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Abstract
We consider the problem of inferring an unknown number of clusters in multinomial
count data, by estimating finite mixtures of multinomial distributions with or with-
out covariates. Both Maximum Likelihood (ML) as well as Bayesian estimation are
taken into account. Under a Maximum Likelihood approach, we provide an Expecta-
tion–Maximization (EM) algorithm which exploits a careful initialization procedure
combined with a ridge-stabilized implementation of the Newton-Raphson method in
the M-step. Under a Bayesian setup, a stochastic gradient Markov chain Monte Carlo
(MCMC) algorithm embedded within a prior parallel tempering scheme is devised.
The number of clusters is selected according to the Integrated Completed Likelihood
criterion in the ML approach and estimating the number of non-empty components
in overfitting mixture models in the Bayesian case. Our method is illustrated in sim-
ulated data and applied to two real datasets. The proposed methods are implemented
in a contributed R package, available online.

Keywords Mixture model · Multinomial logistic regression · Count data · Clustering

Mathematics Subject Classification 62H30 · 62F15 · 62-08

1 Introduction

Multinomial count data arise in various applications (see e.g. Yu and Shaw (2014),
Nowicka and Robinson (2016)) and clustering them is a task of particular interest
(Jorgensen 2004; Govaert and Nadif 2007; Portela 2008; Bouguila 2008; Zamzami
and Bouguila 2020; Chen et al. 2020). Finite mixture models (McLachlan and
Peel 2004; Marin et al. 2005; Frühwirth-Schnatter 2006; Frühwirth-Schnatter et al.
2019) are widely used for clustering heterogeneous datasets. Their applicability is
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extended beyond the model-based clustering framework, by also providing a means
for semiparametric inference, see e.g. Morel and Nagaraj (1993), where mixtures of
multinomial distributions model extra multinomial variation in count data.

In many instances, the resulting inference can be improved by taking into account
the presence of covariates, when available. Naturally, the framework of mixtures of
multinomial logistic regressions (Grün and Leisch 2008b) can be used for dealing
with such data, under a model-based clustering point of view. These models belong
to the broader family of mixtures of generalized linear models (Leisch 2004; Grün
and Leisch 2007, 2008a), which are estimated either under a maximum likelihood
approach via the EM algorithm (Dempster et al. 1977), or in a Bayesian fashion using
MCMC sampling (Albert and Chib 1993; Hurn et al. 2003).

Various latent class models are based on mixtures of multinomial distributions.
Durante et al. (2019) cluster multivariate categorical data by estimating mixtures of
products of multinomial distributions, under the presence of covariates in the mixing
proportions. Galindo Garre and Vermunt (2006) estimate latent class models using
Bayesian Maximum A Posteriori estimation and illustrate via simulations that the
Bayesian approach is more accurate than maximum likelihood estimation. More gen-
eral latent class models based on multinomial distributions include hidden Markov
models (Zuanetti and Milan 2017) and Markov random fields (Li et al. 2011).

In this paper, our goal is to cluster multinomial count data using finite mixtures of
multinomial logistic regression models. Before proceeding we introduce some nota-
tion. Let Y = (Y1, . . . ,YJ ; YJ+1)

� denote a random vector distributed according to
a multinomial distribution

Y ∼ MJ+1(S, θ).

S ∈ Z+ corresponds to the number of independent replicates of the multinomial
experiment,while the vector θ = (θ1, . . . , θJ ; θJ+1),with 0 < θ j < 1 and

∑J+1
j=1 θ j =

1 contains the probabilities of observing each category.
Under the presence of K heterogeneous sub-populations in the multinomial exper-

iment, we typically model the outcome using a finite mixture model as follows. Let
Z = (Z1, . . . , ZK )� ∼ MK (1,π) denote a latent multinomial random variable with
K categories, π = (π1, . . . , πK−1;πK ) is such that 0 < πk < 1 and

∑K
k=1 πk = 1.

Conditional on Zk = 1 we assume that

Y |Zk = 1 ∼ MJ+1(S, θk)

where θk = (θk1, . . . , θk J ; θk(J+1)), with 0 < θk j < 1 and
∑J+1

j=1 θk j = 1 contains
the probabilities of observing each category for the corresponding multinomial exper-
iment. It follows that Y is drawn from a finite mixture of K multinomial distributions,
so the probability mass function of Y can be written as

K∑

k=1

πk f ( y|θk). (1)
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The weights π1, . . . , πK correspond to the mixing proportions. Finally, f (·|θk)
denotes the probability mass function of the (J + 1)-dimensional multinomial distri-
bution MJ+1(S, θ), that is,

f ( y|θk) = S!
∏J+1

j=1 y j !
J+1∏

j=1

y
θk j
j IYS,J ( y), (2)

where

YS,J =
⎧
⎨

⎩
y1, . . . , yJ ∈ Z+ : 0 ≤

∑

j≤J

y j ≤ S; yJ+1 := S −
∑

j≤J

y j

⎫
⎬

⎭

and S ∈ Z+. A necessary and sufficient condition for the generic identifiability of
finite mixtures of multinomial distributions is the restriction S ≥ 2K − 1 (Teicher
1963; Blischke 1964; Titterington et al. 1985; Grün and Leisch 2008b).

Given a vector of P covariates x = (x1, . . . , xP ) and assuming that category J + 1
is the baseline (in general, this can be any of the J + 1 categories), we express the
log-odds as

logitθ j = log
θ j

θJ+1
= β�

j x, (3)

for j = 1, . . . , J . The vector β j = (β j1, . . . , β j P )� ∈ R
P contains the regression

coefficients for category j. It follows from (3) that

θ j = exp{β�
j x}

1 + ∑
�≤J exp{β�

� x} , (4)

for j = 1, . . . , J .
Extending the previous model to the case of K latent groups, Equation (3) becomes

logitθk j = β�
k j x, (5)

for category j = 1, . . . , J and group-specific parameters βk j = (βk j1, . . . , βk j P )�,
k = 1, . . . , K . In analogy to (4), define

θk j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

exp{β�
k j x}

1 + ∑
�≤J exp{β�

k�x} , j ≤ J

1

1 + ∑
�≤J exp{β�

k�x} , j = J + 1
(6)

for k = 1, . . . , K .
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We assume that we observe n independent pairs ( yi , xi ); i = 1, . . . , n, where the
joint-probability mass function of Y = (Y1, . . . ,Yn)

� given x = (x1, . . . , xn)� is
written as

f ( y|π ,β, x) =
n∏

i=1

f ( yi |π ,β, xi )

=
n∏

i=1

K∑

k=1

πk
Si !

∏J+1
j=1 yi j !

J+1∏

j=1

y
gik j
i j IYSi ,J

( yi ). (7)

where

gik j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

exp{β�
k j xi }

1 + ∑
�≤J exp{β�

k�xi }
, j ≤ J

1

1 + ∑
�≤J exp{β�

k�xi }
, j = J + 1

(8)

for i = 1, . . . , n; k = 1, . . . , K . In practice, Si is derived given yi , i = 1, . . . , n.
The R package mixtools (Benaglia et al. 2009) can be used to estimate mixtures

of multinomial distributions (among numerous other functionalities), under a maxi-
mum likelihood approach using the EM algorithm. However, the usage of covariates
is not considered. On the other hand, the flexmix package (Leisch 2004; Grün and
Leisch 2007, 2008a) can estimate mixtures of multinomial logistic regression models
using the FLXMRmultinom() function, which also implements the EM algorithm.
The package allows the user to run the EM algorithm repeatedly for different numbers
of components and returns the maximum likelihood solution for each. However, alter-
native –and perhaps more efficient– initialization schemes are not considered. Finally,
a fully Bayesian implementation is not available in both packages.

The contribution of the present study it to offer an integrated approach to the prob-
lem of clustering multinomial count data using mixtures of multinomial logit models.
For this purpose we use frequentist as well as Bayesian methods. Both the EM algo-
rithm (for the frequentist approach) as well as the MCMC sampler (for the Bayesian
approach) are carefully implemented in order to deal with various computational and
inferential challenges imposed by the complex nature of mixture likelihoods/posterior
distributions (Celeux et al. 2000). At first, it is well known that the EM algorithm may
converge to local modes of the likelihood surface. We tackle this problem by extend-
ing the initialization of the EM algorithm for mixture of Poisson regression models
as suggested in Papastamoulis et al. (2016). Second, we implement a ridge-stabilized
version of the Newton-Raphson algorithm in the M-step. This adjustment is based on
a quadratic approximation of the function of interest on a suitably chosen spherical
region and effectively avoids many of the pitfalls of standard Newton-Raphson itera-
tions (Goldfeld et al. 1966). In the presented applications and simulation studies, our
interest lies in cases where the multinomial data consists of a large number of repli-
cations for each multinomial observation. When the number of replicates is small,
identifiability of the model is not guaranteed (see Grün and Leisch (2008b)).
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Under a Bayesian approach, traditional Bayesian methods estimate the number of
clusters using the reversible jump MCMC (Green 1995; Richardson and Green 1997)
or the birth-death MCMC technique (Stephens 2000). In multivariate settings, how-
ever, the practical application of these methods is limited. More recently, alternative
Bayesian methods for estimating the number of clusters focus on the use of overfitting
mixture models (Rousseau and Mengersen 2011), information theoretic techniques
which allow to post-process MCMC samples of partitions to summarize the poste-
rior in Bayesian clustering models (Wade and Ghahramani 2018), and generalized
mixtures of finite mixtures (Frühwirth-Schnatter et al. 2021). Our Bayesian model
combines recent advances on overfitting mixture models (Rousseau and Mengersen
2011; van Havre et al. 2015; Papastamoulis 2020) with stochastic gradient MCMC
sampling (Roberts and Tweedie 1996; Nemeth and Fearnhead 2021) and running par-
allel MCMC chains which can exchange states. Moreover, we efficiently deal with
the label switching problem, using the Equivalence Classes Representatives (ECR)
algorithm (Papastamoulis and Iliopoulos 2010). In such a way, the returned MCMC
output is directly interpretable and provides various summaries of marginal posterior
distributions such as posterior means and Bayesian credible intervals of the parameters
of interest.

The combination of Maximum Likelihood and Bayesian estimation provides addi-
tional insights: it is demonstrated that the best-performing approach is to initialize the
MCMC algorithm using information from the solution obtained in the EM implemen-
tation. Therefore, our proposed method provides a powerful and practical approach
that allows to easily estimate the unknown number of clusters and related parameters
in multinomial count datasets.

The rest of the paper is organized as follows. Maximum likelihood estimation of
finite mixtures of multinomial distributions with or without covariates via the EM
algorithm is described in Sect. 2. The careful treatment of the M-step is extensively
described in Sect. 2.2. Section 2.3 discusses initialization issues in the EM imple-
mentation. Section 2.4 describes the selection of the number of clusters under the EM
algorithm. The Bayesian formulation is described in Sect. 3. The proposed MCMC
sampler is introduced in Sect. 3.1. Section 3.2 describes the estimation of the number
of clusters using overfitting mixture models as well as how we deal with the label
switching problem. Applications are illustrated in Sect. 4. The paper concludes with a
Discussion in Sect. 5. AnAppendix contains further implementation details, additional
simulation results and comparisons with alternative approaches (flexmix).

2 Maximum Likelihood estimation via the EM algorithm

In this section we describe the Expectation–Maximization (EM) algorithm (Dempster
et al. 1977) for estimating mixtures of multinomial logistic regressions. For the case
of covariates, the complete log-likelihood is written as

log f ( y|π ,β, x, z) =
n∑

i=1

K∑

k=1

zik

⎧
⎨

⎩
logπk + log ci +

J+1∑

j=1

yi j log gik j

⎫
⎬

⎭
, (9)
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where ci = Si !/∏J+1
j=1 yi j !.

The EM algorithm proceeds by computing the expectation of the complete log-
likelihood (see Sect. 2.1 with respect to the latent allocation variables Z (given y and
x). Then, the expected complete log-likelihood ismaximizedwith respect to the param-
eters π ,β (see Sect. 2.2), given the current expected values of missing data. In the case
of mixtures of multinomial logistic regressions this task can become quite challeng-
ing, since typical numerical implementations (such as the standard Newton-Raphson
algorithm) may fail. For this reason, it is crucial to apply more robust numerical
implementations (Goldfeld et al. 1966) as discussed in Sect. 2.2. In Sect. 2.3 spe-
cial attention is given to the important issue of initialization of the EM algorithm.
Section 2.4 describes the selection of the number of clusters under the EM algorithm.

2.1 Expectation step

The expectation step (E-step) consists of evaluating the expected complete log-
likelihood, with respect to the conditional distribution of Z given the observed data
y (and x in the covariates case), as well as a current estimate of the parameters
(π (t),β(t)). Define the posterior membership probabilities wik as

wik = P(Zik = 1| yi , xi ,π ,β) = πk f ( yi |gik)
∑K

�=1 π� f ( yi |gi�)
, i = 1, . . . , n; k = 1, . . . , K .

Note that, according to the Maximum A Posteriori rule, the estimated clusters are
obtained as

ci = argmaxk∈{1,...,K }{wik; k = 1, . . . , K }, i = 1, . . . , n.

The expected complete log-likelihood is equal to

Q(π ,β|π (t),β(t)) := EZ| y,x,π (t),β(t){log f ( y|π ,β, x, Z)}

=
n∑

i=1

K∑

k=1

wik

⎧
⎨

⎩
logπk + log ci +

J+1∑

j=1

yi j log gik j

⎫
⎬

⎭
(10)

where the current parameter values (π (t),β(t)) are used to compute wik .

2.2 Maximization step

In the maximization step (M-step), (10) is maximized with respect to the parameters
π ,β, that is,

(
π (t+1),β(t+1)

)
= argmax

π ,β

Q(π ,β|π (t),β(t))
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The maximization of the expected complete log-likelihood with respect to the mixing
proportions leads to

π
(t+1)
k = 1

n

n∑

i=1

wik, k = 1, . . . , K .

The maximization with respect to β is analytically tractable only when P = 1 (that
is, a model with just a constant term). Recall that when no covariates are present then
the model is reparameterized with respect to the multinomial probabilities, that is,

θk j = eβk j

1 + eβk j
.

The expected complete log-likelihood is maximized with respect to θk j . The analytical
solution of the M-step in this case is

θ
(t+1)
k j =

∑n
i=1 wik yi j

∑n
i=1 wik Si

, (11)

for k = 1, . . . , K and j = 1, . . . , J + 1.
In case where P ≥ 2 numerical methods are implemented. We have used two

optimization techniques: the typical Newton-Raphson algorithm, as well as a ridge-
stabilized version introduced by Goldfeld et al. (1966). It is easy to show that the
partial derivative of (10) with respect to βk jp is

∂Q

∂βk jp
=

n∑

i=1

wik
{
yi j − Si gik j

}
xip, (12)

k = 1, . . . , K , j = 1, . . . , J and p = 1, . . . , P . Thus, the gradient vector can be
expressed as

∇Q(β) :=
(

n∑

i=1

wi1
{
yi − Si gi1

} ⊗ xi , . . . ,
n∑

i=1

wi K
{
yi − Si gi K

} ⊗ xi ,

)�
, (13)

where ⊗ denotes the Kronecker product and we have also defined gik :=
(gik1, . . . , gik J )�, k = 1, . . . , K .

The second partial derivative of the log-likelihood function (10) with respect to
βk jp and βk′ j ′ p′ is

∂2Q

∂βk jp∂βk′ j ′ p′
= −δkk′

n∑

i=1

Siwik xipxip′gik j (δ j j ′ − gik j ′),

where δi j denotes the Kronecker delta, for k, k′ = 1, . . . , K , j, j ′ = 1, . . . , J and
p, p′ = 1, . . . , P . Note that the corresponding Hessian
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H(β) =

⎛

⎜
⎜
⎜
⎝

H1(β1) 0 . . . 0
0 H2(β2) . . . 0
...

...
. . .

...

0 0 . . . HK (βK )

⎞

⎟
⎟
⎟
⎠

is a block diagonal matrix consisting of K blocks Hk , where each one of them being
a J P × J P-dimensional matrix, with

Hk =
{

∂2Q

∂βk jp∂βk j ′ p′

}

j=1,...,J ;p=1,...,P

.

This is particularly useful because the inverse of this K J P×K J P-dimensionalmatrix
is the corresponding block diagonal matrix of the inverse matrices, that is,

H−1(β) =

⎛

⎜
⎜
⎜
⎝

H−1
1 (β1) 0 . . . 0
0 H−1

2 (β2) . . . 0
...

...
. . .

...

0 0 . . . H−1
K (βK )

⎞

⎟
⎟
⎟
⎠

.

Consequently, the Newton-Raphson update can be performed independently for each
k = 1, . . . , K , as described in the sequel.

In order tomaximize the expected complete log-likelihoodwith respect toβ weused
a ridge-stabilized version (Goldfeld et al. 1966) of the Newton-Raphson algorithm.
Denote by β(t,1) the initial value of β at the M-step of iteration t of the EM algorithm.
Then, the typical Newton-Raphson update at the m + 1-th iteration takes the form

β(t,m+1) = β(t,m) − H−1(β(t,m))∇Q(β(t,m)), m = 1, 2, . . . . (14)

Let M denote the last iteration of the sequence of Newton-Raphson updates. The
updated value of β for iteration t of the EM algorithm is then equal to

β(t) := β(t,M).

In case that a second-order Taylor expansion is a good approximation of the underly-
ing function around a maximum, the Newton-Raphson method will converge rapidly
(Crockett and Chernoff 1955). However, in general settings, it may happen that the
step of the basic update in Eq. (14) will be too large, or −H will be negative definite,
in which case the quadratic approximation has no validity.

The following technique addresses these issues bymaximizing a quadratic approxi-
mation to the function on a suitably chosen spherical region. The algorithmofGoldfeld
et al. (1966) is based on the updates

β(t,m+1) = β(t,m) − H−1
α (β(t,m))∇Q(β(t,m)), m = 1, 2, . . . , (15)
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Fig. 1 Estimation of a typical (K = 1) multinomial logit model with D = 6 categories and p covariates
(including constant term): Log-likelihood values per iteration of the standard Newton-Raphson algorithm
and the ridge-stabilized version, based on 5 random starting values

where,

α = λ1 + R||∇Q(β t−1)|| (16)

Hα(β) =
{
H(β) − α I , if α > 0
H(β), if α ≤ 0,

(17)

while λ1 and ||x || denote the largest eigenvalue of H and the length of vector x,
respectively. The parameter R controls the step size of the update: smaller values result
to larger step sizes. This parameter is adjusted according to the procedure described
Goldfeld et al. (1966): the step size tends to increasewhen the quadratic approximation
appears to be satisfactory.

Figure 1 illustrates the two algorithms using simulated data of n = 250 observations
from a typical (K = 1) multinomial logit model with D = 6 categories and varying
number of explanatory variables p. In each case, the same random starting value
was used for both the standard Newton-Raphson as well as the modified version.
Observe that, especially as the number of parameters increases, the standard Newton-
Raphson updates may decrease the log-likelihood function. On the other hand, the
ridge stabilized version produces a sequence of updates which converge to the mode
of the log-likelihood function (as indicated by the gray line).

2.3 EM initialization

Careful selection of initial values for the EM algorithm is crucial (Biernacki et al.
2003; Karlis and Xekalaki 2003; Baudry and Celeux 2015; Papastamoulis et al. 2016)
in order to avoid convergence to minor modes of the likelihood surface. Following
Papastamoulis et al. (2016), a small-EM (Biernacki et al. 2003) procedure is used. A
small-EM initialization refers to the strategy of starting the main EM algorithm from
values arising by a series of short runs of the EM. Each run consists of a small number
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of iterations (say 5 or 10), under different starting values. The selected values that
will be used to initialize the main EM algorithm are the ones that correspond to the
largest log-likelihood across all small-EM runs. The starting values of each small-EM
are selected according to three alternative strategies, namely: random, split and shake
small-EM schemes, described in detail in the sequel.

In what follows, we will use the notation

ŵ
(K )
ik = P(Zik = 1| y, x, π̂ , β̂), k = 1, . . . , K ; i = 1, . . . , n. (18)

in order to explicitly refer to the estimated membership probabilities arising from
a mixture model with K components, where π̂ and β̂ are the parameter estimates
obtained at the last iteration of the EM algorithm.

Random small-EM
This strategy corresponds to the random selection of Mrandom starting values and

running the EM for a small number (say T = 5 or 10) iterations. The parameters of
the run which results to the largest log-likelihood value in the last (T -th) iteration are
used to initialize the main EM algorithm. The random selection can refer to either
choosing random values for the coefficients of the multinomial logit model or for the
posterior membership probabilities. The latter scheme is followed in our approach,
in particular each row of the n × K matrix of posterior probabilities is generated
according to the U(0, 1) distribution. Each row is then normalized according to the
unity sum constraint.

Split small-EM
Fraley et al. (2005); Papastamoulis et al. (2016) proposed to begin the EMalgorithm

from amodel that underestimates the number of clusters and consecutively adding one
component using a splitting procedure among the previously estimated clusters. In
our setup, this procedure begins with estimating the one-component (K = 1) mixture
model. Then, for g = 2, . . . , K , we estimate a g-component mixture by proposing
to randomly split clusters obtained by the estimated model corresponding to g − 1
components. The way that clusters are split is determined by a random transformation
of the estimated posterior classification probabilities ŵ

(g)
ik , defined in Equation (18).

Given ŵ
(g−1)
ik , denote by I1, . . . , Ig−1 the clusters obtained applying the Maximum

A Posteriori rule on the estimated model with g − 1 components. First, a non-empty
component Ig
 is chosen at random among {I1, . . . , Ig−1}. Second, a new component
labelled as g is formed by splitting the selected cluster Ig
 into two new ones, via a
random transformation of the estimated posterior probabilities:

ŵ
(g)
ik = ŵ

(g−1)
ik , k /∈ {g
, g}

ŵ
(g)
ig
 = ui ŵ

(g−1)
ig


ŵ
(g)
ig = (1 − ui )ŵ

(g−1)
ig
 ,

where ui ∼ Beta(a, b), for i = 1, . . . , n, with Beta(a, b) denoting the Beta distribu-
tion with parameters a > 0 and b > 0. In our examples we have used a = b = 1, that
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Fig. 2 Estimation of a multinomial mixture (without covariates) with K = 8 components: Log-likelihood
values obtained at the last iteration of the EM algorithm for each value of K . The information criterion used
to select K is the ICL. The small-EM scheme details are: Msplit = Mrandom = 10 repetitions, each one
consisting of T = 5 iterations

is, a Uniform distribution in (0, 1). Another valid option would be to set a = b < 1
in order to enforce greater cluster separation. Finally, the EM algorithm for a mixture
with g components starts by plugging in {w(g)

ik , i = 1, . . . , n; k = 1, . . . , g} as starting
values for the posterior membership probabilities. This procedure is repeated Msplit
times by running small EM algorithms and the one resulting to largest log-likelihood
value is chosen to start the main EM for model g. We will refer to this strategy as a
split-small-EM initialization scheme. A comparison between the random-small-EM
strategy using mixtools (Benaglia et al. 2009) and the split-small-EM scheme for a
mixture of 8 multinomial distributions is shown in Fig. 2. More detailed comparisons
between the random small-EM initializations are reported in the simulation study of
Sect. 4.1 and in Appendix C.

Shake small-EM
Assume that there are at least K ≥ 2 clusters in the fitted model and that the

estimated posterior membership probabilities are equal to ŵ
(K )
ik , i = 1, . . . , n, k =

1, . . . , K . We randomly select 2 of them (say k1 and k2) and propose to randomly
re-allocate the assigned observations within those 2 clusters. More specifically, let Ik1
and Ik2 denote the observations assigned (according to the MAP rule) to clusters k1
and k2, respectively. A small-EM algorithm is initialized by a state which uses amatrix

(ŵ
′(K )
ik ) obtained by a random perturbation of the posterior probabilities as follows

ŵ
′(K )
ik = ŵ

(K )
ik , k /∈ {k1, k2}

ŵ
′(K )
ik1

= ui (wik1 + wik2)

ŵ
′(K )
ik2

= (1 − ui )(wik1 + wik2).
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Note that in this way only the posterior probabilities of those observations assigned
to components k1 and k2 are affected. This procedure is repeated Mshake times and
the one leading to the highest log-likelihood value after T EM iterations is selected
in order to initialize the algorithm. We will refer to this strategy as a shake small-EM
initialization.

The aforementioned initialization schemeswill be compared in our simulation study
in Sect. 4.1 (see also Appendix C). We will use the notation

EM
(
Msplit, Mshake, Mrandom

)

to refer to a small-EM algorithm initialization consisting of Msplit split-small-EM
rounds, which are then followed by a sequence of Mshake shake-small-EM rounds and
Mrandom random-small-EM rounds.

2.4 Estimation of the number of clusters under the EM algorithm

There is a plethora of techniques in order to select the number of components in a
mixture model, see e.g. Chapter 6 in McLachlan and Peel (2004). One of the most
popular choices is the Bayesian Information Criterion (Schwarz 1978), defined as

BIC(K ) = −2 log f ( y|x, θ̂K ) + dK log n,

where θ̂K and dK denote theMaximumLikelihood estimate and the number of param-
eters of the mixture model with K components, respectively. Another criterion which
is particularly suited to the task of model-based clustering is the Integrated Complete
Likelihood (ICL) criterion (Biernacki et al. 2000).

ICL(K ) = −2 log f ( y|x, θ̂K ) + dK log n − 2
n∑

i=1

K∑

k=1

ŵik log ŵik .

It has been demonstrated that BIC may overestimate the number of clusters (see e.g.
Rau et al. (2015); Papastamoulis et al. (2016)). In what follows, the number of clusters
in the EM approach is selected according to the ICL criterion.

3 Bayesian formulation

We assume that the mixing proportions of the mixture model (7) follow a Dirichlet
prior distribution, that is,

π ∼ D(α1, . . . , αK ) (19)

for some fixed hyper-parameters αk > 0, k = 1, . . . , K . Usually, there is no prior
information which separates the components between each other so typically (Marin
et al. 2005) we set α1 = . . . = αK = α > 0 (see also Sect. 3.2).

123



Model based clustering of multinomial count data

The prior distribution of the coefficients βk jp is normal centered on zero, that is,

βk jp ∼ N (0, ν2), independent for k = 1, . . . , K ; j = 1, . . . , J , p = 1, . . . , P.

(20)

The prior variance ν2 is assumed constant. A default value of ν2 = 100 was used in all
of all our examples presented in subsequent sections, which corresponds essentialy to
a vague1 prior distribution, however we will also consider more informative choices
(ν = 1), in order to penalize large values of the coefficients. We furthermore assume
that β, π are a-priori independent random variables, thus the joint prior distribution
of the parameters and latent allocation variables is written as

f (z,π ,β|K ,α, ν) = f (z|π , K ) f (π |K ,α) f (β|K , ν).

The joint posterior distribution of z,π ,β| y, x, K is written as

f (z,π ,β| y, x, K ,α, τ ) ∝ f ( y|x, z,β, K ) f (z|π , K ) f (π |K ,α) f (β|K , ν)

3.1 A hybrid Metropolis-Adjusted-Langevin within Gibbs MCMC algorithm

From Equation (9) follows that the full conditional posterior distribution of the latent
allocation vector for observation i is

Zi | · · · ∼ M(1;wi1, . . . , wi K ), (21)

independent for i = 1, . . . , n.
The full conditional posterior distribution of mixing proportions is a Dirichlet dis-

tribution with parameters

π | · · · ∼ D(α1 + n1, . . . , αK + nK ), (22)

where nk = ∑n
i=1 zik .

For the regression coefficients we use a Metropolis–Hastings step, although other
approaches which are based on the Gibbs sampler have been proposed (Dellaportas
and Smith 1993; Holmes and Held 2006; Gramacy and Polson 2012). Note however
that these approaches impose additional augmentation steps in the hierarchical model
and have been applied only for simple (that is, K = 1) logistic regression models.

One could use a random walk for proposing updates to β, but it is well known that
the large number of parameterswould lead to slow-mixing and poor convergence of the
MCMCsampler. In order to overcome this issue, we used a proposal distributionwhich
is based on the gradient information of the full conditional distribution. TheMetropolis
Adjusted Langevin Algorithm (MALA) (Roberts and Tweedie 1996; Roberts and

1 This depends on the scale of the covariates, but in our simulations we are using standardized values in all
cases.
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Rosenthal 1998; Girolami and Calderhead 2011) is based on the following proposal
mechanism

β̃ = β(t) + τ∇ log f (β(t)| y, x, z,π) + √
2τε, (23)

where ε ∼ N (0, I) and ∇ log f (β(t)| y, x, z,π) denotes the gradient vector of the
logarithm of the full conditional of β, evaluated at β(t). In order to select a value
of τ with a reasonable acceptance rate betweeen proposed moves the MCMC sam-
pler runs for an initial warm-up period. During this period τ is adaptively tuned as
the MCMC sampler progresses in order to achieve acceptance rates of the proposed
updates between user-specified limits (see Appendix A for details). The final value of
τ is then selected as the one that will be used in the subsequent main MCMC sampler.

The derivative of the logarithm of the joint posterior distribution of β, conditional
on z and π is equal to

∂ log f (β| y, x, z,π)

∂βk jp
=

n∑

i=1

zik(yi j − Si gik j )xip − βk jp

ν2
(24)

Note that the first term on the right-hand side of the previous expression corresponds
to the log-derivative of the complete log-likelihood (that is, given z), while the second
term corresponds to the derivative of the prior distribution in (20).

The proposal in (23) is accepted according to the usual Metropolis-Hastings prob-
ability, that is,

α(β(t), β̃|z(t),π (t)) = min

⎧
⎨

⎩
1,

f ( y|x, z(t), β̃,π (t))π(β̃)

f ( y|x, z(t),β(t),π (t))π(β(t))

P
(
β̃ → β(t)

)

P
(
β(t) → β̃

)

⎫
⎬

⎭
,

(25)

where P(a → b) denotes the probability density of proposing state bwhile in a. From

(23) we have that P
(
β(t) → β̃

)
is the density of the

NK J P

(
β(t) + τ∇ log f (β(t)| y, x, z(t),π (t)), 2τ IK J P

)

distribution, evaluated at β̃. The density of the reverse transition
(
β̃ → β(t)

)
is equal

to the density of the distribution

NK J P

(
β̃ + τ∇ log f (β̃| y, x, z(t),π (t)), 2τ IK J P

)

evaluated at β(t).
The overall procedure is summarized at Algorithm 1.
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3.2 Estimation of the number of clusters using overfitting Bayesianmixtures

The Bayesian setup allows to estimate the number of clusters by using overfitting
mixture models, that is, models where the number of mixture components is much
larger than the number of clusters. Let Kmax > K denote an upper bound on the
number of clusters and define the overfitting mixture model

f ( y|θ, Kmax) =
Kmax∑

k=1

πk fk( y|θk)

where fk ∈ F
 = { f (·|θ); θ ∈ 
} denotes a member of a parametric family of
distributions. Let also d denote the dimension of free parameters in the distribution
fk(·). For instance, in the case of a mixture of multinomial logistic regression models
with J + 1 categories and P covariates (including constant term) d = J P .

Rousseau andMengersen (2011) show that the asymptotic behavior of the Kmax−K
extra components depends on the prior distributions of the mixing proportions π =
(π1, . . . , πKmax). For the case of a Dirichlet prior as in Equation (19), if max{αk; k =
1, . . . , Kmax} < d/2, the posterior weight of the extra components will tend to zero
as n → ∞ and force the posterior distribution to put all its mass in the sparsest way
to approximate the true density.

Following Papastamoulis (2018), we set α1 = . . . = αK = α, thus the distribution
of mixing proportions in Equation (19) becomes

π ∼ D(α, . . . , α) (26)

where 0 < α < d/2 denotes a pre-specified positive number.
Therefore, the inference on the number of mixture components can be based on

the posterior distribution of the “alive” components of the overfitted model, that is,
the components which contain at least one allocated observation. In order to estimate
the number of clusters we only have to keep track of the number of components
with at least one allocated observation, across the MCMC run. This reduces to record
the variable K (t)

0 = ||{k = 1, . . . , Kmax : ∑n
i=1 z

(t)
ik > 0}||, where z(t)i denotes the

simulated allocation vector for observation i at MCMC iteration t = 1, 2, . . ..
In order to produce a MCMC sample from the joint posterior distribution of the

parameters of the overfitting mixture model (including the number of clusters), we
embed the scheme described in Sect. 3.1 within a prior parallel tempering scheme
(Geyer 1991; Geyer and Thompson 1995; Altekar et al. 2004). Each heated chain
(c = 1, . . . ,C) corresponds to a model with identical likelihood as the original, but
with a different prior distribution. Although the prior tempering can be imposed on
any subset of parameters, it is only applied to the Dirichlet prior distribution of mixing
proportions (van Havre et al. 2015; Papastamoulis 2018, 2020). The inference is based
on the output of the first chain (c = 1) of the prior parallel tempering scheme (van
Havre et al. 2015).

Let us denote by fc(ϕ|x) and fc(ϕ); c = 1, . . . ,C , the posterior and prior distri-
bution of the c-th chain, respectively. Obviously, fc(ϕ|x) ∝ f (x|ϕ) fc(ϕ). Let ϕ

(t)
c
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denote the state of chain c at iteration t and assume that a swap between chains c1 and
c2 is proposed. The proposed move is accepted with probability min{1, A(πc1,πc2)}
where

A(πc1 ,πc2) = fc1(ϕ
(t)
c2 |x) fc2(ϕ

(t)
c1 |x)

fc1(ϕ
(t)
c1 |x) fc2(ϕ

(t)
c2 |x)

= fc1(ϕ
(t)
c2 ) fc2(ϕ

(t)
c1 )

fc1(ϕ
(t)
c1 ) fc2(ϕ

(t)
c2 )

= f̃c1(π
(t)
c2 ) f̃ j (π

(t)
c1 )

f̃c1(π
(t)
c1 ) f̃c2(π

(t)
c2 )

,

(27)

and f̃c(·) corresponds to the probability density function of the Dirichlet prior distri-
bution related to chain c = 1, . . . ,C . According to Equation (26), this is

π ∼ D
(
α(c), . . . , α(c)

)
, (28)

for a pre-specified set of parameters α(c) > 0 for chain c = 1, . . . ,C .
When estimating a Bayesian mixture model, a well known problem stems from

the label switching phenomenon (Jasra et al. 2005), which arises from the fact that
both the likelihood and prior distribution are invariant to permutation of the labels
of mixture componets. The posterior distribution of the parameters will also be
invariant, thus the parameters are not marginally identifiable. We deal with this prob-
lem by post-processing the MCMC output of the overfitting mixture via the ECR
algorithm (Papastamoulis and Iliopoulos 2010; Papastamoulis 2016). Note that after
post-processing the MCMC output for correcting label switching, the estimated clas-
sification for observation i is obtained as the mode of the (reordered) simulated values
of Zi in Eq. (21) across the MCMC run (after discarding the draws corresponding to
the burn-in period of the sampler), i = 1, . . . , n. For more details the reader is referred
to the label.switching package (Papastamoulis 2016). The overall procedure is
summarized in Algorithm 2.
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Regarding the initialization of the overfitting mixture model (see Step 0) in Algo-
rithm 2, we use two alternative approaches. The first initialization is based on random
starting values (“MCMC-RANDOM” scheme) and the second initialization scheme
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uses a more elaborate scheme, by exploiting the output of the EM algorithm under
the split-small-EM scheme (“MCMC-EM” scheme). As expected, the latter scheme
performs better as illustrated in the simulation studies. The overall procedure of the
MCMC sampler is summarized in Algorithm 1 and Algorithm 2. The typical choices
of the parameters as well as further details on the prior parallel tempering scheme and
initialization schemes are given in Section A of the Appendix.

4 Applications

In Sect. 4.1 we use a simulation study in order to evaluate and rank the proposed
methods in terms of their ability in clustering multinomial data. Next, we present
two applications on real data: in Sect. 4.2 our method is used to identify clusters
of age profiles within a regional unit in Greece and in Sect. 4.3 we study clusters of
Facebook engagementmetrics inThailand. Further simulation results and comparisons
with flexmix are reported in Appendix C.

4.1 Simulation study

In order to evaluate the ability of the proposed methods in clustering multinomial
count data, we considered synthetic datasets generated from a mixture of multinomial
logistic regression models (7). The number of multinomial replicates (Si ) per obser-
vation is drawn from a negative binomial distribution: Si ∼ NB(r , p) with number
of successful trials r = 20 and probability of success p = 0.025. We simulated 500
datasets in total where the values of n, K , P, J are uniformly drawn in the range of
values shown in Table 1. Given K , the weight of each cluster was equal to πk ∝ k,
k = 1, . . . , K . Notice that this setup gives rise to mixture models with total number
of free parameters ranging from 10 up to 535.

The true values of the regression coefficients were simulated according to

σ ∼ U(1, 5)

βk jp|σ ∼ 0.5I{0}(β) + 0.5φ(β; 0, σ 2)

(conditionally) independent for k = 1, . . . , K ; j = 1, . . . , J ; p = 1, . . . , P , where
I{0}(β) denotes a discrete distribution degenerate at 0 and φ(β;μ, σ 2) denotes the
density function of the normal distribution with mean μ and variance σ 2.

We applied the proposed methodology in order to estimate mixtures of multinomial
logit models. In particular we compared the EM algorithm under three initialization
schemes, as well the MCMC sampling scheme under random initialization and an

Table 1 Values for sample size
(n), number of clusters (K),
covariates (P) and number of
categories (J + 1) in the
simulation study

n K P J + 1

{125, 250, 500, 1000} {1, . . . , 8} {2, 4, 6} {6, 9, 12}
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Fig. 3 Simulation study summary. See Table 1 for the simulation study set-up. For the EM implementations:
the three numbers in parenthesis refer to the number of split, shake and random small-EM runs. For the
MCMC implementations, the number in parenthesis denotes the prior variance (ν2) of the coefficients βk jp
in Equation (20)

initialization based on the output of the EM algorithm (under the split-shake-random
small-EM scheme). In total we considered 24 different starts in the small-EM schemes:
a random small-EM with 24 starts: EM(0, 0, 24), a combination of split and random
small-EM with 12 starts each: EM(12, 0, 12) and finally, a combination of split,
random and shake small-EM with 8 starts each: EM(8, 8, 8). The total number of
MCMC iterations is held fixed at 100,000. We also present results when considering
the double amount of iterations (both in the warm-up period as well as the main
MCMC sampler) under the MCMC-RANDOM scheme, which we will denote by
MCMC-RANDOM-2x. Finally, we considered two different values of prior variance
of the coefficients in Eq. (20): ν = 1 and ν2 = 100. The first choice corresponds
to an informative prior distribution, heavily penalizing large values of |βk jp|. The
second choice corresponds to a vague prior distribution. The chosen value of ν will be
denoted in a parenthesis, that is, MCMC-RANDOM (ν2) and MCMC-EM (ν2) will
indicate the output of MCMC algorithm with random and EM initialization schemes
(respectively) and prior variance equal to ν2. See Appendix A for further details of
various other parameters for the EM and MCMC algorithms.

Figure 3 illustrates a graphic summary of the simulation study findings, based on
our 500 synthetic datasets. The metrics we are focusing are the following: The left

graph shows the mean of relative absolute error |K̂−K |
K between the estimated number

of clusters (K̂ ) and the correspoding true value (K). The right graph displays the mean
of the adjusted Rand index (with respect to the ground-truth classification) subtracted
from 1. In all cases we conclude that the EM algorithm with a random small-EM
initialization (denoted as EM(0,0,24)) is worse compared to the split-shake-random
small EM initialization (denoted as EM(8,8,8)). Regarding the MCMC sampler we
see that the random initialization scheme (MCMC-RANDOM) is worse than the EM-
based initialization (MCMC-EM), when both MCMC-RANDOM and MCMC-EM
run for the same number of iterations. However, as the number of iterations increases
in the randomly initialized MCMC sampler (MCMC-RANDOM-2x), the results are
improved, particularly for the mean relative absolute error of the estimation of the
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Fig. 4 Age profiles for n = 187 settlements in the Phthiotis regional unit according to the 2011 census of
Eurostat. a Population counts (increased by 1) displayed in log-scale in the y axis and b relative frequency
of population counts

number of clusters. Overall, the MCMC algorithm initialized by the (split-small) EM
solution is the best performing method, closely followed by the EM algorithm under
the split-small EM scheme. Naturally, the informative prior distribution (ν = 1, corre-
sponding to the green-coloured bars in Fig. 3) outperforms the vague prior distribution
(ν2 = 100, corresponding to the red-coloured bars). More detailed summaries of the
resulting estimates are given in Appendix C.

4.2 Phthiotis population dataset

In this example we present an application of our methodology in clustering areas
within a certain region with respect to the age profiles of their population, taking
also into account geographical covariate information. For this purpose we considered
population data based on the 2011 census of Eurostat2. We considered the Phthiotis
area, a regional unit located in central Greece. Our extracted dataset consists of number
of people per age group (21 groups: 0−4, 5−9, . . . , 95−99,> 99 years old) for a total
of n = 187 settlements (such as villages, towns, and the central city of the regional
unit, Lamia), as displayed in Fig. 4. The separated line in the upper part of Fig. 4a
corresponds to Lamia. Observe that there are various regions where there is a peak in
the older population groups (between 65 and 85), as vividly displayed when looking
at the plot of relative frequencies per age group at Fig. 4b. A different behaviour is
obvious for Lamia where we see that the dominating age groups are between 30− 50.
The research question is to cluster these settlements based on the age profiles of their
population.

If we cluster the raw dataset of age counts within each group using a mixture
of multinomial distributions without any covariate information, then a large number

2 https://ec.europa.eu/eurostat/web/main/data/database.
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of clusters is found. In particular, when using mixtools (Benaglia et al. 2009),
a relatively large number of clusters is found (K̂ = 8 using ICL). Therefore, we
opt to apply our method using the following covariate information for settlement
i = 1, . . . , n:

xi1: distance (in Km) from Lamia (capital city of the regional unit)
xi2: logarithm of the altitude (elevation, in m).

Both covariates were scaled to zero mean and unit variance. Let us denote by yi j
the number of people in age group j = 1, . . . , 21 for settlement i = 1, . . . , n. The
probability θ

(i)
k j denotes the proportion of population being in age group j conditional

on the event that settlement i belongs to cluster k, where
∑21

j=1 θk j = 1 for all k.

Conditional on cluster k = 1, . . . , K , the random vector Y i = (Yi1, . . . , Yi,21)� is
distributed according to a multinomial distribution

Y i |Zik = 1 ∼ M21(Si , θ
(i)
k )

log
θ

(i)
k j

θ
(i)
k,1

= βk j0 + βk j1xi1 + βk j xi2, j = 2, . . . , 21

where θ
(i)
k = (θ

(i)
k1 , . . . , θ

(i)
k,21) for k = 1, . . . , K and Si denotes the total population for

settlement i, for i = 1, . . . , n. Note that we have used the 1st category (ages between
0 and 4) as baseline in order to express the log-odds of the remaining groups. The
distribution of counts per age group is written as amixture ofmultinomial distributions

Y i ∼
K∑

k=1

πkM21(Si , θ
(i)
k ), independent for i = 1, , . . . , n

where πk denotes the weight of cluster k. Hence, each cluster represents areas with dif-
ferent age profile as reflected by the corresponding vector ofmultinomial probabilities.
The total number of clusters (K) is unknown.

At first we used the EM algorithm under the proposed initialization scheme to
estimate mixtures of multinomial logistic regression models for a series of K =
1, 2, . . . , Kmax = 10 components. According to the ICL criterion, the selected num-
ber of clusters is equal to K = 3. Next we estimated an overfitting Bayesianmixture of
Kmax = 10 components, using a prior parallel tempering scheme based on 12 chains.
The MCMC algorithm was initialized from the EM solution, while all remaining
parameters were initialized from a zero value. The MCMC sampler ran for a warm-up
period of 100,000 iterations, followed by 400,000 iterations. A thinnedMCMCsample
of 20,000 iterations was retained for inference. In almost all MCMC draws the number
of non-emptymixture components was equal to K0 = 3 (estimated posterior probabil-
ity equal to 99.5%). The retained MCMC sample was then post-processed according
to the ECR algorithm (Papastamoulis and Iliopoulos 2010; Papastamoulis 2016) in
order to undo label switching. The confusion matrix of the single best clusterings
between the two methods (EM and MCMC) is displayed in Table 2. The correspond-
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Table 2 Confusion matrix
between the single best
clustering of the Phthiotis
Population Dataset arising from
the EM and MCMC algorithms
(after post-processing the
MCMC output for correcting
label switching)

MCMC

1 2 3

EM

1 29 2 0

2 1 73 5

3 0 12 65

ing adjusted Rand index is equal to 0.67 indicating that the two resulting partitions
have strong agreement.

Next we focus on the results according to the MCMC algorithm (after post-
processing). Figure 5 illustrates the posterior mean (and 95% credible region) of the
probability θ

(i)
k j for age group j in cluster k = 1, . . . , 3. Three characteristic configu-

rations of covariate levels were used, that is, the 0.1, 0.5 and 0.9 percentiles of the two
covariates. In all cases we see distinct age group characteristics and what is evident
is the presence of a group which contains places with younger age profiles (cluster
1). In cluster 3, notice a strong peak at the group of ages between 76 to 84, which
emerges in cases of moderate to large values of the two covariates. In cluster 2, the
peak is also located at the older age groups however it is less pronounced compared
to cluster 3. Figure 6 visualizes the three clusters on the map of the regional unit. We
may conclude that cluster 1 (the “younger” cluster) mainly consists of settlements
that are either located close to Lamia (gray spot on the map), including Lamia itself,
or their total population is larger than 1000 (towns such as Makrakomi, Malessina,
Sperchiada, Atalanti, Domokos, Stavros and the central city of Lamia). However this
younger group of age profiles is also present in some of the most distant andmountain-
ous southwestern areas (Dafni, Neochori Ypatis, Kastanea, Pavliani and Anatoli: the
altitude of these small villages is larger than 1000m). In general, however, as wemove
further away from Lamia the “older” and “eldest” clusters dominate, particularly for
areas with a small number of population. See also the histogram of settlement popula-
tions per cluster in Fig. 7. Note that the majority of smaller villages (population of 100
citizens, approximately) are mainly assigned to the third cluster (the eldest group).

Finally, we have to mention that this specific application involves an ordinal and
not a nominal response. Therefore, one could use alternative techniques to model the
data, such as proportional odds models, or smoothing the changes between adjacent
categories.

4.3 Facebook live sellers in Thailand data set

The dataset of Dehouche (2020) (see also Wongkitrungrueng et al. (2020)) contains
engagement metrics of Facebook pages for Thai fashion and cosmetics retail sellers.
We consider the number of emoji reactions for each Facebook post, which are known as
“like”, “love”, “wow”, “haha”, “sad” and “angry”. The aim of our analysis is to cluster
posts based on the reaction profiles, using additional covariate information. Each post
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Fig. 5 Posterior mean and 95% credible region of age profiles per cluster for the Phthiotis population data.
The two covariates (distance from Lamia and altitude) are set equal to the corresponding 0.1 (a), 0.5 (b) and
0.9 (c) percentiles

Fig. 6 Geographical coordinates of the settlements and inferred cluster membership according to the Max-
imum A Posteriori rule on the output of the MCMC sampler. The gray circle indicates Lamia, that is, the
central city of the Phthiotis region. Different point sizes are used according to the total population of each
settlement: small (Si < 150), medium 150 ≤ Si ≤ 999 and larger (Si > 999)

can be of a different nature (“video”, “photo”, “status”), a categorical variable which
we are taking into account as a categorical predictor. In addition, we also use as
covariate the number of shares per post (in log-scale). The dataset is available at the
UCI machine learning repository3.

3 https://archive.ics.uci.edu/ml/datasets/Facebook+Live+Sellers+in+Thailand.
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Fig. 7 Total population counts per cluster of the Phthiotis dataset

We considered the period between 2017-01-01 and 2018-12-31 taking into account
posts with a minimum overall number of reactions equal to 40. We then randomly
selected 100 posts per type (100 videos, 100 photos and 100 statuses), that is, 300
posts in total. The observed data is displayed in Fig. 8 (note that for the sole purpose
of visualization in the log-scale, each count is increased by 1). It is evident that most

Fig. 8 Reaction counts for 300 posts of the Facebook Live Sellers Dataset. A different colour displays the
type of each post (100 video, 100 photos and 100 statuses). Note that the y axis on both graphs as well as
the x axis of the right graph are displayed in log-scale after increasing each observed count by one
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reactions correspond to “loves” and “likes”. There is also some visual evidence that
videos may result to a larger number of “loves” compared to photos or statuses. On the
other hand, many posts result to zero counts for any kind of reaction other than “like”.
So we might expect that such a dataset exhibits heterogeneity, due to zero inflation in
the first five categories. Thus, it makes sense to cluster posts according to the reaction
profiles, i.e. reaction probability.

Let us denote by yi = (y1, y2, y3, y4, y5, y6)� the observed vector of reaction
counts for post i = 1, . . . , n (n = 300). We assume that yi , conditional on post type
and number of shares (as well as the total number of reactions for that particular post),
is distributed according to a mixture of multinomial distributions with J + 1 = 6
categories, where y j denotes the number of reactions of type j for post i, i = 1, . . . , n.
The type of each post serves as a categorical predictor with three levels (“video”,
“photo” and “status”). Selecting the probability of “like” as the reference category
and conditional on cluster k = 1, . . . , K , the multinomial logit model is written as

log
θ

(i)
k j

θ
(i)
k6

= βk j0 + βk j1x
status
i + βk j2x

photo
i + βk j3 log(1 + xsharesi ), j = 1, 2, 3, 4, 5

where θ
(i)
k j denotes the probability of reaction j corresponding to “angry” ( j = 1),

“sad” ( j = 2), “haha” ( j = 3), “wow” ( j = 4), “love” ( j = 5) and “like” ( j = 6).
Note that the categorical predictor consists of three levels, thus, we created the two
dummy variables

xstatusi =
{
1, if post i is “status”
0, otherwise

, xphotoi =
{
1, if post i is “photo”
0, otherwise

after selecting the “video” type as the baseline. In addition, xsharesi denotes the number
of shares for post i.

We applied our method using the EM algorithm with the proposed initialization
scheme as well as the MCMC sampler using an overfitting mixture model with
Kmax = 10 components. A total of 12 chains under the prior parallel tempering scheme
were considered. The MCMC sampler ran for an initial warm-up period of 100,000
iterations, followed by 400,000 iterations. A thinned MCMC sample of 20,000 itera-
tions was retained for inference. Both methods select K = 4 clusters. In the MCMC
sampler we have considered two different levels of the prior variance of the regression
coefficients, that is, ν2 = 100 (vague prior distribution) and ν2 = 1 (informative
prior).

More specifically, for the EM algorithm the minimum value of ICL is equal to
4610.89 (corresponding to amodel with K = 4 clusters) while for theMCMC sampler
themode of the posterior distribution of the number of non-emptymixture components
corresponds to K0 = 4, with P̂(K0 = 4|data) = 0.67 for the sampler with ν2 =
100. The same number of components is also selected when considering the prior
distribution with ν2 = 1, where P̂(K0 = 4|data) = 0.80. The confusion matrix
of the single best clusterings arising after applying the Maximum A Posteriori rule
is displayed in Table 3. The corresponding adjusted Rand Indices between the two
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Table 3 Confusion matrix between the single best clustering of the Facebook Live Sellers Dataset arising

from the EM and MCMC algorithms with a prior variance of regression coefficients equal to ν2 = 100 and

ν2 = 1 (after post-processing the MCMC output for correcting label switching)

MCMC (ν2 = 100) MCMC (ν2 = 1)

1 2 3 4 1 2 3 4

EM

1 47 0 0 0 37 2 8 0

2 0 44 3 0 10 20 6 11

3 0 0 183 0 2 3 178 0

4 0 0 1 22 1 5 1 16

partitions are equal toARI(EM,MCMC(100)) ≈ 0.96,ARI(EM,MCMC(1)) ≈ 0.74
and ARI(EM,MCMC(100)) ≈ 0.76, indicating a high level of agreement between
the three approaches.

Next we are concerned with the identifiability of the selected model with K = 4
components. Recall that in our extracted dataset the minimum number of reactions
is equal to 40, thus, condition 1.(a) in Theorem 2 of Grün and Leisch (2008b) (see
also Hennig (2000)) is satisfied. If we were considering only the categorical predictor
(video type) in ourmodel, the number of distinct hyperplanes (lines in this case) needed
to cover the covariates of each cluster would be equal to 2: one line covering the points
(0, 0) (origin) and (xstatusi , xphotoi ) = (1, 0) and another line covering the points (0, 0)

and (xstatusi , xphotoi ) = (0, 1). This number is less than the selected number of clusters
and the coverage condition (see condition 1.(b) in Theorem 2 of Grün and Leisch
(2008b)) is violated. However, this condition is satisfied after including a continuous
covariatewith cluster-specific effect (number of shares). Finally, the generatedMCMC
sample has been post-processed according to the ECR algorithm (Papastamoulis and
Iliopoulos 2010; Papastamoulis 2016) in order to deal with the label switching issue.

Figure 9 displays the posterior mean of reaction probability per cluster and the
corresponding (equally tailed) 95% credible interval, for both prior setups. The con-
tinuous covariate (number of shares) is set equal to the observed mean per post type.
In all cases, there is an increased probability of a “love” reaction when the post is a
video, compared to a photo or a status. However, the average probability of such a
reaction is different between the clusters, with the most notable difference obtained in
cluster “4”. Finally, notice the similarity of cluster profiles for both prior distributions.
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Fig. 9 Posterior mean and 95% Credible Region of the reaction probabilities (θ1, θ2, θ3, θ4, θ5, θ6) per
cluster for the Facebook Sellers data, when setting the continuous covariate (number of shares) equal to its
mean per post type. The left and right columns correspond to theMCMC samplers with the large (ν2 = 100)
and small (ν2 = 1) prior variance of the regression coefficients in Equation (20), respectively
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5 Discussion

The problem of clustering multinomial count data under the presence of covariates
has been treated using a frequentist as well as a Bayesian approach. Our simulations
showed that our proposedmodels performwell, provided that the suggested estimation
and initialization schemes are selected. The application of our method in clustering
real count datasets reveal the interpretability of our approach in real-world data. Our
contributed package in Rmakes our method directly available to the research commu-
nity.

Under a frequentist approach we have demonstrated that an efficient initialization
(i.e. the split-shake-random small-EM scheme in Sect. 2.3) yields improved results,
when compared to a more standard random small-EM initialization scheme. Further-
more, a crucial point for the implementation of the maximization step of the EM
algorithm is the control of the step size of the Newton-Raphson iterations, something
that was achieved using the ridge-stabilized version in Sect. 2.2.

We did not address the issue of estimating standard errors in our EM implementa-
tion. However, these can be obtained by approximating the covariance matrix of the
estimates by the inverse of the observed information matrix (Louis 1982; Meng and
Rubin 1991; Jamshidian and Jennrich 2000) or using bootstrap approaches (Basford
et al. 1997; McLachlan et al. 1999; Grün and Leisch 2004; Galindo Garre and Ver-
munt 2006). Maximum likelihood estimation with the EM algorithm can be modified
in order to provide Maximum A Posteriori estimates under a regularized likelihood
approach, as implemented in Galindo Garre and Vermunt (2006).

The Bayesian framework of Sect. 3 has clear benefits over the frequentist approach,
but of course, under the cost of increased computing time. As demonstrated in our
simulations, the proposed MCMC scheme outperforms the EM algorithm in terms
of estimation of the number of clusters as well the clustering of the observed data
in terms of the Adjusted Rand Index. Moreover, the Bayesian setup allows for even
greater flexibility in the resulting inference, such as the calculation ofBayesian credible
intervals from theMCMC output which provide a direct assessment of the uncertainty
in our point-estimates. For this purpose we used state-of-the-art algorithms that deal
with the label switching problem inmixture, suitably adjusted to the special framework
of overfitting mixture models.

A natural and interesting extension of our research is to consider the problem of
variable selection in model based clustering (Maugis et al. 2009; Dean and Raftery
2010;Yau andHolmes 2011; Fop andMurphy 2018). In theBayesian setting, one could
take into account alternative prior distributions of the multinomial logit coefficients
per cluster, e.g. spike and slab or shrinkage prior distributions (Malsiner-Walli et al.
2016; Vávra et al. 2022) that encourage sparsity in the model. Another direction for
future research is to combine our mixture model with alternative Bayesian logistic
regression models that exploit data augmentation schemes (Held and Holmes 2006;
Frühwirth-Schnatter and Frühwirth 2010; Polson et al. 2013; Choi and Hobert 2013)
and assess whether MCMC inference is improved.
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Appendix A: Details of theMCMC sampler

This section describes the values of the parameters for the EM and MCMC sampler,
which were used in order to produce the results reported in our simulation study in
Sect. 4.1.

Prior parameters and number of parallel chains

We implemented the prior parallel tempering MALA-within-Gibbs algorithm
described in the previous section with the following set-up. We used 8 parallel chains
andoverfittedmixtureswith a total of Kmax = 20 components. For chain c = 1, . . . ,C ,
the parameters of the Dirichlet prior D(αc, . . . , αc) were set equal to

α1 = 1

200
(target chain) (29)

αc = 1

200
+ 1

4000
exp

{

2 + 12
c − 2

C − 2

}

, for chain c = 2, . . . ,C . (30)

The specific set of values worked reasonably well in our simulations and applications
on real datasets, however, we do not claim that they are in any way “optimal” choices.
Our guide for choosing this set of values is to achieve average acceptance rate between
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chain swaps around 10%–30%. The variance of the normal prior distribution of the
coefficients in (20) is set to ν2 = 100. Notice that in our applications we have also
presented results with a much smaller prior variance (ν2 = 1), a choice which can be
seen as a regularized estimation approach.

Warm-up period

The warm-up period of the MCMC sampler consists of m0 = 48000 iterations. As
the sampler progresses, it keeps track of the proposal acceptance ratio within the last
500 iterations. The parameter τ (which controls the scale of the MALA proposal) is
adaptively tuned in order the proposal acceptance rate stays within the range 15% −
25%. In case that a sequence of 500 iterations the acceptance rate is less than 15% then
τ ← 0.9τ . On the other hand, if the acceptance rate is too large (larger than 25%),
then τ ← τ/0.9. The value of τ obtained at the last iteration of this initial phase is
used at the main MCMC sampler. The initial value is set equal to τ = 0.00035.

MainMCMC sampler

After the warm-up period, the MCMC sampler runs for a total of T = 2600 cycles.
Each cycle consists ofm1 = 20 iterations. A chain swap is attempted at the end of each
MCMC cycle. The results are obtained retaining the last 2500 cycles (and discarding
the first 100 cycles as burn-in period) of the MCMC sampler.

Note that the initial warm-up period and the main MCMC sampler consist of
48,000 + 2600 × 20 = 10,0000 MCMC iterations in total.

MCMC sampler initialization

Each chain was initialized under two different schemes: a scheme based on ran-
domly selected started values (which we will be referring to as “MCMC-RANDOM”)
and a more elaborate initialization scheme based on the output of the EM algo-
rithm (“MCMC-EM” starting scheme). More specifically, in “MCMC-RANDOM” all
parameters are initialized by simulating from the prior distributions. In “MCMC-EM”
we first estimate the number of clusters as well as the model parameters accord-
ing to the EM algorithm under our split-small-EM scheme. Let us denote by K̂ (EM)

the selected number of clusters according to the EM algorithm (using ICL), under
the split-small-EM initialization. Next, consider a Bayesian overfitting mixture with
Kmax > K (EM) components. The parameters of the first K (EM) components are all set
equal to the values of the corresponding parameters obtained at the last iteration of the
EM algorithm for that particular model. The parameters of the remaining Kmax − K
components are all initialized by a zero value. Finally, a random permutation is drawn
among the initial parameters of the Kmax components for each of the different chains
in order to encourage the presence of the label switching phenomenon in the MCMC
sampler.
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Appendix B: Computational details: package in R

The computational pipeline for the proposed methodology has been implemented
in R. It is furthermore publicly available as a contributed R package named
multinomialLogitMix, which is available at https://CRAN.R-project.org/
package=multinomialLogitMix. The proposal scheme of theMALA sampler is imple-
mented in theRcpp (Eddelbuettel and François 2011; Eddelbuettel 2013; Eddelbuettel
andBalamuta 2018) and RcppArmadillo (Eddelbuettel and Sanderson 2014) pack-
ages, which integrate R and C++. Figure 10 illustrates that the gain in computing time
is tremendous when replacing the R code with Rcpp.

The basic pipeline is illustrated next. For this purpose we use a simulated dataset
as the ones in Sect. 4.1.

Fig. 10 Benchmarking runtime for the MALA proposal (Step 3 of Algorithm 1) between R and Rcpp for
different values of number of mixture components (K) and multinomial categories (D)
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Now let’s explore the output based on the EMalgorithm only. At first we retrieve the
selected number of clusters according to ICL. Thenwe display the estimated clustering
conditional on the selected value. Finally,we retrieve the estimated parameters (mixing
proportions and coefficients of the mixture of multinomial logits) of the model.
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Note that in the last chunk of the output the rows correspond to multinomial
categories (there are 6 categories in total so j = 1, . . . , 5) and the columns corre-
spond to covariates (p = 1, . . . , 3), per cluster. For example, the estimate of the
coefficient of the second multinomial category ( j = 2) for the second covariate
(so p = 3 because the model includes a constant term) for cluster 1 (k = 1) is
equal to β̂k jp = β̂1,2,3 = 2.21. The corresponding estimate for cluster 2 is equal to
β̂k jp = β̂2,2,3 = −0.02.

Let’s explore the MCMC output now. We stress once again that the raw MCMC
sample of the overfitting mixture is not directly interpretable due to label switch-
ing. Moreover, bear in mind that it also consists of the values of the empty mixture
components which are not relevant for all practical purposes. These points are illus-
trated in Fig. 11, which displays the raw MCMC output for βk,2,3 for all components
k = 1, 2, . . . , 10 of the overfitting mixture model. A careful inspection of this graph
reveals that up to a switching of the labels the sampled values of 2 (among 10 com-
ponents) are concentrated around the two horizontal dotted lines which correspond
the estimates of the corresponding parameters according to the EM algorithm. The
remaining values which are further away from the dotted lines correspond to the sam-
pled values of this parameter for the remaining 8 empty mixture components (again
up to switching of the labels).

Let’s proceed now by inspecting the post-processed output according to the ECR
algorithm. At first we can retrieve the estimated posterior distribution of the number
of clusters (which correspond to the number of non-empty mixture components across
the MCMC run) as well as the number of assigned observation per cluster, conditional
on the value of the most probable number of clusters.
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Fig. 11 Raw MCMC output (after an initial warm-up period) for the coefficients βk,2,3 for component
k = 1, 2, . . . , 10 of the overfitting mixture model. The dotted lines correspond to the estimate of βk,2,3 for
k = 1, 2 when using a mixture model with K = 2 components

Fig. 12 Post-processed MCMC outputs for β1,2,3 (top) and β2,2,3 (bottom)
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Nowwe concentrate on the post-processed output of the non-emptymixture compo-
nents, so we essentially discard the sampled values of the remaining 8 empty mixture
components. We can retrieve basic MCMC summaries using the coda package. For
example let us retrieve MCMC summaries for the coefficients β1,2,3 and β2,2,3.

The last command produces Fig. 12, which displays the trace of the post-processed
values of β1,2,3 (left) along with the corresponding estimate of the marginal posterior
distribution (right).

Of particular interest is also the matrix of posterior membership probabilities for
each observation. The next chunk of code shows how one can retrieve these estimates
according to output from the EM and the MCMC algorithm, respectively.

The previous example uses the parameter setup detailed in Section A. The user
can modify these arguments by passing the desired input to the optional arguments
em_parameters and mcmc_parameters of the multinomialLogitMix()
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function. Both em_parameters and mcmc_parameters should be lists, consist-
ing of the following entries.

Arguments of the em_parameters list.

maxIter Maximum number of EM iterations. Default: 100

emthreshold Positive real threshold for terminating the EM algorithm. The
algorithm stops when the difference between two successive
evaluations of the observed log-likelihood is less than this
threshold. Default: 10−8

maxNR Maximum number of Newton-Raphson iterations. Default: 10

tsplit Number of different starts that will be used within the small-EM
scheme (this quantity refers to all schemes: random, split and
shake). Default: 16

msplit Number of iterations for each small-EM start. Default: 10

split Boolean denoting whether the EM algorithm will use the
split-small EM scheme. Default: TRUE. In the opposite case, the
small-EM scheme will use only randomly selected initial values

R0 The initial value for the parameter R that controls the step-size of
the ridge-stabilized Newton-Raphson scheme (see Equation
(16)). Default: 0.1

Arguments of the mcmc_parameters list.

tau initial value for the scale of the MALA proposal (positive, it
corresponds to the parameter ν in Equation (23)). Default:
0.00035. This parameter is adjusted in the initial (warm-up)
period of the sampler in order to achieve the desirable
acceptance rate of the MALA proposal

nu2 the variance of the normal prior distribution of the logit
coefficients (the parameter τ 2 in Equation (20)). Default:
100

mcmc_cycles Total number of MCMC cycles (after the initial warm-up)
period of the sampler. Default: 2600. At the end of each
MCMC cycle a swap between chains is attempted

iter_per_cycle Number of MCMC iterations per cycle. Default: 20

nChains Number of MCMC chains that run in parallel. Each chain
uses a different prior distribution of the mixing proportions.
The inference is based on the first chain
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dirPriorAlphas The concentration parameter of the Dirichlet prior
distributions per chain (see Equation (28)). It should be a
vector with length equal to nChains. The default is: 5 *
exp((seq(2, 14, length = nChains -
1)))/100)/(200), see Equations (29) and (30)

warm_up Initial warm-up period of the sampler, in order to adaptively
tune the scale of the MALA proposal. Default: 48000

checkAR Number of iterations required in order to adjust the scale of
the proposal in MALA mechanism during the initial
warm-up phase of the sampler. Default: 500

ar_low Lowest threshold for the acceptance rate of the MALA
proposal. Default: 0.15

ar_up Highest threshold for the acceptance rate of the MALA
proposal. Default: 0.25

burn Number of MCMC cycles that will be discarded as burn-in.
Default: 100

withRandom Boolean value indicating whether or not to apply a random
permutation in the supplied starting values for each chain.
Default: true

Appendix C: Further simulation results

Main simulation study

Figure 13 displays a summary regarding the clustering accuracy versus the number
of covariates (including constant) in the simulated datasets of Sect. 4.1, that is, P ∈
{2, 3, 4} for EM(8, 8, 8), MCMC-EM (1) andMCMC-EM c(100). We observe that for
both indices (estimation of the number of clusters and partition agreement asmeasured
by the adjusted Rand index), the clustering accuracy tends to decrease as the number
of covariates increase. This effect is clearly illustrated in the smaller sample sizes (n).
However, as n gets larger the impact of the number of covariates becomes smaller.

Figure 14 displays the difference between the estimated and true value of the
numbers of clusters (K̂ − K ) (left) and the adjusted Rand index (right) for each
value of K (horizontal axis), stratified for all different values of sample size (n ∈
{125, 250, 500, 1000}). It is evident that as the number of clusters increases, over-
estimates of the number of clusters occur more often and this effect is more severe
for small sample sizes. Once again we note that the MCMC sampler with small prior
variance (MCMC-EM (1)) outperforms the remaining implementations.

Next we are concerned with the accuracy of point estimates β̂k jp, that is, the coef-
ficient value at the last iteration for the EM implementation and the estimate of the

123



Model based clustering of multinomial count data

Fig. 13 Clustering accuracy for EM (up) and MCMC (middle and bottom) when taking into account sample
size (n) and the number of covariates P (including constant term) for the simulation study presented in
Sect. 4.1 of the manuscript

posterior mean after reordering theMCMCoutput in order to deal with label switching
for the MCMC implementation. We generated 100 synthetic datasets with n = 250
observations and 100 datasets with n = 500, considering K = 4 clusters, J + 1 = 6
multinomial categories and P = 3 covariates (including constant term). In each case,
the number of components K was set equal to the true number of clusters, that is,
K = 4.All other parameterswere generated as described in Sect. 4.1. In order tomean-
ingfully compare βk jp with the corresponding point estimates β̂k jp (arising either from
EM(8, 8, 8) or from MCMC-EM (100)), we relabelled the resulting point estimates
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Fig. 14 Detailed results for our three best performing methods in the simulation study of Sect. 4.1. Left:
mean difference of the estimated number of clusters (K̂ ) from the corresponding true value (K). Right:
mean values of 1−ARI between the model corresponding to the estimated number of clusters and the true
partition

by applying the ECR algorithm (Papastamoulis and Iliopoulos 2010), by considering
that the pivot allocation vector (required in the ECR algorithm) is set to the true par-
tition. This procedure ensures the labelling between βk jp and β̂k jp (for j = 1, . . . , J ;
p = 1, . . . , P) is consistent for all k = 1, . . . , K , and it has no impact at the quality
of the estimates themselves.
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Figure 15 displays the estimated Mean Absolute Error (MAE) between the point
estimate β̂k jp and the corresponding true value βk jp, for k = 1, . . . , K , j = 1, . . . , J
and p = 1, . . . , P . As expected, the estimated MAEs are smaller on average as
the sample (n) increases. Observe that when n = 250 the MAEs become smaller as k
increases. This is of course due to the fact that in our simulation study (see Sect. 4.1) the
mixing proportions are generated according to πk ∝ k, for k = 1, . . . , K . Thus, in our

Fig. 15 Estimatedmean absolute error (mae) of parameter estimates β̂k jp considering 100 synthetic datasets
with K = 4 clusters, P = 3 covariates (including constant term) and J + 1 = 6 multinomial categories,
when the sample size is equal to n = 250 (top) and n = 500 (bottom)
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4-cluster scenario we have thatπ1 = 0.1,π2 = 0.2,π3 = 0.3 andπ4 = 0.4. Naturally,
the point estimates are less accurate in cases of very small clusters, a behaviour which
is vividly illustrated when n = 250. However, when n = 500 we do not spot any
systematic pattern in the resulting MAEs across clusters.

Further simulations and comparison with flexmix

In this Section we compare the proposed methods with the popular R package
flexmix (Leisch 2004; Grün and Leisch 2007, 2008a) and we also explore the
impact of the average number of multinomial replicates s̄ = ∑n

i=1 Si/n. In the main
simulation study of Sect. 4.1, the number ofmultinomial replicates (Si ) per observation
is drawn from a negative binomial distribution NB(r , p) with number of trials equal
to r = 20 and p = 0.025. This yields a potentially large of multinomial replicates: the
average number is equal to 781. In order to assess the sensitivity of our results to the
number of multinomial replicates we consider that r varies in the set {2.5, 5, 10, 20}
and we use the NB(r , 0.025) distribution to simulate Si (in case that the generated
number is 0 we set it to 1). It follows that the average value of Si is approximately 100,
200, 400 and 800, respectively (more precisely, the average values in our simulated
datasets are 97.5, 195, 390 and 781, respectively).

For this task we considered the following simulation scenario. In all cases the
number ofmultinomial categorieswas set equal to J+1 = 6. The number of covariates
(including constant term) was set equal to P = 3. The true values of the regression
coefficients are generated as in Sect. 4.1. The number of clusters varied between
1 ≤ K ≤ 5. We considered sample sizes of n = 250 and n = 500 observations. We
generated 5 synthetic datasets for each unique combination of K (number of clusters),
level of the average number of multinomial replicates s̄ and sample size (n), resulting
to 200 datasets in total.

Next, we fitted mixtures of multinomial logistic regressions considering the pro-
posed methodology, as well as the EM implementation in the R package flexmix.
The configuration of the EM algorithm for our proposed method was EM(8, 8, 8),
that is, an EM algorithm with 8 splits, 8 shakes and 8 random starts of small EM for
each possible value of the number of components. Then we have used the selected
model in order to initialize a run of a Bayesian overfitting mixture model. The prior
variance of the regression coefficients is equal to ν = 100 (vague prior distribu-
tion) using 8 chains in total. Finally, we have run flexmix repeatedly considering
24 random starts, for each possible value of the number of components, using the
stepFlexmix function with options: k=1:Kmax (where Kmax denotes the max-
imum number of components—see next paragraph), nrep = 24, control =
list(minprior = 0) and model = flexmix::FLXMRmultinom().

In all cases, the maximum number of mixture components was set equal to Kmax =
K+2,whereK denotes the true value of the number of clusters for each case.This upper
bound of the number of components is much more informative regarding the number
of clusters than the one in our main simulation study of Sect. 4.1 (where Kmax = 20).
The reason for choosing such a value was mainly to speed-up the computing time in
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Fig. 16 Run-time (averaged across 5 runs) comparison of the proposed methods (EM(8, 8, 8) and MCMC)
against the EM algorithm of flexmix under 24 randomly selected starting values. The x-axis indicates the
average value of multinomial replicates (rounded to the nearest multiple of 100). The y-axis is on log-scale.
All times correspond to computations in one single CPU core. A different symbold is used to denote the
maximum number of fitted mixture components: ◦(3), �(4), +(5), ×(6), �(7)

flexmix, where in most cases is significantly elevated (see Fig. 16) compared to the
proposed implementation.

The resulting estimates are summarized in Fig. 17. We conclude that in all cases
the estimation becomes more challenging when the average number of multinomial
replicates is smaller. Note also that our proposed methods (EM andMCMC) are better
than flexmix in terms of estimation of the number of clusters aswell as classification
accuracy under the adjusted Rand index.
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Fig. 17 Comparison of the proposed methods (EM and MCMC) against flexmix. The average value of
multinomial replicates is shown in the legend (s), after rounding to the nearest multiple of 100
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