d , which is the only case
when aDcos is constant on S

d−1. Thus, strictly speaking, the cosine distance depth
satisfies all (D1)–(D5) (with condition (D5) satisfied even in the sense of continuity
rather than semi-continuity), but the depth itself is based solely on the expectation E X
and shares all the shortcomings of aMD. Of course, aDcos fails to obey both (D6)
and (D7).

3.2.2 Arc distance depth

Already for d � 2, the arc distance depth

aDarc(x ; P) � π − E arccos(〈x , X〉)

fails to be unimodal, in the sense that the set of (local, or global) maxima of the depth
may fail to form a connected subset of the unit circle S1. In fact, a stronger statement
can be shown. In the proof of the following theorem, given in Appendix B.4, we derive
an explicit expression for the arc distance depth of an arbitrary distribution P ∈ P(S1).
Theorem 4 There exists a distribution P ∈ P(S1) such that the depth aDarc(·; P)

attains infinitely many local extremes on S
1.

Our Theorem 4 immediately shows that conditions (D3) and (D6) cannot be valid
for aDarc. We now illustrate the statement of Theorem 4 in a concrete example.
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Example 1 We first define distribution Q ∈ P(R2
)
that is supported in two parallel

straight lines L+ � {
(x , 1) ∈ R

2 : x ∈ R
}
and L− � {

(x , −1) ∈ R
2 : x ∈ R

}
. We

fix two constants: K > 0 and a positive integer m ≥ 1. Inside L+, the measure Q
is uniform on the interval A � [−K , K ] × {1}, with Q(A) � 1/2. Inside L−, we
take the finite set of m points in the interval [−K , K ] × {−1} given by the sequence{
y j
}m
j�1. We take y j � (−K −
/2+ j 
, −1) ∈ L−, where 
 � 2 K/m is the distance

between two consecutive points of the sequence, putting Q({y j }) � 1/(2m) for each
j � 1, . . . , m. The circular distribution P ∈ P(S1) is defined as the image ofQ under
the projection ξ : R2\{0} → S

1 : x 
→ x/‖x‖. According to the detailed discussion
given in Appendix B.5, the arc distance depth of P possesses at leastm local extremes
in S1.

To illustrate this result, we took K � 5 and m � 10 in Fig. 1. We sampled
n � 10 000 independent random points from P ∈ P(S1) and computed the sample arc
distance depth of all the points in a dense grid in S1. The resulting sample arc distance
depth is displayed in the bottom panel of Fig. 1. As we see, the depth exhibits a rather
wild behavior. On both the upper and lower half-circle, it possesses m � 10 clearly
distinguished local extremes (local maxima in the upper half-circle, and local minima
in the lower half-circle). In between these local extremes, the depth changes drastically.
Denote by F+ (F−) the (one-dimensional) distribution function of Q restricted to the
line L+ (L−). As shown in Appendix B.5, the local extremes correspond exactly to
points where the two distribution functions F+ and F− intersect (upper panel of Fig. 1).
This corroborates empirically our finding from Theorem 4.

Note that the fact that the measure P has atoms is not important in our example;
instead of the m atoms on the lower half-circle, one could equally well take for Q− a
mixture of m Gaussian distributions with means y j , j � 1, . . . , m, respectively, and
variances that are chosen small enough. In that case, the resulting distribution P can
be taken smooth w.r.t. the Lebesgue measure on the unit circle, yet its arc distance
depth will be quite similar to that in Fig. 1. For comparison, in Fig. 2 we display also
the chord distance depth, and the cosine distance depth of the same dataset. While the
chord distance depth does possess several local extremes, the cosine distance depth has
a single (both local and global) maximum at the sample version of the directional mean
E X/‖E X‖ of the dataset. That is in accordance with our analysis from Sect. 3.2.1.

It is interesting to observe that the set of arc distance depth medians is exactly the
set of all Fréchet medians obtained by minimizing (9). Indeed, the objective function
in (9) is directly ϕ(x) � E arccos(〈x , X〉) � π − aDarc(x ; P). Condition (D2)
therefore translates into a natural question whether any distribution that is rotationally
symmetric around μ ∈ S

d−1 must contain μ in the set of its Fréchet medians. In the
following example, we show that already for d � 2 this is not necessarily true.

Example 2 Take P ∈ P(S1) supported in four atoms

P({(cos(η), sin(η))}) � p/2,

P({(cos(π − η), sin(π − η))}) � p/2,

P({(cos(−ε), sin(−ε))}) � (1 − p)/2,

P({(cos(−π + ε), sin(π + ε))}) � (1 − p)/2,
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Fig. 1 Arc distance depth and Example 1. Upper panel: The empirical versions of the distribution functions
F+ (black line) and F− (red line) of the components of Q, respectively, with K � 5 and m � 10. Lower
panel: The sample arc distance depth of all points x(θ ) � (cos(θ ), sin(θ )) of the unit circle S1 as a function
of their angle θ ∈ [−π , π ). As can be seen, the arc distance depth behaves quite wildly, with several local
extremes. The sample points are indicated as the small points at the bottom of the lower panel (color figure
online)

for some p ∈ (0, 1) and ε, η ∈ [0, π/2]. Any such distribution is rotation-
ally symmetric around the axis given by μ � (0, 1) ∈ S

1. By Theorem 2, we
thus know that aDcos(·; P) is also symmetric around the axis given by μ. Take
x(θ ) � (cos(θ ), sin(θ )) ∈ S

1 to be a point given by its angle θ ∈ [−π/2, π/2].
It is easy to evaluate the objective function (9) at x(θ ) directly. The function takes the
form

ϕ(x(θ )) � p

2
(ρ(θ − η) + ρ(π − θ − η)) +

1 − p

2
(ρ(θ + ε) + ρ(π + θ − ε)),

where ρ(t) � min{|t |, 2π − |t |} is the length of the shorter arc from the point x(t) to
x(0) � (1, 0) ∈ S

1. Direct computation gives that for, e.g., p � 7/10, η � π/5 and
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Fig. 2 The chord distance depth (upper panel) and the cosine distance depth (lower panel) for the dataset
from Example 1. For a description see the caption of Fig. 1. For the chord distance depth we observe
several local extremes, similarly as in Fig. 3 below. For the cosine distance depth we observe only a single
maximum at the angle corresponding to the circular sample mean of the dataset

ε � π/4 we get

π − aDarc(x(θ ); P) � ϕ(x(θ )) �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

113π
200 for θ ∈ [−π/2, −π/4),

1
50 (15θ + 32π ) for θ ∈ [−π/4, −π/5),

1
10 (5π − 4θ ) for θ ∈ [−π/5, π/5),

3
50 (5θ + 6π ) for θ ∈ [π/5, π/4),

87π
200 for θ ∈ [π/4, π/2].
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In particular, it is directly seen that the set of Fréchet medians of P is exactly the
pair of points {x(η), x(π/2 − η)}, and this set contains neither μ � x(π/2), nor
−μ � x(−π/2). Consequently, condition (D2) is not in general satisfied for the arc
distance depth.

The arc distance depth verifies (D4) thanks to the following more general result. It
is proved in Appendix B.6.

Theorem 5 Consider a distance-based depth aDδ from (11) with a function δ that
satisfies for some constant c > 0 the condition

δ(−t) � c − δ(t) for all t ∈ [−1, 1].

Then for all P ∈ P(Sd−1
)
and x ∈ S

d−1 we have that

aDδ(x ; P) + aDδ(−x ; P) � 2 δ(−1) − c. (12)

In particular, condition (D4) is satisfied for aDδ .

Applying Theorem 5 to the arc distance depth with c � π we obtain

aDarc(x ; P) + aDarc(−x ; P) � π for all x ∈ S
d−1 and P ∈ P

(
S
d−1
)
.

Note, however, that this is a much stronger condition than (D4). It is in fact hardly
desirable for an angular depth that (12) is true; it says that knowing the angular depth
on any hemisphere of Sd−1, we can determine the exact depth for the remaining points
of Sd−1. This is a property not unlike the problem with the constancy of the angular
depths satisfying condition (D6) at a hemisphere, as discussed in Theorem 3.

3.2.3 Chord distance depth

Consider again the measure P ∈ P(S1) from Example 2 and apply aDchord . A
computation completely analogous to that performed in Example 2 shows that the
chord distance depth median set of P is given by {x(η), x(π/2 − η)}, just as for the
arc distance depth. At the same time, the antipodal points of the median set do not
minimize the chord distance depth of P; the unique minimizer of aDchord (·; P) is,
in fact, the direction −μ � (0, −1) ∈ S

1. Thus, the chord distance depth verifies
neither (D2) nor (D4).

Further, we show that aDchord and its central regions (2) violate also (D3) and (D6).
Even worse, already for quite simple distributions, the corresponding chord distance
depth median set does not have to be a connected set in S

d−1. To see this, consider a
dataset of four points

x1 � 1

7
(6, −2, 3), x2 � 1√

19
(3, 1, 3),
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x3 � 1

7
(−6, −2, 3), and x4 � 1√

19
(−3, 1, 3).

This dataset is contained in the northern hemisphere S
2
+. A direct calculation gives

the exact expression for the chord distance depth of each point x ∈ S
2
+, w.r.t. the

atomic measure P ∈ P(S2)which assigns mass 1/4 to each of the four points xi . This
expression is maximized at two distinct points in S

2
+, located at

y1 ≈ (0.653, 0.168, 0.739) and y2 ≈ (−0.653, 0.168, 0.739).

We visualize the present setup using the projection

� : S2+ → H : x � (x1, x2, x3) 
→ x/x3 (13)

of the northern hemisphere of S
2 into its tangent plane H �{

(x1, x2, 1) ∈ R
3 : x1, x2 ∈ R

}
. The map (13) is a special case of the gnomonic

projection � described in Appendix A. It is not difficult to see that (13) maps
great circles in S

2 onto straight lines in H. In particular, � preserves convexity and
connectedness of sets. Several chord distance depth contours and the two different
median points are displayed in Fig. 3. From the figure, we see that the central regions
of the chord distance depth have to be neither convex nor connected. Also, several
distinct median points can occur, even for very simple datasets. Consequently, both
conditions (D3) and (D6) are violated for the chord distance depth.

Fig. 3 Several contours of the chord distance depth aDchord (·; P) for P the uniform distribution in the four
atoms displayed as black points. In the figure, the whole setup was projected using (13) from the open
northern hemisphere of S2 into the plane H tangent to S

2 at the northern pole (0, 0, 1) ∈ S
2; for details

see Appendix A.2. The two median points of the chord distance depth are displayed in orange. As can be
seen, for the chord distance depth, the central regions are neither spherical (star) convex nor connected, in
general (color figure online)

123



Theory of angular depth for classification... 643

3.3 Angular simplicial depth

The angular simplicial depth of x ∈ S
d−1 w.r.t. P ∈ P(Sd−1

)
is defined as

asD(x ; P) � P(x ∈ sconv({X1, . . . , Xd})), (14)

where X1, . . . , Xd are independent random variables distributed as P defined on
(�, F , P), and sconv(A) is the spherical closed convex hull of the set A ⊆ S

d−1

defined as

sconv(A) � S
d−1 ∩ conv(rad(A))

for rad(A) the radial extension of the set A defined in (8). In words, sconv(A) is the
intersection of Sd−1 with the closed convex hull of the positive cone of A. In typical
situations, e.g. if all the variables X1, . . . , Xd are contained in a hemisphere, the set
sconv({X1, . . . , Xd}) constitutes a spherical simplex, e.g. the shorter arc between X1
and X2 for d � 2, or a spherical triangle determined by X1, X2, X3 for d � 3.
This also motivates the name angular simplicial depth, in analogy with the simplicial
depth in linear spaces (Liu 1990). This parallel can be used to show that just like
the simplicial depth, also its angular variant satisfies (D5). The proof can be found
in Appendix B.7. It uses the fact that (D1) is true for asD, which has been observed
already by Liu and Singh (1992).

Theorem 6 The function S
d−1 → [0, 1] : x 
→ asD(x ; P) is upper semi-continuous

for any P ∈ P(Sd−1
)
.

It is, however, important to realize that in (14) it can happen that all X1, . . . ,
Xd ∈ S

d−1 lie inside a hyperplane passing through the origin in R
d , e.g. in a single

great circle of Sd−1. That occurs if there are hyperplanesH passing through the origin
such that H ∩S

d−1 is of positive P-mass. In those situations, the spherical convex hull
of X1, . . . , Xd is a subset of H ∩S

d−1, which bears the interpretation of a degenerate
spherical simplex. In the extreme case when all X j , j � 1, . . . , d, lie in a single line
in direction u ∈ S

d−1, that is X j ∈ {u, −u} for all j � 1, . . . , d and not all X j

are the same direction, the set sconv({X1, . . . , Xd}) reduces to only the two-point set
{u, −u}.We use this simple observation to construct our next example. It demonstrates
that even for rotationally symmetric distributions, the angular simplicial depth may
exhibit undesirable behavior.

Example 3 Consider the uniform distribution P ∈ P(Sd−1
)

that is sup-
ported on the equator of the unit sphere S

d−1
0 � S

d−1 ∩ H0, where H0 �{
u ∈ S

d−1 : 〈u, (0, . . . , 0, 1)〉 � 0
}
. For d � 2, this amounts to the uniform dis-

tribution on the pair of points (1, 0), (−1, 0) ∈ S
1. For d � 3 we have

the uniform probability measure on the equator of S
2, which is the great circle{

(u1, u2, 0) ∈ S
2 : u21 + u22 � 1

}
. Since any simplex formed by independent random

points X1, . . . , Xd sampled from P lies in the hyperplane H0, we have that also
sconv({X1, . . . , Xd}) ⊂ H0 almost surely. Thus, the only points in S

d−1 that attain
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positive angular simplicial depth are the points on the equator Sd−1
0 . On the other

hand, the distribution P is clearly rotationally symmetric around the axis given byμ �
(0, . . . , 0, 1) ∈ S

d−1, yet since μ /∈ S
d−1
0 , we have asD(μ; P) � asD(−μ; P) � 0,

and condition (D2) is not satisfied. In addition, the rotational invariance of the simpli-
cial depth (D1) applied to the (d − 2)-sphere Sd−1

0 gives that the value of the angular
simplicial depth ofP on Sd−1

0 is a constant denoted by cd > 0. But, Sd−1
0 is antipodally

symmetric, meaning that neither condition (D3) nor (D4) can be satisfied for asD in
general. To see that, it is enough to take any geodesic joining a point x0 ∈ S

d−1
0 with

its antipodal reflection x1 � −x0 ∈ S
d−1
0 that does not lie entirely inside S

d−1
0 . At

the endpoints x0, x1 ∈ S
d−1
0 we have asD(x0; P) � asD(x1; P) � cd > 0, while

asD(x ; P) � 0 for each x on the rest of the geodesic.

For more contrived examples of distributions P in S
d−1 that make asD violate

conditions (D2), (D3), or (D6), one could design P to lie in a hemisphere and use
the gnomonic projection from Appendix A.2 to transfer asD from S

d−1 to the usual
simplicial depth in R

d−1. Several examples of distributions in R
d−1 for which the

simplicial depth violates (L2), (L3), or (L6) are given in Nagy (2023). All these can
be naturally used also as counterexamples for asD.

3.4 Angular halfspace depth

Expanding the classical Tukey’s halfspace depth hD (Tukey 1975; Donoho and Gasko
1992) from (4) to directional data, Small (1987) defined the angular halfspace depth
of x ∈ S

d−1 w.r.t. P ∈ P(Sd−1
)
to be

ahD(x ; P) � inf
H∈H0

{P(H ) : x ∈ H}, (15)

where H0 � {H0, u : u ∈ S
d−1
}
is the set of those closed halfspaces

H0, u �
{
y ∈ R

d : 〈y, u〉 ≥ 0
}

in R
d that contain the origin 0 ∈ R

d on their boundary and possess inner normal
vector u ∈ S

d−1. The angular halfspace depth has been studied in Liu and Singh
(1992), where several of its properties have been discussed.

Since that pioneering work, however, the angular halfspace depth has not received
much attention in the literature, mainly for two reasons: (i) due to the problem of ahD
being constant on a hemisphere of minimal P-mass (Liu and Singh 1992, Proposi-
tion 4.6, see also our Theorem 3), and (ii) because of the perceived high computational
cost of ahD for random samples (Pandolfo et al. 2018). The latter difficulty was
recently fully resolved by making substantial progress on the computational front
(Dyckerhoff and Nagy 2023). The problem with the constancy of ahD on a hemi-
sphere is tightly connected with the quasi-concavity of ahD and our condition (D6);
directly from the definition (15) it is easy to see that the hemisphere of constant ahD
will be (any) open hemisphere with smallest P-mass. The latter drawback can be an
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issue in classification studies. As will be illustrated shortly in Sect. 4, in applications
where each training set belongs to a hemisphere, the angular halfspace depth can be
successfully adopted. If the data does not satisfy this condition, strategies specifically
designed to cope with the problem of constancy of the ahD are required. Possible
approaches will be mentioned in Sect. 5 below, and investigated in a follow-up work
on the practice of depth-based classification of directional data.

The theoretical properties of the angular halfspace depth have been recently studied
in Nagy and Laketa (2023). They can be shown to align closely with the properties of
the standard halfspace depth in linear spaces (Donoho andGasko1992;Rousseeuwand
Ruts 1999). In particular, in Nagy and Laketa (2023) it is proved that ahD satisfies all
conditions (D1)–(D7), including the debatable condition of full quasi-concavity (D6).
This reinforces the idea that the angular halfspace depth is also interesting in the
context of the classification of directional data (at least, provided that the constancy
problem is properly addressed).

4 Supervised classification using angular depths

This section aims at illustrating the main implications of the theoretical results derived
above when the goal is to classify directional data. More specifically, the focus will be
on the desired properties of non-rigidity of central regions (D7), and of quasi-concavity
(D6) entailing spherical convexity of the depth regions. Simulated and real data are
exploited to highlight these implications.

As discussed throughout this paper, a large body of research exists on using statis-
tical depth functions in the supervised classification task. The most frequently used
depth-based tools are the max-depth and the DD-classifiers (Li et al. 2012). As the lat-
ter generalizes the former, we focus on DD-classification, and start by briefly recalling
its use within the directional setting in Sect. 4.1. The performance of DD-classifiers
depends on the particular depth function used. For that reason, Sects. 4.2–4.4 inves-
tigate the classifier performances in terms of misclassification rates when associated
with different angular depth functions. Three main scenarios are investigated. First,
the importance of the desired property (D7) is underlined by considering a case where
the optimal discriminating boundary on the sphere is not a great circle (Sect. 4.2).
Then, the advantages and disadvantages of property (D6) are contrasted in Sects. 4.3
and 4.4. For each scenario, performances of the angular distance-based, the angular
halfspace, and the angular simplicial depths are compared. For the angular simplicial
depth, however, itmust bementioned that severe computational issues hamper its use in
practice (see e.g. the discussion in Pandolfo andD’Ambrosio 2021); its computation is
practically feasible only for training sets with sizes less than 400 observations. Hence,
the results for the angular simplicial depth are provided only for smaller training set
sizes. In addition, the angular Mahalanobis depth is not considered in our simulations
because of its similarity with the angular cosine depth, see Sect. 3.2.1.

In a general classification problem in a measurable space S, we aim to distinguish
between points sampled from one of G ≥ 2 distinct probability measures {Pi }Gi�1 ⊂
P(S). A generic classifier in S can be defined as any function class : S → {1, 2,
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. . . , G}, which associates a point x ∈ S with one of the distributions Pi ∈ P(S) for
i � class(x).

Our depth-based classification results will be benchmarked against the empirical
Bayes classifier assuming data comes from the family of Kent distributions. Assuming
equal priors, the Bayes classifier is generally defined as

classB(x) � argmax
i�1, ...,G

fi (x), (16)

where fi is the density which, by assumption, corresponds to the distribution Pi .
Note that the classifier (16) is optimal as it reaches the minimum achievable average
misclassification rate, if the densities fi are known.

Kent’s family is a special case of theFisher-Binghamdistribution,whose probability
density function on Sd−1 is given by

fFB(x ;μ, κ , A) � 1

a(κ , A)
exp(κ μTx − xTAx), (17)

whereμ ∈ S
d−1 and κ > 0 are the location and concentration parameters, respectively,

A is a d × d symmetric matrix, and a(κ , A) > 0 is a normalizing constant. To obtain
a Kent distribution, the eigenvalues of A are constrained to be λ1 � 0 and λ2 � −λ3,
and we fix |λ2|< κ/2 to have a unimodal distribution.

Kent’s distribution is a quite general distribution on the sphere. Partially, it mimics
the contours of the bivariate normal distribution. Plugging (17) into (16), we obtain
the empirical Bayes classifier under Kent. It takes the form

classBk(x) � argmax
i�1, ...,G

fFB(x ; μ̂i , κ̂i , Âi ),

where μ̂i , κ̂i , Âi are the maximum likelihood estimates of the parameters μ, κ and
A, respectively, obtained from the i-th training set (the set of observations labeled
empirical as belonging to Pi ).

4.1 The DD-classifier

A directional depth-based classifier is a particular classifier that takes the form

classaD(x) � r (aD(x ; P1), aD(x ; P2), . . . , aD(x ; PG )), (18)

where x ∈ S
d−1 is a new observation to be classified, aD(x ; Pi ) is an angular depth

of x w.r.t. the distribution Pi ∈ P(Sd−1
)
, and r : [0, ∞)G → {1, 2, . . . , G} is a

discriminating function in the depth space. In practice, of course, the true distributions
Pi ∈ P(Sd−1

)
are not known, and each Pi is in (18) replaced by the corresponding

empirical measure of a random sample of data labeled as coming from Pi . We denote
such an empirical measure by P̂i ∈ P(Sd−1

)
.
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In (18), the choice of the depth function aD and of the discriminating function r
matters. As for the latter, three functions have been considered in the literature when
the data are directional (Demni et al. 2021; Pandolfo and D’Ambrosio 2021):

• The linear discriminant (LDA);
• The quadratic discriminant (QDA); and
• The k-nearest neighbors discriminant function (KNN).

Each of these methods discriminates between groups directly in the DD-space of
depths, which is a subset of [0, ∞)G , irrespective of the dimension (d − 1) of the
directional data in S

d−1. This gives rise to three groups of DD-classifiers based on
angular depths that we explore in what follows.

As for the choice of the angular depth function in (18), in the literature we find only
classifiers using the collection of distance-based angular depths (Demni et al. 2021;
Pandolfo andD’Ambrosio 2021). The adoption of distance-based angular depths in the
situation when the underlying distributions in S

d−1 fail to be rotationally symmetric
is, however, questionable (Demni and Porzio 2021). For the sake of illustration, in
what follows, directional DD-classifiers are investigated for data in S2 and in the case
of two classes, i.e., G � 2.

4.2 Discriminating boundary is not a great circle: property (D7) matters

The non-rigidity of central regions allows depth functions to consider the geometry of
the data. In particular, if a depth does not satisfy condition (D7), it will perform poorly
whenever the optimal discriminating boundary is not a great circle. To illustrate this,
data were generated according to two specific settings for which the optimal Bayes
discriminating boundary does not simplify to a great circle (Kent and Mardia 2013):

• Setup 1: P1 and P2 from Kent, difference only in location. The two groups come
from two different rotations of the same Kent distribution P0, for which we set
μ0 � (0, 0, 1) ∈ S

2, κ0 � 25, and A0 � diag (0, 8, −8) is a diagonal matrix in
R
3×3. The distribution P1 is obtained by rotating P0 by a rotation matrix R such that

μ1 � Rμ0, with μ1 � (sin(π/6) cos(π/4), sin(π/6) sin(π/4), cos(π/6)) ∈ S
2.

The distribution P2 is obtained by rotating the P0 through the rotation matrix RT.
Random samples from P1 and P2 are depicted in black and in red in Fig. 4 (left
panel).

• Setup 2: P1 and P2 from Kent, difference in location and concentration. Data are
simulated by adopting the same procedure as in Setup 1, using the same rotation
matrix R. However, the second group comes from a rotation (by RT) of a Kent
distribution P0 as in Setup 1 but with concentration κ � 20. A training set from
these distributions is plotted in Fig. 5 (left panel).

Within each setup, 100 training sets of size ntr ∈ {100, 200, 400} were generated
(with each group size given by ntr/2). Then, for each of the 100 training sets, 100
testing sets of size ntest ∈ {50, 100, 200} (ntest/2 per each group) were generated and
classified.

The performance of the classifiers is evaluated in terms of empirical misclassifica-
tion rates, i.e. the proportion of misclassified observations in each replication. For each
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Fig. 4 Section 4.2:Discriminating boundary is not a great circle,Setup 1. Kent distributionswith a difference
in location. A spherical plot of a single training set (left panel) and boxplots of empirical misclassification
rates (right panel). Each boxplot reports the performance of a different classifier: the empirical Bayes
under Kent (EBk), the cosine DD-classifiers (CDD), the chord DD-classifiers (ChDD), the arc distance
DD-classifiers (ADD) and the angular halfspace DD-classifiers (HDD). For each angular depth, three
classification rules were applied in the DD-space (LDA, QDA, andKNN, respectively) (color figure online)

Fig. 5 Section 4.2:Discriminating boundary is not a great circle,Setup 2. Kent distributionswith a difference
in location and in concentration. A spherical plot of a single training set (left panel) and boxplots of empirical
misclassification rates (right panel). Each boxplot reports the performance of a different classifier: the
empirical Bayes under Kent (EBk), the cosine DD-classifiers (CDD), the chord DD-classifiers (ChDD),
the arc distance DD-classifiers (ADD) and the angular halfspace DD-classifiers (HDD). For each angular
depth, three classification rules were applied in the DD-space (LDA, QDA, and KNN, respectively) (color
figure online)

simulation setting and each classifier, the average misclassification rates for different
training set sizes are given in Tables 2 and 3. The distribution of the misclassifica-
tion rates for training set size ntr � 400 is also summarized through the boxplots in
Figs. 4 and 5 (right panels). Given their much higher computational cost, the angular
simplicial DD-classifiers were not included in the comparison with ntr � 400.

Generally speaking, our results highlight the importance of property (D7): the DD-
classifier based on the cosine depth performs relatively poorly when compared to
the others. The same would have happened if the angular Mahalanobis depth had
been considered. We also note that, for ntr � 400, the angular halfspace depth DD-
classifiers associated with LDA and KNN perform quite well and outperform all
distance-based DD-classifiers in both Setups 1 and 2 (Figs. 4 and 5, right panels).
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Table 2 Section 4.2: Discriminating boundary is not a great circle, Setup 1. Kent distributions with a
difference in location. Average misclassification rates for training set sizes ntr ∈ {100, 200, 400} of the
empirical Bayes under Kent (EBk), the cosine DD-classifiers (CDD), the chord DD-classifiers (ChDD), the
arc distance DD-classifiers (ADD), the angular simplicial DD-classifiers (SDD) and the angular halfspace
DD-classifiers (HDD). For each angular depth, three classification rules were applied in the DD-space
(LDA, QDA, and KNN, respectively). Best performance for each training size is highlighted in bold

Training size EBk Separating function CDD ChDD ADD SDD HDD

ntr � 100 0.084 LDA 0.183 0.145 0.154 0.169 0.154

QDA 0.180 0.139 0.147 0.187 0.187

KNN 0.189 0.141 0.150 0.167 0.151

ntr � 200 0.081 LDA 0.181 0.140 0.150 0.134 0.126

QDA 0.179 0.139 0.148 0.178 0.176

KNN 0.182 0.141 0.150 0.121 0.124

ntr � 400 0.084 LDA 0.187 0.141 0.151 — 0.111

QDA 0.185 0.141 0.151 — 0.167

KNN 0.187 0.140 0.153 — 0.110

Table 3 Section 4.2: Discriminating boundary is not a great circle, Setup 2. Kent distributions with a
difference in location and in concentration. Average misclassification rates for training set sizes ntr ∈ {100,
200, 400} of the empirical Bayes under Kent (EBk), the cosine DD-classifiers (CDD), the chord DD-
classifiers (ChDD), the arc distance DD-classifiers (ADD), the angular simplicial DD-classifiers (SDD)
and the angular halfspace DD-classifiers (HDD). For each angular depth, three classification rules were
applied in the DD-space (LDA, QDA, and KNN, respectively). Best performance for each training size is
highlighted in bold

Training size EBk Separating function CDD ChDD ADD SDD HDD

ntr � 100 0.070 LDA 0.132 0.108 0.112 0.145 0.135

QDA 0.126 0.107 0.112 0.167 0.174

KNN 0.137 0.113 0.116 0.146 0.129

ntr � 200 0.083 LDA 0.139 0.116 0.121 0.129 0.111

QDA 0.140 0.116 0.122 0.171 0.164

KNN 0.141 0.119 0.124 0.121 0.112

ntr � 400 0.088 LDA 0.144 0.120 0.126 – 0.110

QDA 0.143 0.120 0.124 – 0.154

KNN 0.143 0.121 0.127 – 0.104

The average misclassification rates recorded for different values of the training set
size (Tables 2, 3, 4) confirm our results described for ntr � 400. Worth noting is that
the angular simplicial depth, which is computationally prohibitive, does not fare better
overall than the angular halfspace depth within this scenario.
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Table 4 Section 4.3: Ellipse-like density contours, Setup 3. Kent distributions with a difference in location,
concentration, and shape. Average misclassification rates for training set sizes ntr ∈ {100, 200, 400} of the
empirical Bayes under Kent (EBk), the cosine DD-classifiers (CDD), the chord DD-classifiers (ChDD), the
arc distance DD-classifiers (ADD), the angular simplicial DD-classifiers (SDD) and the angular halfspace
DD-classifiers (HDD). For each angular depth, three classification rules were applied in the DD-space
(LDA, QDA, and KNN, respectively). Best performance for each training size is highlighted in bold

Training size EBk Separating function CDD ChDD ADD SDD HDD

ntr � 100 0.179 LDA 0.321 0.275 0.276 0.252 0.258

QDA 0.262 0.275 0.276 0.251 0.290

KNN 0.305 0.286 0.280 0.265 0.242

ntr � 200 0.169 LDA 0.303 0.257 0.259 0.238 0.227

QDA 0.237 0.253 0.255 0.245 0.250

KNN 0.247 0.260 0.263 0.232 0.215

ntr � 400 0.176 LDA 0.291 0.249 0.250 – 0.217

QDA 0.218 0.249 0.250 – 0.249

KNN 0.221 0.251 0.254 – 0.206

4.3 Ellipse-like density contours: property (D6) matters

Spherical convexity of the angular depth central regions ensures the ability to cap-
ture ellipse-like data structure on (hemi)spheres. As a consequence, depth functions
fulfilling condition (D6) should provide good performances if the underlying density
has ellipse-like density contours. In our next setup, data were drawn from the Kent
and the scaled von Mises-Fisher distribution. While both of them possess ellipse-like
contours, the latter exhibits ellipses with a higher level of eccentricity.

The family of scaled von Mises-Fisher distributions (Scealy and Wood 2019) on
S
d−1 is generated by applying a bijective transformation of the sphere Sd−1 to itself.

The probability density function of the scaled von Mises-Fisher distribution w.r.t. the
spherical Lebesgue measure on S

d−1 takes the form

f (x) � 1

cd (κ)a1

⎧
⎨

⎩
(xTμ/a1)

2 +
d∑

j�2

(xTγ j/a j )
2

⎫
⎬

⎭

−(d−1)/2

× exp

⎧
⎪⎨

⎪⎩

κ xTμ/a1
{
(xTμ/a1)2 +

∑d
j�2(x

Tγ j/a j )2
}1/2

⎫
⎪⎬

⎪⎭
,

where cd (κ) > 0 is a normalizing constant, {μ, γ2, . . . , γd} ⊂ R
d are location

parameters, a1, a2, . . . , ad > 0 are shape parameters satisfying
∏d

j�2 a j � 1, and
κ > 0 is a concentration parameter.

The following two simulation settings were considered.
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Fig. 6 Section 4.3: Ellipse-like density contours, Setup 3. Kent distributions with a difference in location,
concentration, and orientation. A spherical plot of a single training set (left panel) and boxplots of empirical
misclassification rates (right panel). Each boxplot reports the performance of a different classifier: the
empirical Bayes under Kent (EBk), the cosine DD-classifiers (CDD), the chord DD-classifiers (ChDD),
the arc distance DD-classifiers (ADD) and the angular halfspace DD-classifiers (HDD). For each angular
depth, three classification rules were applied in the DD-space (LDA, QDA, and KNN, respectively) (color
figure online)

• Setup 3: P1 and P2 fromKent, difference in location, concentration, and orientation.
For P1 we have μ1 � (1, 0, 0) ∈ S

2, κ1 � 25 and A1 � diag (0, 8, −8). Data
from P2 are obtained by transforming data sampled from a Kent distribution with
μ � (−1, 0, 0) ∈ S

2, κ � 80 and A � diag (0, −40, 40) to polar coordinates,
and slightly perturbing the first polar coordinate direction (by adding a constant
corresponding to an angle π/18). Random samples from these distributions can be
seen in Fig. 6 (left panel).

• Setup 4: P1 and P2 from scaled von Mises-Fisher, difference in location and shape.
Distribution P1 has mean direction μ1 � (0, 0, 1) ∈ S

2, and P2 has μ2 � (0.43,
−0.9, 0) ∈ S

2, respectively, and concentration levels κ1 � κ2 � 5. The shape
parameters are set to be a1 � 1, a2 � 10, a3 � 0.1 for P1 and a1 � a2 � a3 � 1
for P2. Random samples from the two distributions are given in Fig. 7 (left panel).

Results for both setups, for ntr � 400, are summarized through boxplots (Figs. 6
and 7, right panels). Misclassification rates are obtained over 100 independent runs.
Tables 4 and 5 also report the average misclassification rates for ntr � 100, and
ntr � 200, with values obtained when also the angular simplicial depth is adopted for
these latter cases.

Overall, we found the angular halfspace depth working quite, if not extremely
well. Worth noting is the case of the scaled von Mises-Fisher distributions (Setup 4).
There, the classifier based on the angular halfspace depth is able to outperform even the
empirical Bayes underKent. Interestingly, theKent distribution is known to share quite
similar properties to the scaled von Mises-Fisher (Scealy and Wood 2019). Adopting
the angular halfspace depth thus seems to be quite beneficial if minor departures
from the assumed distribution are present (which can be well the case for real data
applications).
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Fig. 7 Section 4.3: Ellipse-like density contours, Setup 4. Scaled von Mises distributions with differences
in location and shape. A spherical plot of a single training set (left panel) and boxplots of empirical
misclassification rates (right panel). Each boxplot reports the performance of a different classifier: the
empirical Bayes under Kent (EBk), the cosine DD-classifiers (CDD), the chord DD-classifiers (ChDD),
the arc distance DD-classifiers (ADD), and the angular halfspace DD-classifiers (HDD). For each angular
depth, three classification rules were applied in the DD-space (LDA, QDA, and KNN, respectively) (color
figure online)

Table 5 Section 4.3: Ellipse-like density contours, Setup 4. Scaled von Mises distributions with differences
in location and shape. Average misclassification rates for training set sizes ntr ∈ {100, 200, 400} of the
empirical Bayes under Kent (EBk), the cosine DD-classifiers (CDD), the chord DD-classifiers (ChDD), the
arc distance DD-classifiers (ADD), the angular simplicial DD-classifiers (SDD) and the angular halfspace
DD-classifiers (HDD). For each angular depth, three classification rules were applied in the DD-space
(LDA, QDA, and KNN, respectively). Best performance for each training size is highlighted in bold

Training size EBk Separating function CDD ChDD ADD SDD HDD

ntr � 100 0.315 LDA 0.562 0.537 0.545 0.346 0.329

QDA 0.571 0.543 0.554 0.332 0.322

KNN 0.524 0.490 0.493 0.326 0.316

ntr � 200 0.304 LDA 0.561 0.539 0.547 0.324 0.313

QDA 0.577 0.552 0.559 0.313 0.301

KNN 0.484 0.445 0.435 0.284 0.289

ntr � 400 0.299 LDA 0.559 0.534 0.544 — 0.304

QDA 0.572 0.544 0.555 — 0.303

KNN 0.433 0.404 0.394 — 0.274

4.4 Data not confined to a hemisphere: property (D6) hampers

Spherical convexity of central regions (D6) helps a lot when rotational symmetry
cannot be assumed, and when the geometry of P is ellipse-like. On the other hand, this
same blessed property brings damnation — by Theorem 3, (D6) implies constancy
over a hemisphere. That is clearly an undesirable feature in classification studies of
directional data.

To illustrate, we present a small real data example. The problem of detecting cardiac
arrhythmia from Electrocardiogram (ECG) waves is considered. More specifically,
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Fig. 8 Section 4.4: Data not confined to a hemisphere, real data example. A spherical plot of the angular
variables QRST- and T-waves for healthy patients (in black) and patients with arrhythmia (in red, left panel),
and boxplots of empirical misclassification rates (right panel). Each boxplot reports the performance of a
different classifier: the empirical Bayes under Kent (EBk), the cosine DD-classifiers (CDD), the chord
DD-classifiers (ChDD), the arc distance DD-classifiers (ADD), and the angular halfspace DD-classifiers
(HDD). For each angular depth, three classification rules were applied in the DD-space (LDA, QDA, and
KNN, respectively) (color figure online)

waves are dealt with as angular variables, and we select two of the waves used in
Demni (2021), recorded for 430 patients: the QRST-wave and the T-wave. The first
describes the global ventricular repolarization while the second corresponds to the
rapid repolarization of the contractile cells.

The analysis aims to distinguish normal vs. arrhythmia cases. A visualization of
the two angular variables on S

2 for 245 normal patients (depicted in black) and for
185 patients having arrhythmia (depicted in red) is given in Fig. 8 (left panel).

A simulation study was then carried on, and — to evaluate the performance of the
different classifiers — a threefold stratified cross-validation method was adopted (the
percentage of samples from each class was preserved). The experiment was repeated
100 times. The obtained distribution of the misclassification rates of the empirical
Bayes under Kent, the distance-based DD-classifiers, and the angular halfspace DD-
classifiers are provided through box-plots in Fig. 8 (right panel). The angular simplicial
depth was excluded because of the size of the training set.

The distance-basedDD-classifiers achieved the best overall performance, especially
the chord DD-classifiers and the arc distance DD-classifiers when associated with
the linear discriminant rule (LDA). Those methods performed even better than the
empirical Bayes under Kent. The reason for that is that the data do not follow an
ellipse-like geometry.

On the other hand, the DD-classifiers based on the angular halfspace depth, which
is the only depth satisfying condition (D6), provide the worst performance. This hap-
pens because the two groups have most of the points quite overlapping, and also the
corresponding hemispheres with the smallest empirical probability do overlap sub-
stantially. As a result, points lying in the intersection of these hemispheres cannot be
well classified.
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5 Final remarks

We have discussed the use of angular depth functions within a classification setting.
Our viewpoint was mainly theoretical, but with a perspective of potential applications
in classification and data analysis. With that aim, desirable properties that angular
depth functions should enjoy were first provided. The most commonly used angular
depths (angular Mahalanobis, distance-based, simplicial, halfspace) were compared
w.r.t. these properties. It turned out that the angular halfspace depth is the only function
that enjoys all the listed properties, including the condition of its central regions being
spherical convex.

To illustrate our main findings, we used several small simulation exercises and a
real dataset. We highlighted that (i) if the optimal discriminating boundary is not a
great circle, depths not satisfying the non-rigidity property are not apt to be used for
classification purposes; and (ii) if the data structure is ellipse-like, depths satisfying
the quasi-concavity property should be adopted; but (iii) for data that lie in the whole
sphere, depths satisfying the quasi-concavity property may perform poorly.

From a data analysis point of view, the following guidelines arise. First, avoid using
the cosine distance and the Mahalanobis angular depths, unless the data comes from a
rotationally symmetric distribution with a unique Fréchet median. Second, choose the
angular halfspace depth if the geometric structure of the distribution is ellipse-like.
Third, do not use the plain angular halfspace depth if the data are distributed sparsely
on the whole surface of the sphere.

Our findings suggest that the angular halfspace depth deserves further attention.
Certainly, in classification tasks, the angular halfspace depth is a powerful tool if data
from each group lie in a hemisphere. For general directional data, however, the issue
of constancy of the angular halfspace depth on hemispheres of minimum probability
must be addressed. In analogy with the issues related to the halfspace depth in linear
spaces, solutions that borrow ideas from the bagdistance (Hubert et al. 2015, 2017) or
the illumination depth (Nagy and Dvořák 2021) can be investigated. We aim to report
on those advances elsewhere.
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Appendix A: Gnomonic projection of the sphere and angular depths

A.1. Gnomonic projection and its basic properties

A crucial mathematical tool that allows us to connect the angular depths in the unit
sphere S

d−1 with usual depths in the linear space R
d−1 is the gnomonic projection

and its inverse. The gnomonic projection takes points from the unit sphere Sd−1, and
maps them into the hyperplane H � {(x1, . . . , xd ) ∈ R

d : xd � 1
}
that is tangent to

S
d−1 at its “northern pole" ed � (0, . . . , 0, 1). Formally speaking, writing S

d−1
0 �{

(x1, . . . , xd) ∈ S
d−1 : xd � 0

}
for the “equator" of the unit sphere, the gnomonic

projection is defined by
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� : Sd−1 \ Sd−1
0 → H : x � (x1, . . . , xd) 
→ x/xd .

The map � is not defined for the points on the equator Sd−1
0 of Sd−1. If necessary,

one could identify those points with their unit vectors, and expand the mapping � by
projecting x ∈ S

d−1
0 into a “point in infinity” of H in the direction of the vector x.

Mathematically, that construction corresponds to extending the mapping� from S
d−1

to the projective space associated with H (Berger (2010), Sect. I.5). For our purposes,
this however turns out not to be necessary.

The gnomonic projection is a bijection, that is an invertible, one-to-one mapping,
between the “northern" hemisphere Sd−1

+ � {(x1, . . . , xd) ∈ S
d−1 : xd > 0

}
and H.

Also, it is a bijection between the “southern" hemisphere S
d−1− � −S

d−1
+ and H,

meaning that altogether it is a double cover of H. When restricted to S
d−1
+ only, the

inverse of this map taking any point inH back into Sd−1
+ is denoted by�−1. Of course,

it is defined by

�−1 : H → S
d−1
+ : x 
→ x/‖x‖.

An interesting feature of the map � is that

� maps great circles in S
d−1 \ Sd−1

0 into straight lines in H . (19)

This can be seen directly by considering a great circle as an intersection of a (two-
dimensional) plane L passing through the origin in R

d with the sphere Sd−1. Since L
contains the origin, its gnomonic projection is exactly the intersection L∩H , which is
a straight line in H. This setup is visualized in Fig. 9. Another important consequence
of (19) is that halfspaces in R

d whose boundary passes through the origin in R
d are

mapped via � into halfspaces in H, when identified with the linear space Rd−1, and
that spherical convex sets in Sd−1

+ map into convex subsets of H. All these results are
direct consequences of (19).

Fig. 9 The gnomonic projection
of the sphere S2. Points from the
northern hemisphere x ∈ S

2
+

(black point) map to H along the
direction of the unit vector
x from the origin (orange point);
points from the southern
hemisphere y ∈ S

2− (red point)
project in the direction of the
antipodal point −y ∈ S

2
+ (color

figure online)
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A.2. Gnomonic projection and angular depths

In Dyckerhoff and Nagy (2023), the gnomonic projection is used to devise a fast
computation algorithm for the angular halfspace depth. It turns out that most angular
depths relate very closely with usual depths of points in the linear space H (identified
with R

d−1), when the measure P ∈ P(Sd−1
)
is properly mapped into H via the

gnomonic projection. For instance, if P is concentrated only in the open hemisphere
S
d−1
+ (where � is invertible), the angular halfspace (or simplicial) depth of any x ∈

S
d−1
+ is equivalent with the usual halfspace (or simplicial) depth of �(x) w.r.t. the

measure of P projected intoH via�. This can be seen directly from the property (19),
since halfspaces passing through the origin inRd map via � into halfspaces inH, and
spherical convex hulls on S

d−1
+ map via � into (linear) convex hulls in H. Thus, for

e.g. the angular simplicial depth of any x ∈ S
d−1
+ w.r.t. P ∈ P

(
S
d−1
+

)
concentrated

in the northern hemisphere we can write

asD(x ; P) � sD(�(x); P�),

where P� stands for the distribution P projected into H via �, and sD(y; Q) is the
usual simplicial depth of y ∈ R

d−1 w.r.t. Q ∈ P(Rd−1
)
(Liu 1990).

More generally, observe that thanks to the property (19), it is very useful to visualize
angular depths aD for distributions P ∈ P(S2+

)
supported in the northern hemisphere

of S2 by displaying

R
2 → [0, ∞) : y 
→ aD(y; P�) (20)

instead of the more complicated function x 
→ aD(x ; P). In (20), of course, we inter-
pret y as �(x) for x ∈ S

2
+. Using the contour plot of (20) we can, for example, detect

departures of the depth aD(·; P) from (star) convexity (in Sd−1), observe multimodal
features of the angular depth surface, or assess rotational symmetry around the direc-
tion given by the northern pole. This tool is used in Sect. 3 to infer the contours of
angular depths in S2.

Appendix B: Proofs of theoretical results

B.1. Proof of Theorem 1

Take any directional medianμ that satisfies (3); the existence of such a pointμ follows
from (D5). By (D4) we then have aD(−μ; P) � infx∈Sd−1 aD(x ; P). Consider the
orthogonal transform given by thematrix O � −Id ∈ R

d×d , for Id the identitymatrix,
and apply the induced rotation in (D1). We obtain

aD(x ; P) � aD(−x ; P−X ) � aD(−x ; P) for all x ∈ S
d−1,
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where we used the fact that P−X � P by the assumption of central symmetry of P.
In particular, applying the previous formula to x � μ, we get

sup
x∈Sd−1

aD(x ; P) � aD(μ; P) � aD(−μ; P) � inf
x∈Sd−1

aD(x ; P),

and necessarily aD(·; P) must be constant over Sd−1.

B.2. Proof of Theorem 2

By rotational symmetry of P we know that for any O ∈ R
d×d orthogonal that fixes μ

we have P � POX in the notation from (D1). Condition (D1) then gives

aD(x ; P) � aD(Ox ; POX ) � aD(Ox ; P) for all x ∈ S
d−1,

and necessarily aD(·; P) is constant on each set

{
Ox : O ∈ R

d×d orthogonal such that Oμ � μ
}

⊂ S
d−1.

This set is precisely the collection of those y ∈ S
d−1 such that 〈y, μ〉 � 〈x , μ〉.

Indeed, we have

〈Ox , μ〉 � (Ox)Tμ � xTOTμ � xTO−1μ �
〈
x , O−1μ

〉
� 〈x , μ〉,

where we used that for O orthogonal we have OT � O−1 and that Oμ � μ implies
O−1μ � μ. For the other inclusion, we can assume without loss of generality that
μ � (1, 0, . . . , 0) ∈ S

d−1 is the first canonical vector; otherwise, we first rotate the
sphere so that μ maps to that vector. Suppose that 〈y, μ〉 � 〈x , μ〉. Then both x, y are
contained in the (d − 2)-dimensional sphere S obtained as an intersection of Sd−1 and
the hyperplane H � {

z ∈ R
d : 〈z, μ〉 � 〈x , μ〉} orthogonal to μ. Restricting to the

(d − 1)-dimensional affine space H and canonically identifying H with R
d−1, inside

the sphere S we can find an orthogonal matrix O ′ ∈ R
(d−1)×(d−1) mapping x to y.

Extending O ′ to a d ×d matrixO by appending it in its first row and first column with
the vector (1, 0, . . . , 0) ∈ R

d gives the desired orthogonal transform O mapping x to
y that fixes μ.

To conclude the proof, it remains to define ξ (t) � aD(x ; P) for any x ∈ S
d−1 such

that 〈x , μ〉 � t ∈ [−1, 1]. By our argumentation above, this is a correct definition
and aD(x ; P) � ξ (〈x , μ〉) for all x ∈ S

d−1.

B.3. Proof of Theorem 3

The central regions (2) corresponding to aD are clearly nested in the sense that if
0 ≤ α1 ≤ α2 then for any P ∈ P(Sd−1

)
we have aDα2 (P) ⊆ aDα1 (P). At the same

time, aD0(P) � S
d−1. By assumption (D6) we have that each aDα(P) is spherical
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convex, which must be either the whole sphere S
d−1, or a set contained in some

closed hemisphere in S
d−1. By the nestedness of the central regions, we can define

α0 � inf{α ≥ 0 : aDα(P) is contained in a hemisphere }. We consider two cases:
either (C1) aDα0 (P) is contained in a hemisphere S; or (C2) aDα0 (P) is not contained
in any hemisphere in Sd−1.

In case (C1) choose u ∈ S
d−1 to be the direction that gives

S �
{
y ∈ S

d−1 : 〈y, u〉 ≥ 0
}
. (21)

In case (C2) necessarily aDα0 (P) � S
d−1. Then we take αn � α0 + 1/n, and observe

that for each n � 1, 2, . . . we have that aDαn (P) is contained in a hemisphere
Sn ⊂ S

d−1. The hemispheres Sn do not have to be the same, but if m ≥ n, then
aDαn (P) ⊆ aDαm (P) ⊆ Sm , meaning that each Sm contains all central regions
aDαn (P) at levels n ≤ m. To each Sn find a direction un ∈ S

d−1 such that (21) holds
true with S replaced by Sn and u replaced by un . The sequence {un}∞n�1 must have a
limit point u ∈ S

d−1; define then S directly by (21) using this direction u. Necessarily,
we obtain that all aDα(P) that are contained in a hemisphere must be contained in S
in both cases (C1) and (C2) above.

Take now any two points x , y ∈ S
d−1 \ S, and suppose that α′ � aD(x ; P) >

aD(y; P). Consider the central region aDα′ (P) that contains x. Since aDα′ (P) does
not contain y, this region is not the whole sphere Sd−1. But, aDα′ (P) must be spherical
convex, so if it is not Sd−1, it must be contained in a hemisphere, in which case α′ ≥ α0
by the definition of α0. We get α′ � α0. Using x /∈ S again, necessarily case (C2)
above must hold true (that is, aDα0 (P) is not contained in S). But then, there must
exist a hemisphere S′ ⊂ S

d−1 such that aDα0 (P) is contained in S′, which directly
contradicts case (C2) as in that situation aDα0 (P) is contained in S′. Altogether, we
have obtained that for all x /∈ S, wemust have aD(x ; P) � c for some constant c ∈ [0,
α0].

Under the additional condition (D4), clearly c � infx∈Sd−1 aD(x ; P).

B.4. Proof of Theorem 4

We use the gnomonic projection, described in detail in Appendix A, to express the
exact arc distance depth ofP as a depth on the tangent lineH of S1 that touches the unit
circle at its northern pole (0, 1) ∈ S

1. For a precise definition of H and the properties
of the gnomonic projection please refer to Appendix A. Let Q+ be the pushforward
measure of P restricted to S1+ via the gnomonic projection �, and analogously let Q−
be the pushforward of P restricted to S

1− (notations such as S1+ and S
1− come from

Appendix A). We suppose that the equator S10 has null P-mass. This is made without
loss of generality, as by condition (D1) we are allowed to rotate P to a position where
P(S10) � 0. Denote by F+ and F− the cumulative distribution functions of Q+ and
Q−, respectively, when H is identified with R. For x ∈ S

1
+ we can write
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π − aDarc(x ; P) �
∫

S1
arccos (〈x , y〉) d P(y)

�
∫

S
1
+

arccos(〈x , y〉) d P(y) +
∫

S
1−
arccos(〈x , y〉) d P(y)

�
∫

S
1
+

arccos(〈x , y〉) d P(y) +
∫

S
1−
(π − arccos(−〈x , y〉)) d P(y)

� π P(S1−) +
∫

S
1
+

arccos(〈x , y〉) d P(y) −
∫

S
1
+

arccos(〈x , y〉) d P(−y)

� π P(S1−) +
∫

S
1
+

arccos(〈x , y〉) d (P(y) − P(−y))

� π P(S1−) +
∫

H
arccos

(〈
�−1(�(x)), �−1(̃y)

〉)
d (Q+(̃y) − Q− (̃y))

� π P(S1−) +
∫

H
arccos

( 〈̃x , ỹ〉
‖x̃‖‖ỹ‖

)
d (Q+(̃y) − Q− (̃y))

� π P(S1−) +
∫

R

arccos

⎛

⎝ 1 + x y
√(

1 + x2
)(
1 + y2

)

⎞

⎠ d (F+(y) − F−(y)).

Weused that arccos(t)+arccos(−t) � π , a change of variables y 
→ −y in the integral
over S1−, and finally the change of variables for the integral with the pushforward
measures Q+ and Q−. In the final equalities we denoted x̃ � �(x) � (x , 1) ∈ H and
ỹ � (y, 1) ∈ H . We obtain an explicit form for the arc distance depth in terms of the
density of the mass of P projected onto H.

To find local extremes of the arc distance depth, we take a derivative of the final
expression above w.r.t. x ∈ R. Given that the function arccos is bounded and differen-
tiable, we can exchange the derivative and the integral, and after a simplification and
rearrangement we obtain

∂aDarc(x ; P)

∂x
� − 1

1 + x2

∫

R

sign(x − y) d (F+(y) − F−(y)).

In particular, the depth aDarc(·; P) has a vanishing derivative at x if and only if

∫

R

sign(x − y) d F+(y) �
∫

R

sign(x − y) d F−(y),

or equivalently if

∫

(−∞, x)
d F+(y) −

∫

(x ,∞)
d F+(y) �

∫

(−∞, x)
d F−(y) −

∫

(x ,∞)
d F−(y).

Suppose now that Q+(H ) � Q−(H ) � 1/2, and that P does not have atoms in S
1.

Then the preceding formula simplifies further to

F+(x) � F−(x).
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In particular, our computation shows that under our assumptions on P, whenever
the distribution functions F+ and F− cross in R, the arc distance depth aDarc(·; P)
possesses a critical point.

B.5. Analysis of Example 1

In the notations from the proof of Theorem 4, we see that P ∈ P(S1) is the inverse
gnomonic projection of Q. The corresponding distribution Q+ from the proof of The-
orem 4 is uniform on the interval [−K , K ], and Q− is uniform on the m points
{−K − 
/2 + j 
}mj�1. The distribution functions F+ and F− of Q+ and Q−, respec-
tively, are

F+(y) � (y + K )/(2 K ) for y ∈ [−K , K ],

F−(y) � j/m for y ∈ [y j , y j+1),

with the notation ym+1 � ∞. These two distribution functions intersect in m points{
y j
}m
j�1 inside the interval [−K , K ], see the upper panel of Fig. 1.

The circular distribution P ∈ P(S1) is defined on the upper half-circle as the inverse
gnomonic projection of Q+ when considered inside the straight line L+; on the lower
half-circle it is the inverse gnomonic projection of Q− inside the antipodally reflected
line L−. Both Q+ and Q− contribute by mass 1/2 to the final measure P. According
to our discussion from the proof of Theorem 4, the arc distance depth of such circular
distribution P possesses at least m local extremes.

B.6. Proof of Theorem 5

For X ∼ P and x ∈ S
d−1 we have

aDδ(−x ; P) � δ(−1) − E δ(−〈x , X〉) � δ(−1) − c + E δ(〈x , X〉)
� 2 δ(−1) − c − aDδ(x ; P).

Necessarily, aDδ(x ; P) is maximized if and only if aDδ(−x ; P) takes the minimum
value over Sd−1, and (D4) is satisfied.

B.7. Proof of Theorem 6

Take any sequence {xn}∞n�1 ⊂ S
d−1 that converges to x ∈ S

d−1. Since xn → x
as n → ∞, we can define a sequence of orthogonal matrices {On}∞n�1 ⊂ R

d×d

such that Onxn � x for all n, and at the same time On converges to the identity
matrix Id ∈ R

d×d in, say, the Frobenius matrix norm (the choice of the matrix norm
is irrelevant in this case, as in finite-dimensional spaces all metrics are equivalent).
Defining Pn ∈ P(Sd−1

)
as the pushforward measure of P under the mapping Sd−1 →

S
d−1 : y 
→ Ony, we obtain that the sequence {Pn}∞n�1 ⊂ P(Sd−1

)
converges weakly

toP. As observed in Liu and Singh (1992), the depth asD satisfies (D1). Due to that, we
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have that asD(xn ; P) � asD(x ; Pn) for all n � 1, 2, . . . . The angular simplicial depth
of x ∈ S

d−1 w.r.t. any measure Q ∈ P(Sd−1
)
can be written as asD(x ; Q) � Qd(Sx ),

where Qd ∈ P
((
S
d−1
)d)

is the product of d copies of measureQ, and Sx ⊂ (Sd−1
)d

is a closed set (e.g., Nagy et al. (2016), proof of Theorem A.6). The portmanteau
theorem (Dudley (2002), Theorem 11.1.1) applied to the sequence {Pn}∞n�1 and the
closed set Sx then guarantees that

lim supn→∞ahD(xn ; P) � lim supn→∞ahD(x ; Pn)

� lim supn→∞Pd
n (Sx ) ≤ Pd (Sx ) � ahD(x ; P),

as we wanted to show.
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